------------------------------------------------------------------------
-- Small coinductive higher lenses with erased "proofs"
------------------------------------------------------------------------

{-# OPTIONS --guardedness #-}

import Equality.Path as P

module Lens.Non-dependent.Higher.Coinductive.Small.Erased
  {e⁺} (eq :  {a p}  P.Equality-with-paths a p e⁺) where

open P.Derived-definitions-and-properties eq

open import Logical-equivalence using (_⇔_)
open import Prelude as P hiding (id)

open import Bijection equality-with-J as B using (_↔_)
open import Equality.Decidable-UIP equality-with-J using (Constant)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
  using (_≃_; Is-equivalence)
open import Equivalence.Erased.Cubical eq as EEq using (_≃ᴱ_)
open import Equivalence.Erased.Contractible-preimages.Cubical eq as ECP
  using (_⁻¹ᴱ_)
open import Erased.Cubical eq
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq using (∥_∥)
open import Preimage equality-with-J using (_⁻¹_)
open import Tactic.Sigma-cong equality-with-J
open import Univalence-axiom equality-with-J

open import Lens.Non-dependent eq
import Lens.Non-dependent.Higher.Capriotti.Variant.Erased.Variant eq
  as V
open import Lens.Non-dependent.Higher.Coherently.Coinductive eq
import Lens.Non-dependent.Higher.Coinductive eq as C
import Lens.Non-dependent.Higher.Coinductive.Erased eq as CE
import Lens.Non-dependent.Higher.Coinductive.Small eq as S
import Lens.Non-dependent.Higher.Erased eq as E

private
  variable
    a b c d : Level
    A B     : Type a
    l g p s : A
    P       : A  Type p
    f       : (x : A)  P x
    univ    : Univalence a

------------------------------------------------------------------------
-- Weakly constant functions

-- Weakly constant type-valued functions.
--
-- Note that the definition does not use _≃ᴱ_: the right-to-left
-- directions of the equivalences are erased.

Constantᴱ :
  {A : Type a} 
  (A  Type p)  Type (a  p)
Constantᴱ P =  x y   λ (f : P x  P y)  Erased (Is-equivalence f)

-- In erased contexts Constantᴱ is pointwise equivalent to Constant
-- (assuming univalence).

@0 Constantᴱ≃Constant :
  {P : A  Type p} 
  Univalence p 
  Constantᴱ P  Constant P
Constantᴱ≃Constant {P = P} univ =
  Constantᴱ P                                                ↔⟨⟩
  (∀ x y   λ (f : P x  P y)  Erased (Is-equivalence f))  ↔⟨ (∀-cong ext λ _  ∀-cong ext λ _  ∃-cong λ _  erased Erased↔) 
  (∀ x y   λ (f : P x  P y)  Is-equivalence f)           ↔⟨ (∀-cong ext λ _  ∀-cong ext λ _  inverse Eq.≃-as-Σ) 
  (∀ x y  P x  P y)                                        ↝⟨ (∀-cong ext λ _  ∀-cong ext λ _  inverse $ ≡≃≃ univ) 
  (∀ x y  P x  P y)                                        ↔⟨⟩
  Constant P                                                 

-- In erased contexts Constantᴱ is pointwise equivalent to
-- S.Constant-≃.

@0 Constantᴱ≃Constant-≃ : Constantᴱ P  S.Constant-≃ P
Constantᴱ≃Constant-≃ {P = P} =
  Constantᴱ P                                                ↔⟨⟩
  (∀ x y   λ (f : P x  P y)  Erased (Is-equivalence f))  ↔⟨ (∀-cong ext λ _  ∀-cong ext λ _  ∃-cong λ _  erased Erased↔) 
  (∀ x y   λ (f : P x  P y)  Is-equivalence f)           ↔⟨ (∀-cong ext λ _  ∀-cong ext λ _  inverse Eq.≃-as-Σ) 
  (∀ x y  P x  P y)                                        ↔⟨⟩
  S.Constant-≃ P                                             

-- In erased contexts Constantᴱ (f ⁻¹ᴱ_) is pointwise equivalent to
-- S.Constant-≃ (f ⁻¹_).

@0 Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ :
  Constantᴱ (f ⁻¹ᴱ_)  S.Constant-≃ (f ⁻¹_)
Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ {f = f} =
  Constantᴱ (f ⁻¹ᴱ_)               ↝⟨ Constantᴱ≃Constant-≃ 
  S.Constant-≃ (f ⁻¹ᴱ_)            ↔⟨⟩
  (∀ b₁ b₂  f ⁻¹ᴱ b₁  f ⁻¹ᴱ b₂)  ↝⟨ (∀-cong ext λ _  ∀-cong ext λ _ 
                                       Eq.≃-preserves ext (inverse ECP.⁻¹≃⁻¹ᴱ) (inverse ECP.⁻¹≃⁻¹ᴱ)) 
  (∀ b₁ b₂  f ⁻¹ b₁  f ⁻¹ b₂)    ↔⟨⟩
  S.Constant-≃ (f ⁻¹_)             

-- In erased contexts Constantᴱ (f ⁻¹ᴱ_) is pointwise equivalent to
-- Constant (f ⁻¹_) (assuming univalence).

