```------------------------------------------------------------------------
-- Rice's theorem
------------------------------------------------------------------------

{-# OPTIONS --without-K #-}

open import Equality.Propositional
open import Prelude hiding (const; Decidable)

-- To simplify the development, let's work with actual natural numbers
-- as variables and constants (see
-- Atom.one-can-restrict-attention-to-χ-ℕ-atoms).

open import Atom

open import Chi            χ-ℕ-atoms
open import Coding         χ-ℕ-atoms
open import Free-variables χ-ℕ-atoms

import Coding.Instances.Nat

-- The theorem is stated and proved under the assumption that a
-- correct self-interpreter can be implemented.

module Rices-theorem
(eval : Exp)
(cl-eval : Closed eval)
(eval₁ : ∀ p v → Closed p → p ⇓ v → apply eval ⌜ p ⌝ ⇓ ⌜ v ⌝)
(eval₂ : ∀ p v → Closed p → apply eval ⌜ p ⌝ ⇓ v →
∃ λ v′ → p ⇓ v′ × v ≡ ⌜ v′ ⌝)
where

open import H-level.Truncation.Propositional as Trunc hiding (rec)
open import Logical-equivalence using (_⇔_)
open import Tactic.By

open import Double-negation equality-with-J
open import Equality.Decision-procedures equality-with-J
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J

open import Cancellation  χ-ℕ-atoms
open import Compatibility χ-ℕ-atoms
open import Computability χ-ℕ-atoms hiding (_∘_)
open import Constants     χ-ℕ-atoms
open import Deterministic χ-ℕ-atoms
open import Propositional χ-ℕ-atoms
open import Reasoning     χ-ℕ-atoms
open import Termination   χ-ℕ-atoms
open import Values        χ-ℕ-atoms

open χ-atoms χ-ℕ-atoms

open import Combinators as χ hiding (if_then_else_)
open import Halting-problem
open import Internal-coding

------------------------------------------------------------------------
-- The theorem

-- Definition of "pointwise semantically equivalent".

Pointwise-semantically-equivalent : Closed-exp → Closed-exp → Set
Pointwise-semantically-equivalent e₁ e₂ =
∀ e v → semantics [ apply-cl e₁ e ]= v ⇔
semantics [ apply-cl e₂ e ]= v

-- This relation is symmetric.

symmetric :
∀ e₁ e₂ →
Pointwise-semantically-equivalent e₁ e₂ →
Pointwise-semantically-equivalent e₂ e₁
symmetric _ _ eq = λ e v → inverse (eq e v)

-- Rice's theorem.

module _
(P : Closed-exp →Bool)
(let P′ = proj₁ P)
(e∈ : Closed-exp)
(Pe∈ : P′ [ e∈ ]= true)
(e∉ : Closed-exp)
(¬Pe∉ : P′ [ e∉ ]= false)
(resp : ∀ e₁ e₂ {b} →
Pointwise-semantically-equivalent e₁ e₂ →
P′ [ e₁ ]= b → P′ [ e₂ ]= b)
where

private

module Helper
(p : Exp) (cl-p : Closed p)
