------------------------------------------------------------------------
-- Pi with partiality algebra families as codomains
------------------------------------------------------------------------

module Partiality-algebra.Pi where

open import Equality.Propositional
open import Interval using (ext)
open import Logical-equivalence using (_⇔_)
open import Prelude

open import H-level equality-with-J hiding (Type)
open import H-level.Closure equality-with-J

open import Partiality-algebra as PA hiding (id; _∘_)

open Partiality-algebra-with
open Partiality-algebra

-- Applies an increasing sequence of functions to a value.

at-with :
   {a b p q} {A : Set a} {Type : A  Set p} {B : A  Set b}
  (P : (x : A)  Partiality-algebra-with (Type x) q (B x)) 
  let module P x = Partiality-algebra-with (P x) in
  ( λ (f :   (x : A)  Type x) 
      n x  P._⊑_ x (f n x) (f (suc n) x)) 
  (x : A)   λ (f :   Type x) 
                 n  P._⊑_ x (f n) (f (suc n))
at-with _ s x = Σ-map  f n  f n x)  f n  f n x) s

-- Applies an increasing sequence of functions to a value.

at :
   {a b p q} {A : Set a} {B : A  Set b}
  (P : (x : A)  Partiality-algebra p q (B x)) 
  let module P x = Partiality-algebra (P x) in
  ( λ (f :   (x : A)  P.Type x) 
      n x  P._⊑_ x (f n x) (f (suc n) x)) 
  (x : A)   λ (f :   P.Type x) 
                 n  P._⊑_ x (f n) (f (suc n))
at P = at-with (partiality-algebra-with  P)

-- A kind of dependent function space from types to
-- Partiality-algebra-with families.

Π-with :  {a b p q}
         (A : Set a) {Type : A  Set p} {B : A  Set b} 
         ((x : A)  Partiality-algebra-with (Type x) q (B x)) 
         Partiality-algebra-with
           ((x : A)  Type x) (a  q) ((x : A)  B x)
_⊑_                (Π-with A P) = λ f g   x  _⊑_ (P x) (f x) (g x)
never              (Π-with A P) = λ x  never (P x)
now                (Π-with A P) = λ f x  now (P x) (f x)
                  (Π-with A P) = λ s x   (P x) (at-with P s x)
antisymmetry       (Π-with A P) = λ p q  ext λ x 
                                    antisymmetry (P x) (p x) (q x)
Type-UIP-unused    (Π-with A P) = _⇔_.to set⇔UIP
                                    (Π-closure ext 2 λ x 
                                     _⇔_.from set⇔UIP
                                       (Type-UIP-unused (P x)))
⊑-refl             (Π-with A P) = λ f x  ⊑-refl (P x) (f x)
⊑-trans            (Π-with A P) = λ f g x  ⊑-trans (P x) (f x) (g x)
never⊑             (Π-with A P) = λ f x  never⊑ (P x) (f x)
upper-bound        (Π-with A P) = λ s n x 
                                    upper-bound (P x) (at-with P s x) n
least-upper-bound  (Π-with A P) = λ s ub is-ub x 
                                    least-upper-bound
                                      (P x) (at-with P s x) (ub x)
                                       n  is-ub n x)
⊑-proof-irrelevant (Π-with A P) = _⇔_.to propositional⇔irrelevant
                                    (Π-closure ext 1 λ x 
                                     _⇔_.from propositional⇔irrelevant
                                       (⊑-proof-irrelevant (P x)))

-- A kind of dependent function space from types to partiality algebra
-- families.

Π :  {a b p q} 
    (A : Set a) {B : A  Set b} 
    ((x : A)  Partiality-algebra p q (B x)) 
    Partiality-algebra (a  p) (a  q) ((x : A)  B x)
Type                    (Π A P) = (x : A)  Type (P x)
partiality-algebra-with (Π A P) = Π-with A (partiality-algebra-with  P)