@0 Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ :
  Block "Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹" 
  {A : Type a} {B : Type b} {f : A  B} 
  Univalence (a  b) 
  Constantᴱ (f ⁻¹ᴱ_)  Constant (f ⁻¹_)
Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹  {f = f} univ =
  Constantᴱ (f ⁻¹ᴱ_)    ↝⟨ Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ 
  S.Constant-≃ (f ⁻¹_)  ↝⟨ inverse $ S.Constant≃Constant-≃ univ ⟩□
  Constant (f ⁻¹_)      

-- A "computation" rule for Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹.

@0 proj₁-from-Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ :
  (bl : Block "Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹") 
   {A : Type a} {B : Type b} {f : A  B} {univ : Univalence (a  b)}
    {c : Constant (f ⁻¹_)} {b₁ b₂} 
  proj₁ (_≃_.from (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) c b₁ b₂) 
  ECP.⁻¹→⁻¹ᴱ  subst P.id (c b₁ b₂)  ECP.⁻¹ᴱ→⁻¹
proj₁-from-Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹  {c = c} {b₁ = b₁} {b₂ = b₂} =
  ⟨ext⟩ λ (a , [ eq ]) 

  ECP.⁻¹→⁻¹ᴱ (≡⇒→ (c b₁ b₂) (a , eq))         ≡⟨ cong ECP.⁻¹→⁻¹ᴱ $ sym $
                                                 subst-id-in-terms-of-≡⇒↝ equivalence ⟩∎
  ECP.⁻¹→⁻¹ᴱ (subst P.id (c b₁ b₂) (a , eq))  

-- Constantᴱ (get ⁻¹ᴱ_) can be expressed (up to _≃ᴱ_) in terms of a
-- "setter" and an erased "get-set" law that, in a certain way, form
-- an erased family of equivalences.
--
-- This lemma is based on a lemma suggested by Andrea Vezzosi, see
-- S.Constant-≃-get-⁻¹-≃.

Constantᴱ-⁻¹ᴱ-≃ᴱ :
  {A : Type a} {B : Type b} {get : A  B} 
  Block "Constantᴱ-⁻¹ᴱ-≃ᴱ" 
  Constantᴱ (get ⁻¹ᴱ_) ≃ᴱ
  ( λ (set : A  B  A) 
   Erased ( λ (get-set :  a b  get (set a b)  b) 
            b₁ b₂ 
           let f : get ⁻¹ b₁  get ⁻¹ b₂
               f = λ (a , _)  set a b₂ , get-set a b₂
           in
           Is-equivalence f))
Constantᴱ-⁻¹ᴱ-≃ᴱ {A = A} {B = B} {get = get}  =
  Constantᴱ (get ⁻¹ᴱ_)                                                    ↔⟨⟩

  (∀ b₁ b₂ 
    λ (f : get ⁻¹ᴱ b₁  get ⁻¹ᴱ b₂) 
   Erased (Is-equivalence f))                                             ↔⟨ (∀-cong ext λ _  ∀-cong ext λ _  ∃-cong λ f  Erased-cong (
                                                                              Is-equivalence≃Is-equivalence-∘ˡ {k = equivalence} ext $
                                                                              _≃_.is-equivalence $ from-bijection $
                                                                              ∃-cong λ _  erased Erased↔)) 
  (∀ b₁ b₂ 
    λ (f : get ⁻¹ᴱ b₁  get ⁻¹ᴱ b₂) 
   Erased (Is-equivalence (Σ-map P.id erased  f)))                       ↔⟨ (∀-cong ext λ _  ∀-cong ext λ _  ∃-cong λ f  Erased-cong (
                                                                              Is-equivalence≃Is-equivalence-∘ʳ {k = equivalence} ext $
                                                                              _≃_.is-equivalence $ from-bijection $
                                                                              ∃-cong λ _  inverse $ erased Erased↔)) 
  (∀ b₁ b₂ 
    λ (f : get ⁻¹ᴱ b₁  get ⁻¹ᴱ b₂) 
   Erased (Is-equivalence (Σ-map P.id erased  f  Σ-map P.id [_]→)))     ↔⟨ Π-comm 

  (∀ b₂ b₁ 
    λ (f : get ⁻¹ᴱ b₁  get ⁻¹ᴱ b₂) 
   Erased (Is-equivalence (Σ-map P.id erased  f  Σ-map P.id [_]→)))     ↔⟨ (∀-cong ext λ _  ΠΣ-comm) 

  (∀ b₂ 
    λ (f :  b₁  get ⁻¹ᴱ b₁  get ⁻¹ᴱ b₂) 
    b₁ 
   Erased (Is-equivalence (Σ-map P.id erased  f b₁  Σ-map P.id [_]→)))  ↔⟨ (∀-cong ext λ _  ∃-cong λ _  inverse Erased-Π↔Π) 