(hyp : ∀ e b → P′ [ e ]= b → apply p ⌜ e ⌝ ⇓ ⌜ b ⌝)
where

arg : Closed-exp → Closed-exp → Closed-exp
arg e p =
lambda v-x
(apply (lambda v-underscore (apply (proj₁ e) (var v-x)))
(apply eval (proj₁ p)))
, (Closed′-closed-under-lambda \$
Closed′-closed-under-apply
(Closed′-closed-under-lambda \$
Closed′-closed-under-apply
(Closed→Closed′ \$ proj₂ e)
(Closed′-closed-under-var (inj₂ (inj₁ refl))))
(Closed′-closed-under-apply
(Closed→Closed′ cl-eval)
(Closed→Closed′ (proj₂ p))))

coded-arg : Closed-exp → Exp
coded-arg e =
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
apply internal-code (var v-p) ∷
[]) ∷ []) ∷ [])

branches : List Br
branches =
branch c-false [] (apply p (coded-arg e∈)) ∷
branch c-true  [] (χ.not (apply p (coded-arg e∉))) ∷
[]

const-loop : Closed-exp
const-loop =
lambda v-underscore loop
, (Closed′-closed-under-lambda \$
Closed→Closed′ loop-closed)

⌜const-loop⌝ : Closed-exp
⌜const-loop⌝ = ⌜ proj₁ const-loop ⌝

halts : Exp
halts =
lambda v-p (case (apply p (proj₁ ⌜const-loop⌝)) branches)

cl-coded-arg : ∀ e → Closed′ (v-p ∷ []) (coded-arg e)
cl-coded-arg e =
Closed′-closed-under-const λ where
_ (inj₂ (inj₂ ()))
_ (inj₁ refl) →
Closed→Closed′ (rep-closed v-x)
_ (inj₂ (inj₁ refl)) →
Closed′-closed-under-const λ where
_ (inj₂ (inj₂ ()))
_ (inj₁ refl) →
Closed→Closed′ \$
rep-closed (Exp.lambda v-underscore (apply (proj₁ e) (var v-x)))
_ (inj₂ (inj₁ refl)) →
Closed′-closed-under-const λ where
_ (inj₂ (inj₂ ()))
_ (inj₁ refl) →
Closed→Closed′ \$
rep-closed eval
_ (inj₂ (inj₁ refl)) →
Closed′-closed-under-apply
(Closed→Closed′ internal-code-closed)
(Closed′-closed-under-var (inj₁ refl))

cl-halts : Closed halts
cl-halts =
Closed′-closed-under-lambda \$
Closed′-closed-under-case
(Closed′-closed-under-apply
(Closed→Closed′ cl-p)
(Closed→Closed′ \$ proj₂ ⌜const-loop⌝))
(λ where
(inj₁ refl)        →
Closed′-closed-under-apply
(Closed→Closed′ cl-p)
(cl-coded-arg e∈)
(inj₂ (inj₁ refl)) →
not-closed \$
Closed′-closed-under-apply
(Closed→Closed′ cl-p)
(cl-coded-arg e∉)
(inj₂ (inj₂ ())))

coded-arg⇓⌜arg⌝ :
(e p : Closed-exp) →
coded-arg e [ v-p ← ⌜ p ⌝ ] ⇓ ⌜ arg e ⌜ p ⌝ ⌝
coded-arg⇓⌜arg⌝ e p =
coded-arg e [ v-p ← ⌜ p ⌝ ]                                    ⟶⟨⟩

const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝
[ v-p ← ⌜ p ⌝ ] ∷
const c-apply (
⌜ eval ⌝ [ v-p ← ⌜ p ⌝ ] ∷
apply (internal-code [ v-p ← ⌜ p ⌝ ]) ⌜ p ⌝ ∷
[]) ∷ []) ∷ [])                                        ≡⟨ cong (λ e → const _ (_ ∷ const _ (const _ (_ ∷
const _ (e ∷ _) ∷ _) ∷ _) ∷ _))
