------------------------------------------------------------------------ -- Pointers to results from the paper ------------------------------------------------------------------------ {-# OPTIONS --without-K #-} module README.Pointers-to-results-from-the-paper where -- Library code. import Equality.Propositional as Equality import Interval import H-level import H-level.Truncation.Propositional as Truncation import Quotient.HIT import Univalence-axiom -- Code from this development. import Delay-monad import Delay-monad.Alternative import Delay-monad.Alternative.Equivalence import Delay-monad.Alternative.Partial-order import Delay-monad.Alternative.Termination import Delay-monad.Alternative.Weak-bisimilarity import Delay-monad.Monad import Delay-monad.Partial-order import Delay-monad.Strong-bisimilarity as Strong-bisimilarity import Delay-monad.Weak-bisimilarity as Weak-bisimilarity import Lifting import Partiality-algebra import Partiality-algebra.Category import Partiality-algebra.Eliminators import Partiality-algebra.Fixpoints import Partiality-algebra.Pi import Partiality-monad.Coinductive.Alternative import Partiality-monad.Inductive as Partiality-monad import Partiality-monad.Inductive.Alternative-order as Alternative-order import Partiality-monad.Inductive.Eliminators import Partiality-monad.Inductive.Fixpoints import Partiality-monad.Inductive.Monad as Monad import Partiality-monad.Inductive.Monad.Adjunction as Adjunction import Partiality-monad.Equivalence import README.Lambda import Search ------------------------------------------------------------------------ -- Section 2 -- Note that most of the following definitions are taken from a -- library. -- Extensionality for functions. Extensionality = Equality.Extensionality ext = Interval.ext -- Strong bisimilarity implies equality for the delay monad. Delay-ext = Strong-bisimilarity.Extensionality -- Uniqueness of identity proofs. UIP = Equality.Uniqueness-of-identity-proofs -- The property of being a set. Is-set = H-level.Is-set -- The property of being a proposition. Is-proposition = H-level.Is-proposition -- Propositional extensionality. Propositional-extensionality = Univalence-axiom.Propositional-extensionality -- The univalence axiom. Univalence = Univalence-axiom.Univalence -- Quotient types. module Quotient = Quotient.HIT -- Countable choice. Countable-choice = Truncation.Axiom-of-countable-choice ------------------------------------------------------------------------ -- Section 3.1 -- Definition 1: Partiality algebras and partiality algebra morphisms. -- The function η is called now and ⊥ is called never. Partiality-algebra = Partiality-algebra.Partiality-algebra Morphism = Partiality-algebra.Morphism -- An identity morphism. id = Partiality-algebra.id -- Composition of morphisms. _∘_ = Partiality-algebra._∘_ -- Partiality algebras form a category. category = Partiality-algebra.Category.category -- The partiality monad as a postulated partiality algebra. The proof -- α is called antisymmetry. partiality-monad = Partiality-monad.partiality-algebra -- The partiality monad. _⊥ = Partiality-monad._⊥ -- Initiality. Initial = Partiality-algebra.Eliminators.Initial -- Theorem 2. Induction-principle = Partiality-algebra.Eliminators.Elimination-principle universality-to-induction = Partiality-algebra.Eliminators.∀initiality→∀eliminators induction-to-universality = Partiality-algebra.Eliminators.∀eliminators→∀initiality -- The partiality monad's induction principle. induction-principle = Partiality-monad.eliminators -- A proof that shows that A ⊥ is a set without making use of the -- set-truncation "constructor". Type-is-set = Partiality-algebra.Partiality-algebra-with.Type-is-set -- Lemma 3. lemma-3 = Partiality-monad.Inductive.Eliminators.⊥-rec-⊥ ------------------------------------------------------------------------ -- Section 3.2 -- Definition 4: The category ω-CPO of pointed ω-cpos. ω-CPO = Adjunction.ω-CPPO ω-cpo = Adjunction.