  (∀ b₂ 
    λ (f :  b₁  get ⁻¹ᴱ b₁  get ⁻¹ᴱ b₂) 
   Erased (∀ b₁ 
           Is-equivalence (Σ-map P.id erased  f b₁  Σ-map P.id [_]→)))  ↔⟨ (∀-cong ext λ _ 
                                                                              Σ-cong {k₂ = equivalence}
                                                                                (inverse (∀-cong ext λ _  currying) F.∘
                                                                                 Π-comm F.∘
                                                                                 (∀-cong ext λ _  currying))
                                                                                 _  Eq.id)) 
  (∀ b₂ 
    λ (f :  a  ( λ b₁  Erased (get a  b₁))  get ⁻¹ᴱ b₂) 
   Erased (∀ b₁ 
           let g : get ⁻¹ b₁  get ⁻¹ b₂
               g = λ (a , eq)  Σ-map P.id erased (f a (b₁ , [ eq ]))
           in
           Is-equivalence g))                                             ↝⟨ (∀-cong ext λ _ 
                                                                              EEq.Σ-cong-≃ᴱ-Erased
                                                                                (∀-cong ext λ _ 
                                                                                 EEq.drop-⊤-left-Π-≃ᴱ ext
                                                                                   Erased-other-singleton≃ᴱ⊤
                                                                                    _ _  F.id)) λ f 
                                                                              Erased-cong (
                                                                              ∀-cong ext λ b₁ 
                                                                              Is-equivalence-cong ext λ (a , eq) 
      Σ-map P.id erased (f a (b₁ , [ eq ]))                                       ≡⟨ cong (Σ-map P.id erased  f a) $ sym $
                                                                                   erased (proj₂ Contractibleᴱ-Erased-other-singleton) _ 

      Σ-map P.id erased (f a (get a , [ refl _ ]))                                ≡⟨ cong (Σ-map P.id erased) $ sym $ subst-refl _ _ ⟩∎

      Σ-map P.id erased
        (subst (const _) (refl _) (f a (get a , [ refl _ ])))                   )) 

  (∀ b₂ 
    λ (f : A  get ⁻¹ᴱ b₂) 
   Erased (∀ b₁ 
           let g : get ⁻¹ b₁  get ⁻¹ b₂
               g = λ (a , _)  Σ-map P.id erased (f a)
           in
           Is-equivalence g))                                             ↔⟨ ΠΣ-comm 

  ( λ (f :  b  A  get ⁻¹ᴱ b) 
    b₂ 
   Erased (∀ b₁ 
           let g : get ⁻¹ b₁  get ⁻¹ b₂
               g = λ (a , _)  Σ-map P.id erased (f b₂ a)
           in
           Is-equivalence g))                                             ↔⟨ (∃-cong λ _  inverse Erased-Π↔Π) 

  ( λ (f :  b  A  get ⁻¹ᴱ b) 
   Erased (∀ b₂ b₁ 
           let g : get ⁻¹ b₁  get ⁻¹ b₂
               g = λ (a , _)  Σ-map P.id erased (f b₂ a)
           in
           Is-equivalence g))                                             ↔⟨ Σ-cong Π-comm  _  Erased-cong Π-comm) 

  ( λ (f : A   b  get ⁻¹ᴱ b) 
   Erased (∀ b₁ b₂ 
           let g : get ⁻¹ b₁  get ⁻¹ b₂
               g = λ (a , _)  Σ-map P.id erased (f a b₂)
           in
           Is-equivalence g))                                             ↔⟨ Σ-cong (∀-cong ext λ _  ΠΣ-comm)  _  Eq.id) 

  ( λ (f : A   λ (set : B  A) 
                 b  Erased (get (set b)  b)) 
   Erased (∀ b₁ b₂ 
           let g : get ⁻¹ b₁  get ⁻¹ b₂
               g = λ (a , _)  proj₁ (f a) b₂ , erased (proj₂ (f a) b₂)
           in
           Is-equivalence g))                                             ↔⟨ Σ-cong
                                                                               (∀-cong ext λ _  ∃-cong λ _  inverse Erased-Π↔Π)
                                                                                _  Eq.id) 
  ( λ (f : A   λ (set : B  A) 
                Erased (∀ b  get (set b)  b)) 
   Erased (∀ b₁ b₂ 
           let g : get ⁻¹ b₁  get ⁻¹ b₂
               g = λ (a , _)  proj₁ (f a) b₂ , erased (proj₂ (f a)) b₂
           in
           Is-equivalence g))                                             ↔⟨ Σ-cong-id {k₂ = equivalence} ΠΣ-comm 

  ( λ ((set , get-set) :
         λ (set : A  B  A) 
         a  Erased (∀ b  get (set a b)  b)) 
   Erased (∀ b₁ b₂ 
           let f : get ⁻¹ b₁  get ⁻¹ b₂
               f = λ (a , _)  set a b₂ , erased (get-set a) b₂
           in
           Is-equivalence f))                                             ↔⟨ Σ-cong (∃-cong λ _  inverse Erased-Π↔Π)  _  Eq.id) 