(subst-rep (proj₁ e)) ⟩⟶
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⟨ ⌜ eval ⌝ [ v-p ← ⌜ p ⌝ ] ⟩ ∷
apply (internal-code [ v-p ← ⌜ p ⌝ ]) ⌜ p ⌝ ∷
[]) ∷ []) ∷ [])                                        ≡⟨ ⟨by⟩ (subst-rep eval) ⟩⟶

const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
apply ⟨ internal-code [ v-p ← ⌜ p ⌝ ] ⟩ ⌜ p ⌝ ∷
[]) ∷ []) ∷ [])                                        ≡⟨ ⟨by⟩ (subst-closed _ _ internal-code-closed) ⟩⟶

const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
apply internal-code ⌜ p ⌝ ∷
[]) ∷ []) ∷ [])                                        ⟶⟨ []⇓ (const (there (here (const (there (here
(const (there (here ∙)))))))))
(internal-code-correct (proj₁ p)) ⟩
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
⌜ ⌜ p ⌝ ⦂ Exp ⌝ ∷
[]) ∷ []) ∷ [])                                        ⟶⟨⟩

⌜ arg e ⌜ p ⌝ ⌝                                                ■⟨ rep-value (arg e ⌜ p ⌝) ⟩

arg-lemma-⇓ :
(e p : Closed-exp) →
Terminates (proj₁ p) →
Pointwise-semantically-equivalent (arg e ⌜ p ⌝) e
arg-lemma-⇓ (e , cl-e) (p , cl-p) (vp , p⇓vp)
(e′ , cl-e′) (v , _) = record
{ to = λ where
(apply {v₂ = ve′} lambda q₁
(apply {v₂ = vp} lambda _
(apply {x = x} {e = e-body} {v₂ = ve″} q₂ q₃ q₄))) →

apply ⟨ e ⟩ e′                                    ≡⟨ ⟨by⟩ (substs-closed e cl-e ((v-underscore , vp) ∷ (v-x , ve′) ∷ [])) ⟩⟶

apply (e [ v-x ← ve′ ] [ v-underscore ← vp ]) e′  ⟶⟨ apply q₂ q₁ ⟩

e-body [ x ← ⟨ ve′ ⟩ ]                            ≡⟨ ⟨by⟩ (values-only-compute-to-themselves (⇓-Value q₁) (

ve′                                                    ≡⟨ sym \$ subst-closed _ _ (closed⇓closed q₁ cl-e′) ⟩⟶
ve′ [ v-underscore ← vp ]                              ⇓⟨ q₃ ⟩■
ve″                                                    )) ⟩⟶

e-body [ x ← ve″ ]                                ⇓⟨ q₄ ⟩■

v
; from = λ where
(apply {v₂ = ve′} q₁ q₂ q₃) →

proj₁ (apply-cl (arg (e , cl-e) ⌜ p ⌝) (e′ , cl-e′))       ⟶⟨ apply lambda q₂ ⟩

apply (lambda v-underscore (apply ⟨ e [ v-x ← ve′ ] ⟩ ve′))
(apply eval ⌜ p ⌝ [ v-x ← ve′ ])                     ≡⟨ ⟨by⟩ (subst-closed _ _ cl-e) ⟩⟶

apply (lambda v-underscore (apply e ve′))
⟨ apply eval ⌜ p ⌝ [ v-x ← ve′ ] ⟩                   ≡⟨ ⟨by⟩ (subst-closed _ _ \$
Closed′-closed-under-apply cl-eval (rep-closed p)) ⟩⟶
apply (lambda v-underscore (apply e ve′))
(apply eval ⌜ p ⌝)                                   ⟶⟨ apply lambda (eval₁ p _ cl-p p⇓vp) ⟩

apply e ve′ [ v-underscore ← ⌜ vp ⌝ ]                      ≡⟨ subst-closed _ _ \$