ω-cppo -- The forgetful functor U from ω-CPO (and in fact Part_A for any A) -- to SET. U = Adjunction.Forget -- The functor F from SET to ω-CPO. F = Adjunction.Partial -- Theorem 5. theorem-5 = Adjunction.Partial⊣Forget -- Corollary 6. corollary-6 = Adjunction.Partiality-monad -- A direct construction of a monad structure on _⊥. μ = Monad.join module Monad-laws = Monad.Monad-laws ------------------------------------------------------------------------ -- Section 3.3 -- Lemma 7. For the second part the code uses a propositional -- truncation that is not present in the paper: the result proved in -- the code is more general, and works even if the type "A" is not a -- set. lemma-7-part-1 = Alternative-order.now⊑never≃⊥ lemma-7-part-2 = Alternative-order.now⊑now≃∥≡∥ lemma-7-part-3 = Alternative-order.now⊑⨆≃∥∃now⊑∥ -- Corollary 8. For the second part the code uses a propositional -- truncation that is not present in the paper: the result proved in -- the code is more general, and works even if the type "A" is not a -- set. corollary-8-part-1 = Alternative-order.now⊑→⇓ corollary-8-part-2 = Alternative-order.now≡now≃∥≡∥ corollary-8-part-3 = Alternative-order.now≢never -- The order is flat. flat-order = Alternative-order.flat-order ------------------------------------------------------------------------ -- Section 4, not including Sections 4.1 and 4.2 -- Definition 9: The delay monad and weak bisimilarity. The definition -- of _↓_ is superficially different from the one in the paper. The -- first definition of weak bisimilarity, _∼D_, is different from the -- one in the paper, but is logically equivalent to the second one, -- _∼D′_, which is closer to the paper's definition. Delay = Delay-monad.Delay _↓D_ = Weak-bisimilarity._⇓_ _∼D_ = Weak-bisimilarity._≈_ _∼D′_ = Weak-bisimilarity._≈′_ ∼D⇔∼D′ = Delay-monad.Partial-order.≈⇔≈′ -- The delay monad is a monad. Delay-monad = Delay-monad.Monad.delay-monad -- The relation _↓D_ is pointwise propositional (when the type "A" is -- a set). ↓D-propositional = Weak-bisimilarity.Terminates-propositional -- The relation _∼D′_ is pointwise propositional (when the type "A" is -- a set). ∼D′-propositional = Weak-bisimilarity.≈′-propositional -- _∼D_ is an equivalence relation. ∼D-reflexive = Weak-bisimilarity.reflexive ∼D-symmetric = Weak-bisimilarity.symmetric ∼D-transitive = Weak-bisimilarity.transitive ------------------------------------------------------------------------ -- Section 4.1 -- The predicate is-mon. is-mon = Delay-monad.Alternative.Increasing -- Monotone sequences. Seq = Delay-monad.Alternative.Delay -- Lemma 10. lemma-10 = Delay-monad.Alternative.Equivalence.Delay↔Delay -- The relation ↓_Seq. _↓-Seq_ = Delay-monad.Alternative.Termination._⇓_ -- This relation is pointwise logically equivalent to a -- propositionally truncated variant (when the type "A" is a set). ↓-Seq⇔∥↓-Seq∥ = Delay-monad.Alternative.Termination.⇓⇔∥⇓∥ -- The relation ⊑_Seq. _⊑-Seq_ = Delay-monad.Alternative.Partial-order._∥⊑∥_ -- This relation is pointwise propositional. ⊑-Seq-propositional = Delay-monad.Alternative.Partial-order.∥⊑∥-propositional -- The relation ∼_Seq. _∼-Seq_ = Delay-monad.Alternative.Weak-bisimilarity._≈_ -- This relation is pointwise propositional. ≈-Seq-propositional = Delay-monad.Alternative.Weak-bisimilarity.≈-propositional -- Lemma 11. lemma-11 = Partiality-monad.Coinductive.Alternative.⊥↔⊥ ------------------------------------------------------------------------ -- Section 4.2 -- The function w. w = Partiality-monad.Equivalence.Delay→⊥ -- Lemma 12. w-monotone = Partiality-monad.Equivalence.Delay→⊥-mono w̃ = Partiality-monad.Equivalence.⊥→⊥ -- Lemma 13. lemma-13 = Partiality-monad.Equivalence.⊥→⊥-injective -- Lemma 14. lemma-14 = Partiality-monad.Equivalence.Delay→⊥-surjective -- The function w̃ is surjective. w̃-surjective = Partiality-monad.Equivalence.⊥→⊥-surjective -- Theorem 15. theorem-15-part-1 = Partiality-monad.Equivalence.⊥→⊥-equiv theorem-15-part-2 = Partiality-monad.Equivalence.⊥≃⊥′ theorem-15-part-3 = Partiality-monad.Equivalence.⊥≃⊥ ------------------------------------------------------------------------ -- Section 5.1 -- A fixpoint combinator. fix = Partiality-algebra.Fixpoints.fix -- If the argument is ω-continuous, then the result is a least fixed -- point. fixed-point = Partiality-algebra.Fixpoints.fix-is-fixpoint-combinator least = Partiality-algebra.Fixpoints.fix-is-least -- A kind of dependent function space with a type as the domain and a -- family of partiality algebras as the codomain. The result is a -- partiality algebra. Π = Partiality-algebra.Pi.Π -- The search function. module The-search-function = Search.Direct ------------------------------------------------------------------------ -- Section 5.3 -- Operational semantics. module Operational-semantics = README.Lambda ------------------------------------------------------------------------ -- Section 6 -- A quotient inductive-inductive definition of the lifting -- construction on ω-cpos. (This construction is based on a suggestion -- from Paolo Capriotti.) module Lifting-construction = Lifting