  ( λ ((set , [ get-set ]) :
         λ (set : A  B  A) 
        Erased (∀ a b  get (set a b)  b)) 
   Erased (∀ b₁ b₂ 
           let f : get ⁻¹ b₁  get ⁻¹ b₂
               f = λ (a , _)  set a b₂ , get-set a b₂
           in
           Is-equivalence f))                                             ↔⟨ inverse Σ-assoc 

  ( λ (set : A  B  A) 
    λ (([ get-set ]) : Erased (∀ a b  get (set a b)  b)) 
   Erased (∀ b₁ b₂ 
           Is-equivalence λ (a , _)  set a b₂ , get-set a b₂))           ↔⟨ (∃-cong λ _  inverse
                                                                              Erased-Σ↔Σ) ⟩□
  ( λ (set : A  B  A) 
   Erased ( λ (get-set :  a b  get (set a b)  b) 
            b₁ b₂ 
           Is-equivalence λ (a , _)  set a b₂ , get-set a b₂))           

-- A lemma relating S.Constant-≃-get-⁻¹-≃,
-- Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ and Constantᴱ-⁻¹ᴱ-≃ᴱ.

@0 to-Constant-≃-get-⁻¹-≃-to-Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹-≡ :
  (bl : Block "Constant-≃-get-⁻¹-≃")
  {A : Type a} {B : Type b} {get : A  B} 
  (c : Constantᴱ (get ⁻¹ᴱ_)) 
  _≃_.to (S.Constant-≃-get-⁻¹-≃ bl)
    (_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c) 
  Σ-map P.id erased
    (_≃ᴱ_.to (Constantᴱ-⁻¹ᴱ-≃ᴱ bl) c)
to-Constant-≃-get-⁻¹-≃-to-Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹-≡
  bl {get = get} c =
  _≃_.from (Eq.≃-≡ $ Eq.↔⇒≃ $ inverse Σ-assoc) $
  Σ-≡,≡→≡
    (lemma bl)
    ((Π-closure ext 1 λ _ 
      Π-closure ext 1 λ _ 
      Eq.propositional ext _)
       _ _)
  where
  lemma :
    (bl : Block "Constant-≃-get-⁻¹-≃") 
    (proj₁ $ _↔_.to Σ-assoc $
     _≃_.to (S.Constant-≃-get-⁻¹-≃ bl)
       (_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c)) 
    (proj₁ $ _↔_.to Σ-assoc $
     Σ-map P.id erased (_≃ᴱ_.to (Constantᴱ-⁻¹ᴱ-≃ᴱ bl) c))
  lemma  =
    Σ-≡,≡→≡
      (⟨ext⟩ λ a  ⟨ext⟩ λ b 

       proj₁ (proj₁ (c (get a) b) (a , [ refl _ ]))      ≡⟨ cong proj₁ $ sym $ subst-refl _ _ ⟩∎
       proj₁ (subst  _  get ⁻¹ᴱ b) (refl _)
                (proj₁ (c (get a) b) (a , [ refl _ ])))  )
      (⟨ext⟩ λ a  ⟨ext⟩ λ b 

       subst  set   a b  get (set a b)  b)
         (⟨ext⟩ λ a  ⟨ext⟩ λ b 
          cong {x = proj₁ (c (get a) b) (a , [ refl _ ])} proj₁ $ sym $
          subst-refl _ _)
          a b  erased (proj₂ (proj₁ (c (get a) b) (a , [ refl _ ]))))
         a b                                                              ≡⟨ sym $
                                                                             trans (push-subst-application _ _) $
                                                                             cong (_$ b) $ push-subst-application _ _ 
       subst  set  get (set a b)  b)
         (⟨ext⟩ λ _  ⟨ext⟩ λ _  cong proj₁ $ sym $ subst-refl _ _)
         (erased (proj₂ (proj₁ (c (get a) b) (a , [ refl _ ]))))          ≡⟨ trans (subst-ext _ _) $
                                                                             subst-ext _ _ 
       subst  s  get s  b)
         (cong proj₁ $ sym $ subst-refl _ _)
         (erased (proj₂ (proj₁ (c (get a) b) (a , [ refl _ ]))))          ≡⟨ sym $ subst-∘ _ _ _ 

       subst  (s , _)  get s  b)
         (sym $ subst-refl _ _)
         (erased (proj₂ (proj₁ (c (get a) b) (a , [ refl _ ]))))          ≡⟨ elim¹
                                                                                {p} eq 
                                                                                  subst  (s , _)  get s  b) eq
                                                                                    (erased (proj₂ (proj₁ (c (get a) b) (a , [ refl _ ])))) 
                                                                                  erased (proj₂ p))
                                                                               (subst-refl _ _)
                                                                               _ ⟩∎
       erased
         (proj₂ (subst  _  get ⁻¹ᴱ b) (refl _)
                   (proj₁ (c (get a) b) (a , [ refl _ ]))))               )

------------------------------------------------------------------------
-- Coherently constant families of fibres

-- Coherently constant families of fibres (with erased proofs),
-- defined using univalence.