Closed′-closed-under-apply cl-e (closed⇓closed q₂ cl-e′) ⟩⟶

apply e ve′                                                ⇓⟨ apply q₁ (values-compute-to-themselves (⇓-Value q₂)) q₃ ⟩■

v
}

arg-lemma-⇓-true :
(e : Closed-exp) →
Terminates (proj₁ e) →
P′ [ arg e∈ ⌜ e ⌝ ]= true
arg-lemma-⇓-true e e⇓ =      \$⟨ Pe∈ ⟩
P′ [ e∈ ]= true            ↝⟨ resp _ _ (symmetric (arg e∈ ⌜ e ⌝) e∈ (arg-lemma-⇓ e∈ e e⇓)) ⟩□
P′ [ arg e∈ ⌜ e ⌝ ]= true  □

arg-lemma-⇓-false :
(e : Closed-exp) →
Terminates (proj₁ e) →
P′ [ arg e∉ ⌜ e ⌝ ]= false
arg-lemma-⇓-false e e⇓ =      \$⟨ ¬Pe∉ ⟩
P′ [ e∉ ]= false            ↝⟨ resp _ _ (symmetric (arg e∉ ⌜ e ⌝) e∉ (arg-lemma-⇓ e∉ e e⇓)) ⟩□
P′ [ arg e∉ ⌜ e ⌝ ]= false  □

arg-lemma-¬⇓′ :
(e p : Closed-exp) →
¬ Terminates (proj₁ p) →
Pointwise-semantically-equivalent (arg e ⌜ p ⌝) const-loop
arg-lemma-¬⇓′ (e , cl-e) (p , cl-p) ¬p⇓
(e′ , cl-e′) (v , _) = record
{ to = λ where
(apply {v₂ = ve′} lambda _ (apply {v₂ = vp} _ q _)) →
⊥-elim \$ ¬p⇓ \$ Σ-map id proj₁ \$
eval₂ p vp cl-p (
apply eval ⌜ p ⌝                ≡⟨ sym \$ subst-closed _ _ \$ Closed′-closed-under-apply cl-eval (rep-closed p) ⟩⟶
apply eval ⌜ p ⌝ [ v-x ← ve′ ]  ⇓⟨ q ⟩■
vp)
; from = λ where
(apply lambda _ loop⇓) → ⊥-elim \$ ¬loop⇓ (_ , loop⇓)
}

arg-lemma-¬⇓ :
∀ {b} (e₀ e : Closed-exp) →
¬ Terminates (proj₁ e) →
P′ [ const-loop ]= b →
P′ [ arg e₀ ⌜ e ⌝ ]= b
arg-lemma-¬⇓ {b} e₀ e ¬e⇓ =
P′ [ const-loop ]= b    ↝⟨ resp _ _ (symmetric (arg e₀ ⌜ e ⌝) const-loop (arg-lemma-¬⇓′ e₀ e ¬e⇓)) ⟩□
P′ [ arg e₀ ⌜ e ⌝ ]= b  □

∃Bool : Set
∃Bool = ∃ λ (b : Bool) →
apply p (proj₁ ⌜const-loop⌝) ⇓ ⌜ b ⌝
×
P′ [ const-loop ]= b

¬¬∃ : ¬¬ ∃Bool
¬¬∃ =
excluded-middle {A = P′ [ const-loop ]= true} >>= λ where
(inj₁ P-const-loop) → return ( true
, hyp const-loop true
P-const-loop
, P-const-loop
)
(inj₂ ¬P-const-loop) →
proj₂ P const-loop >>= λ where
(true  , P-const-loop)  → ⊥-elim (¬P-const-loop
P-const-loop)
(false , ¬P-const-loop) →
return ( false
, hyp const-loop false ¬P-const-loop
, ¬P-const-loop
)

halts⇓-lemma :
∀ {v} →
∃Bool →
(e : Closed-exp) →
(P′ [ const-loop ]= false →
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝) ⇓ v) →
(P′ [ const-loop ]= true →
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝)) ⇓ v) →
apply halts ⌜ e ⌝ ⇓ v
halts⇓-lemma {v} ∃bool e e∈⇓v e∉⇓v =
apply halts ⌜ e ⌝                                                 ⟶⟨ apply lambda (rep⇓rep e) ⟩

case (apply ⟨ p [ v-p ← ⌜ e ⌝ ] ⟩ (proj₁ ⌜const-loop⌝))
(branches [ v-p ← ⌜ e ⌝ ]B⋆)                                    ≡⟨ ⟨by⟩ (subst-closed _ _ cl-p) ⟩⟶