Coherently-constant-fibres :
  {A : Type a} {B : Type b} 
  @0 Univalence (a  b) 
  (A  B)  Type (a  b)
Coherently-constant-fibres {A = A} {B = B} univ get =
   λ (set : A  B  A) 
    Erased
      ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
       set 
       S.Lens.set {univ = univ}
         (record { get⁻¹-coherently-constant = c }))

-- Coherently-constant-fibres univ get is equivalent (with erased
-- proofs) to CE.Coherently-constant (get ⁻¹ᴱ_) (assuming univalence).

Coherently-constant-fibres≃ᴱCoherently-constant-⁻¹ᴱ :
  {A : Type a} {B : Type b} {get : A  B} 
  @0 Univalence (lsuc (a  b)) 
  (@0 univ : Univalence (a  b)) 
  Coherently-constant-fibres univ get ≃ᴱ
  CE.Coherently-constant (get ⁻¹ᴱ_)
Coherently-constant-fibres≃ᴱCoherently-constant-⁻¹ᴱ
  {a = a} {b = b} {A = A} {B = B} {get = get} univ′ univ =
  block λ bl 

  Coherently-constant-fibres univ get                                     ↔⟨⟩

  ( λ (set : A  B  A) 
   Erased
     ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
      set 
      S.Lens.set {univ = univ}
        (record { get⁻¹-coherently-constant = c })))                      ↔⟨ (∃-cong λ _  Erased-cong (∃-cong λ c 
                                                                              ≡⇒≃ $ cong (_ ≡_) $
                                                                              S.Lens.set≡ {univ = univ}
                                                                                (record { get⁻¹-coherently-constant = c })
                                                                                bl)) 
  ( λ (set : A  B  A) 
   Erased
     ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
      set  proj₁ (_≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property))))     ↔⟨ (∃-cong λ _  Erased-cong (∃-cong λ _  inverse $
                                                                              ≡-comm F.∘
                                                                              drop-⊤-right λ _ 
                                                                              _⇔_.to contractible⇔↔⊤ $
                                                                              other-singleton-contractible _)) 
  ( λ (set : A  B  A) 
   Erased
     ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
       λ (p : proj₁ (_≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property)) 
               set) 
       λ (q :  λ (get-set : (a : A) (b : B)  get (set a b)  b) 
                b₁ b₂ 
               let f : get ⁻¹ b₁  get ⁻¹ b₂
                   f = λ (a , _)  set a b₂ , get-set a b₂
               in Is-equivalence f) 
      subst
         set 
            λ (get-set : (a : A) (b : B)  get (set a b)  b) 
            b₁ b₂ 
           let f : get ⁻¹ b₁  get ⁻¹ b₂
               f = λ (a , _)  set a b₂ , get-set a b₂
           in
           Is-equivalence f)
        p
        (proj₂ (_≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property))) 
        q))                                                               ↔⟨ (∃-cong λ _  Erased-cong (∃-cong λ _ 
                                                                              (∃-cong λ _  ∃-comm) F.∘
                                                                              ∃-comm F.∘
                                                                              (∃-cong λ _  inverse Σ-assoc))) 
  ( λ (set : A  B  A) 
   Erased
     ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
       λ (get-set : (a : A) (b : B)  get (set a b)  b) 
       λ (eq :  b₁ b₂ 
                let f : get ⁻¹ b₁  get ⁻¹ b₂
                    f = λ (a , _)  set a b₂ , get-set a b₂
                in Is-equivalence f) 
       λ (p : proj₁ (_≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property)) 
               set) 
      subst
         set 
            λ (get-set : (a : A) (b : B)  get (set a b)  b) 
            b₁ b₂ 
           let f : get ⁻¹ b₁  get ⁻¹ b₂
               f = λ (a , _)  set a b₂ , get-set a b₂
           in
           Is-equivalence f)
        p
        (proj₂ (_≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property))) 
        (get-set , eq)))                                                  ↔⟨ (∃-cong λ _  Erased-cong (∃-cong λ _  ∃-cong λ _  ∃-cong λ _ 
                                                                              B.Σ-≡,≡↔≡)) 
  ( λ (set : A  B  A) 
   Erased
     ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
       λ (get-set : (a : A) (b : B)  get (set a b)  b) 
       λ (eq :  b₁ b₂ 
                let f : get ⁻¹ b₁  get ⁻¹ b₂
                    f = λ (a , _)  set a b₂ , get-set a b₂
                in Is-equivalence f) 
      _≃_.to (S.Constant-≃-get-⁻¹-≃ bl) (c .property) 
      (set , get-set , eq)))                                              ↔⟨ (∃-cong λ _  Erased-cong (∃-cong λ _  ∃-cong λ _  ∃-cong λ _ 
                                                                              ≡⇒≃ (cong (_≡ _) $ _≃_.left-inverse-of (S.Constant-≃-get-⁻¹-≃ bl) _) F.∘
                                                                              inverse (Eq.≃-≡ $ inverse $ S.Constant-≃-get-⁻¹-≃ bl))) 
  ( λ (set : A  B  A) 
   Erased
     ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
       λ (get-set : (a : A) (b : B)  get (set a b)  b) 
       λ (eq :  b₁ b₂ 
                let f : get ⁻¹ b₁  get ⁻¹ b₂
                    f = λ (a , _)  set a b₂ , get-set a b₂
                in Is-equivalence f) 
      c .property  S.Constant-≃-get-⁻¹-≃⁻¹ (set , get-set , eq)))        ↔⟨ (Σ-assoc F.∘
                                                                              (∃-cong λ _ 
                                                                               Erased-Σ↔Σ F.∘
                                                                               Erased-cong
                                                                                 (Σ-assoc F.∘
                                                                                  (∃-cong λ _  ∃-comm) F.∘
                                                                                  ∃-comm))) 
  ( λ ((set , [ get-set , eq ]) :
         λ (set : A  B  A) 
        Erased
          ( λ (get-set : (a : A) (b : B)  get (set a b)  b) 
            b₁ b₂ 
           let f : get ⁻¹ b₁  get ⁻¹ b₂
               f = λ (a , _)  set a b₂ , get-set a b₂
           in
           Is-equivalence f)) 
   Erased
     ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
      c .property  S.Constant-≃-get-⁻¹-≃⁻¹ (set , get-set , eq)))        ↝⟨ (inverse $
                                                                              EEq.Σ-cong-≃ᴱ-Erased (Constantᴱ-⁻¹ᴱ-≃ᴱ bl) λ c 
                                                                              Erased-cong (∃-cong λ c′ 
                                                                              ≡⇒↝ _ (cong (c′ .property ≡_) (
       _≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c                                   ≡⟨ sym $ _≃_.to-from (S.Constant-≃-get-⁻¹-≃ bl) $
                                                                                   to-Constant-≃-get-⁻¹-≃-to-Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹-≡
                                                                                     bl c ⟩∎
       S.Constant-≃-get-⁻¹-≃⁻¹
         (Σ-map P.id erased $ _≃ᴱ_.to (Constantᴱ-⁻¹ᴱ-≃ᴱ bl) c)                  )))) 

  ( λ (c : Constantᴱ (get ⁻¹ᴱ_)) 
   Erased
     ( λ (c′ : S.Coherently-constant univ (get ⁻¹_)) 
      c′ .property  _≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c))             ↔⟨ (∃-cong λ c  Erased-cong (inverse $
                                                                              Σ-cong (S.Coinductive-coherently-constant≃Coherently-constant
                                                                                        univ′ univ) λ c′ 
                                                                              lemma₁ bl c (c′ .property))) 
  ( λ (c : Constantᴱ (get ⁻¹ᴱ_)) 
   Erased
     ( λ (c′ : C.Coherently-constant (get ⁻¹_)) 
      c′ .property  _≃_.to (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) c))     ↔⟨ (∃-cong λ c  Erased-cong (lemma₃ bl c)) 

  ( λ (c : Constantᴱ (get ⁻¹ᴱ_)) 
   Erased (
    λ (c′ : C.Coherently-constant (get ⁻¹ᴱ_)) 
    b₁ b₂  proj₁ (c b₁ b₂)  subst P.id (c′ .property b₁ b₂)))          ↔⟨ inverse Σ-assoc F.∘
                                                                             (Σ-cong (ΠΣ-comm F.∘ ∀-cong ext λ _  ΠΣ-comm) λ _  F.id) 
  ( λ (get⁻¹ᴱ-const :  b₁ b₂  get ⁻¹ᴱ b₁  get ⁻¹ᴱ b₂) 
   (∀ b₁ b₂  Erased (Is-equivalence (get⁻¹ᴱ-const b₁ b₂))) ×
   Erased (
    λ (c′ : C.Coherently-constant (get ⁻¹ᴱ_)) 
    b₁ b₂  get⁻¹ᴱ-const b₁ b₂  subst P.id (c′ .property b₁ b₂)))       ↔⟨ (∃-cong {k = bijection} λ _ 
                                                                              drop-⊤-left-× λ ([ _ , eq ]) 
                                                                              _⇔_.to contractible⇔↔⊤ $
                                                                              propositional⇒inhabited⇒contractible
                                                                                (Π-closure ext 1 λ _ 
                                                                                 Π-closure ext 1 λ _ 
                                                                                 H-level-Erased 1 (Eq.propositional ext _))
                                                                                 x y 
                                                                                   [ Eq.respects-extensional-equality
                                                                                       (ext⁻¹ (sym (eq x y)))
                                                                                       (_≃_.is-equivalence $ Eq.subst-as-equivalence _ _)
                                                                                   ])) 
  ( λ (get⁻¹ᴱ-const :  b₁ b₂  get ⁻¹ᴱ b₁  get ⁻¹ᴱ b₂) 
   Erased (
    λ (c′ : C.Coherently-constant (get ⁻¹ᴱ_)) 
    b₁ b₂  get⁻¹ᴱ-const b₁ b₂  subst P.id (c′ .property b₁ b₂)))       ↔⟨⟩