case (apply p (proj₁ ⌜const-loop⌝)) (branches [ v-p ← ⌜ e ⌝ ]B⋆)  ⇓⟨ lemma ∃bool ⟩■

v
where
lemma : ∃Bool → _
lemma (true , p⌜const-loop⌝⇓true , P-const-loop) =
case (apply p (proj₁ ⌜const-loop⌝)) (branches [ v-p ← ⌜ e ⌝ ]B⋆)    ⟶⟨ case p⌜const-loop⌝⇓true (there (λ ()) here) [] ⟩
χ.not (apply ⟨ p [ v-p ← ⌜ e ⌝ ] ⟩ (coded-arg e∉ [ v-p ← ⌜ e ⌝ ]))  ≡⟨ ⟨by⟩ (subst-closed _ _ cl-p) ⟩⟶
χ.not (apply p (coded-arg e∉ [ v-p ← ⌜ e ⌝ ]))                      ⟶⟨ []⇓ (case (apply→ ∙)) (coded-arg⇓⌜arg⌝ e∉ e) ⟩
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝))                                  ⇓⟨ e∉⇓v P-const-loop ⟩■
v

lemma (false , p⌜const-loop⌝⇓false , ¬P-const-loop) =
case (apply p (proj₁ ⌜const-loop⌝)) (branches [ v-p ← ⌜ e ⌝ ]B⋆)  ⟶⟨ case p⌜const-loop⌝⇓false here [] ⟩
apply ⟨ p [ v-p ← ⌜ e ⌝ ] ⟩ (coded-arg e∈ [ v-p ← ⌜ e ⌝ ])        ≡⟨ ⟨by⟩ (subst-closed _ _ cl-p) ⟩⟶
apply p (coded-arg e∈ [ v-p ← ⌜ e ⌝ ])                            ⟶⟨ []⇓ (apply→ ∙) (coded-arg⇓⌜arg⌝ e∈ e) ⟩
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝)                                        ⇓⟨ e∈⇓v ¬P-const-loop ⟩■
v

⇓-lemma :
∃Bool →
(e : Closed-exp) →
Terminates (proj₁ e) →
apply halts ⌜ e ⌝ ⇓ ⌜ true ⦂ Bool ⌝
⇓-lemma ∃bool e e⇓ = halts⇓-lemma ∃bool e

(λ _ →
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝)  ⇓⟨ hyp (arg e∈ ⌜ e ⌝) true (arg-lemma-⇓-true e e⇓) ⟩■
⌜ true ⦂ Bool ⌝)

(λ _ →
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝))  ⟶⟨ []⇓ (case ∙) (hyp (arg e∉ ⌜ e ⌝) false (arg-lemma-⇓-false e e⇓)) ⟩
χ.not ⌜ false ⦂ Bool ⌝              ⇓⟨ not-correct false (rep⇓rep (false ⦂ Bool)) ⟩■
⌜ true ⦂ Bool ⌝)

¬⇓-lemma :
∃Bool →
(e : Closed-exp) →
¬ Terminates (proj₁ e) →
apply halts ⌜ e ⌝ ⇓ ⌜ false ⦂ Bool ⌝
¬⇓-lemma ∃bool e ¬e⇓ = halts⇓-lemma ∃bool e

(λ ¬P-const-loop →
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝)  ⇓⟨ hyp (arg e∈ ⌜ e ⌝) false (arg-lemma-¬⇓ e∈ e ¬e⇓ ¬P-const-loop) ⟩■
⌜ false ⦂ Bool ⌝)

(λ P-const-loop →
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝))  ⟶⟨ []⇓ (case ∙) (hyp (arg e∉ ⌜ e ⌝) true (arg-lemma-¬⇓ e∉ e ¬e⇓ P-const-loop)) ⟩
χ.not ⌜ true ⦂ Bool ⌝               ⇓⟨ not-correct true (rep⇓rep (true ⦂ Bool)) ⟩■
⌜ false ⦂ Bool ⌝)

rice's-theorem : ¬ Decidable P
rice's-theorem (p , cl-p , hyp , _) = ¬¬¬⊥ \$
¬¬∃ >>= λ ∃bool →
return (intensional-halting-problem₀
( halts
, cl-halts
, λ e cl-e → ⇓-lemma  ∃bool (e , cl-e)
, ¬⇓-lemma ∃bool (e , cl-e)
))
where
open Helper p cl-p hyp

-- A variant of the theorem.