  CE.Coherently-constant (get ⁻¹ᴱ_)                                       
  where
  @0 lemma₁ :  _ _ _  _  _
  lemma₁ bl c c′ =
    c′  _≃_.to (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) c  ↝⟨ ≡⇒≃ $ cong (c′ ≡_) $
                                                            unblock bl
                                                               bl  _≃_.to (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) c 
                                                                      _≃_.from (S.Constant≃Constant-≃ univ)
                                                                        (_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c))
                                                              (refl _) 
    c′ 
    _≃_.from (S.Constant≃Constant-≃ univ)
      (_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c)           ↝⟨ inverse $ Eq.≃-≡ (S.Constant≃Constant-≃ univ) 

    _≃_.to (S.Constant≃Constant-≃ univ) c′ 
    _≃_.to (S.Constant≃Constant-≃ univ)
      (_≃_.from (S.Constant≃Constant-≃ univ)
         (_≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c))       ↝⟨ ≡⇒≃ $
                                                            cong (_≃_.to (S.Constant≃Constant-≃ univ) c′ ≡_) $
                                                            _≃_.right-inverse-of (S.Constant≃Constant-≃ univ) _ ⟩□
    _≃_.to (S.Constant≃Constant-≃ univ) c′ 
    _≃_.to Constantᴱ-⁻¹ᴱ-≃-Constant-≃-⁻¹ c               

  @0 lemma₂ :  _ _ _ _  _
  lemma₂ bl c′ b₁ b₂ =
    proj₁ (_≃_.from (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ)
             (c′ .property) b₁ b₂)                                      ≡⟨ proj₁-from-Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl 

    ECP.⁻¹→⁻¹ᴱ  subst P.id (c′ .property b₁ b₂)  ECP.⁻¹ᴱ→⁻¹           ≡⟨ sym $
                                                                           cong₂  f g  f  subst P.id (c′ .property b₁ b₂)  g)
                                                                             (trans (⟨ext⟩ λ _ 
                                                                                     subst-id-in-terms-of-≡⇒↝ equivalence) $
                                                                              cong _≃_.to $ _≃_.right-inverse-of (≡≃≃ univ) _)
                                                                             (trans (⟨ext⟩ λ _ 
                                                                                     subst-id-in-terms-of-inverse∘≡⇒↝ equivalence) $
                                                                              cong _≃_.from $ _≃_.right-inverse-of (≡≃≃ univ) _) 
    subst P.id (≃⇒≡ univ ECP.⁻¹≃⁻¹ᴱ) 
    subst P.id (c′ .property b₁ b₂) 
    subst P.id (sym (≃⇒≡ univ ECP.⁻¹≃⁻¹ᴱ))                              ≡⟨ (⟨ext⟩ λ _ 
                                                                            trans (subst-subst _ _ _ _) $
                                                                            subst-subst _ _ _ _) 
    subst P.id
      (trans (sym (≃⇒≡ univ (ECP.⁻¹≃⁻¹ᴱ {y = b₁})))
         (trans (c′ .property b₁ b₂)
           (≃⇒≡ univ (ECP.⁻¹≃⁻¹ᴱ {y = b₂}))))                           ≡⟨ sym $
                                                                           cong  f  subst P.id
                                                                                         (trans (sym (f b₁))
                                                                                            (trans (c′ .property b₁ b₂) (f b₂)))) $
                                                                           _≃_.left-inverse-of (Eq.extensionality-isomorphism bad-ext) _ 
    subst P.id
      (trans (sym (cong (_$ b₁) $ ⟨ext⟩ λ _  ≃⇒≡ univ ECP.⁻¹≃⁻¹ᴱ))
         (trans (c′ .property b₁ b₂)
           (cong (_$ b₂) $ ⟨ext⟩ λ b₂ 
            ≃⇒≡ univ (ECP.⁻¹≃⁻¹ᴱ {y = b₂}))))                           ≡⟨ cong (subst P.id) $
                                                                           elim¹
                                                                              eq 
                                                                                trans (sym (cong (_$ b₁) eq))
                                                                                  (trans (c′ .property b₁ b₂) (cong (_$ b₂) eq)) 
                                                                                ≡⇒→ (cong C.Coherently-constant eq) c′ .property b₁ b₂)
                                                                             (
        trans (sym (cong (_$ b₁) (refl _)))
          (trans (c′ .property b₁ b₂) (cong (_$ b₂) (refl (get ⁻¹_))))        ≡⟨ trans (cong (flip trans _) $
                                                                                        trans (cong sym $ cong-refl _) $
                                                                                        sym-refl) $
                                                                                 trans (trans-reflˡ _) $
                                                                                 trans (cong (trans _) $ cong-refl _) $
                                                                                 trans-reflʳ _ 

        c′ .property b₁ b₂                                                    ≡⟨ cong  eq  _≃_.to eq c′ .property b₁ b₂) $ sym $
                                                                                 trans (cong ≡⇒≃ $ cong-refl C.Coherently-constant)
                                                                                 ≡⇒↝-refl ⟩∎
        ≡⇒→ (cong C.Coherently-constant (refl _)) c′ .property b₁ b₂          )
                                                                             _ ⟩∎
    subst P.id (≡⇒→ (cong C.Coherently-constant $
                     ⟨ext⟩ λ _  ≃⇒≡ univ ECP.⁻¹≃⁻¹ᴱ)
                c′ .property b₁ b₂)                                     