rice's-theorem′ :
(P : Closed-exp → Set)
(e∈ : Closed-exp) →
P e∈ →
(e∉ : Closed-exp) →
¬ P e∉ →
(∀ e₁ e₂ →
Pointwise-semantically-equivalent e₁ e₂ →
P e₁ → P e₂) →
¬ Decidable (as-function-to-Bool₁ P)
rice's-theorem′ P e∈ Pe∈ e∉ ¬Pe∉ resp =
rice's-theorem
(as-function-to-Bool₁ P)
e∈
((λ _ → refl) , ⊥-elim ∘ (_\$ Pe∈))
e∉
(⊥-elim ∘ ¬Pe∉ , (λ _ → refl))
(λ e₁ e₂ eq →
Σ-map (_∘ resp e₂ e₁ (symmetric e₁ e₂ eq))
(_∘ (_∘ resp e₁ e₂ eq)))

------------------------------------------------------------------------
-- Examples

-- The problem of deciding whether an expression implements the
-- successor function is undecidable.

Equal-to-suc : Closed-exp →Bool
Equal-to-suc =
as-function-to-Bool₁ λ e →
(n : ℕ) → apply (proj₁ e) ⌜ n ⌝ ⇓ ⌜ suc n ⌝

equal-to-suc-not-decidable : ¬ Decidable Equal-to-suc
equal-to-suc-not-decidable =
rice's-theorem′
_
(s , from-⊎ (closed? s))
(λ n → apply lambda (rep⇓rep n) (rep⇓rep (suc n)))
(z , from-⊎ (closed? z))
(λ z⌜n⌝⇓ → case z⌜n⌝⇓ 0 of λ { (apply () _ _) })
(λ e₁ e₂ e₁∼e₂ Pe₁ n →
apply (proj₁ e₂) ⌜ n ⌝  ⇓⟨ _⇔_.to (e₁∼e₂ ⌜ n ⌝ ⌜ suc n ⌝) (Pe₁ n) ⟩■
⌜ suc n ⌝)
where
z = const c-zero []
s = lambda v-n (const c-suc (var v-n ∷ []))

-- The problem of deciding whether an expression always terminates
-- with the same value when applied to an arbitrary argument is
-- undecidable.

Is-constant : Closed-exp →Bool
Is-constant = as-function-to-Bool₁ λ e →
∃ λ v → (n : ℕ) → apply (proj₁ e) ⌜ n ⌝ ⇓ v

is-constant-not-decidable : ¬ Decidable Is-constant
is-constant-not-decidable =
rice's-theorem′
_
(c , from-⊎ (closed? c))
((⌜ 0 ⌝ ⦂ Exp) , λ n →
apply c ⌜ n ⌝  ⇓⟨ apply lambda (rep⇓rep n) (const []) ⟩■
⌜ 0 ⌝)
(f , from-⊎ (closed? f))
not-constant
(λ e₁ e₂ e₁∼e₂ → Σ-map id λ {v} ⇓v n →
let v-closed : Closed v
v-closed = closed⇓closed (⇓v n) \$
Closed′-closed-under-apply
(proj₂ e₁)
(rep-closed n)
in
apply (proj₁ e₂) ⌜ n ⌝  ⇓⟨ _⇔_.to (e₁∼e₂ ⌜ n ⌝ (v , v-closed)) (⇓v n) ⟩■
v)
where
c = lambda v-underscore ⌜ 0 ⌝
f = lambda v-n (var v-n)

not-constant : ¬ ∃ λ v → (n : ℕ) → apply f ⌜ n ⌝ ⇓ v
not-constant (v  , constant) = impossible
where
v≡0 : v ≡ ⌜ 0 ⌝
v≡0 with constant 0
... | apply lambda (const []) (const []) = refl

v≡1 : v ≡ ⌜ 1 ⌝
v≡1 with constant 1
... | apply lambda (const (const [] ∷ [])) (const (const [] ∷ [])) =
refl

0≡1 =
⌜ 0 ⌝  ≡⟨ sym v≡0 ⟩
v      ≡⟨ v≡1 ⟩∎
⌜ 1 ⌝  ∎

impossible : ⊥
impossible with 0≡1
... | ()
```