  @0 lemma₃ :  _ _  _  _
  lemma₃ bl c =
    ( λ (c′ : C.Coherently-constant (get ⁻¹_)) 
     c′ .property  _≃_.to (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) c)  ↝⟨ (∃-cong λ _ 
                                                                         (∀-cong ext λ _  ∀-cong ext λ _  from-bijection $ inverse $
                                                                          ≡-comm F.∘
                                                                          ignore-propositional-component
                                                                            (H-level-Erased 1 (Eq.propositional ext _))) F.∘
                                                                         inverse
                                                                           (Eq.extensionality-isomorphism bad-ext F.∘
                                                                            (∀-cong ext λ _  Eq.extensionality-isomorphism bad-ext)) F.∘
                                                                         (≡⇒≃ $ cong (_ ≡_) $
                                                                          _≃_.left-inverse-of (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ) _) F.∘
                                                                         (inverse $
                                                                          Eq.≃-≡ $ inverse $ Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ)) 
    ( λ (c′ : C.Coherently-constant (get ⁻¹_)) 
      b₁ b₂ 
     proj₁ (c b₁ b₂) 
     proj₁ (_≃_.from (Constantᴱ-⁻¹ᴱ-≃-Constant-⁻¹ bl univ)
              (c′ .property) b₁ b₂))                                 ↝⟨ (Σ-cong (≡⇒≃ $ cong C.Coherently-constant $ ⟨ext⟩ λ _ 
                                                                                 ≃⇒≡ univ ECP.⁻¹≃⁻¹ᴱ) λ c′ 
                                                                         ∀-cong ext λ b₁  ∀-cong ext λ b₂ 
                                                                         ≡⇒≃ $ cong (proj₁ (c b₁ b₂) ≡_) (lemma₂ bl c′ b₁ b₂)) ⟩□
    ( λ (c′ : C.Coherently-constant (get ⁻¹ᴱ_)) 
      b₁ b₂  proj₁ (c b₁ b₂)  subst P.id (c′ .property b₁ b₂))    

-- In erased contexts Coherently-constant-fibres univ get is
-- equivalent to S.Coherently-constant univ (get ⁻¹_).

@0 Coherently-constant-fibres≃Coherently-constant-⁻¹ :
  (bl : Block "Constant-≃-get-⁻¹-≃")
  {A : Type a} {B : Type b} {get : A  B} 
  (univ : Univalence (a  b)) 
  Coherently-constant-fibres univ get 
  S.Coherently-constant univ (get ⁻¹_)
Coherently-constant-fibres≃Coherently-constant-⁻¹
  bl {A = A} {B = B} {get = get} univ =
  Coherently-constant-fibres univ get                               ↔⟨⟩

  ( λ (set : A  B  A) 
   Erased
     ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
      set 
      S.Lens.set {univ = univ}
        (record { get⁻¹-coherently-constant = c })))                ↔⟨ (∃-cong λ _  erased Erased↔) 

  ( λ (set : A  B  A) 
    λ (c : S.Coherently-constant univ (get ⁻¹_)) 
   set 
   S.Lens.set {univ = univ}
     (record { get⁻¹-coherently-constant = c }))                    ↔⟨ ∃-comm 

  ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
    λ (set : A  B  A) 
   set 
   S.Lens.set {univ = univ}
     (record { get⁻¹-coherently-constant = c }))                    ↔⟨ (drop-⊤-right λ _ 
                                                                        _⇔_.to contractible⇔↔⊤ $
                                                                        singleton-contractible _) ⟩□
  S.Coherently-constant univ (get ⁻¹_)                              

------------------------------------------------------------------------
-- The lens type family

-- Small coinductive lenses.
--
-- The lens type is defined using (erased) univalence. The use of a
-- record type makes it easier for Agda to infer the argument univ
-- from a value of type Lens univ A B.
--
-- Note that everything is erased, except for the getter and the
-- setter.

record Lens (@0 univ : Univalence (a  b))
            (A : Type a) (B : Type b) : Type (a  b) where
  field

    -- A getter.

    get : A  B

    -- A setter.

    set : A  B  A

    -- The family get ⁻¹_ is coherently constant (in erased contexts).

    @0 get⁻¹-coherently-constant : S.Coherently-constant univ (get ⁻¹_)

  -- Using get and get⁻¹-coherently-constant we can construct an
  -- erased lens.

  @0 erased-lens : S.Lens univ A B
  erased-lens = record
    { get                       = get
    ; get⁻¹-coherently-constant = get⁻¹-coherently-constant
    }

  field

    -- The setter that we get from this lens is equal to set.

    @0 set≡set : set  S.Lens.set erased-lens

  -- The family of fibres of the getter is coherently constant.

  coherently-constant-fibres-get : Coherently-constant-fibres univ get
  coherently-constant-fibres-get =
    set , [ (get⁻¹-coherently-constant , set≡set) ]

instance

  -- The lenses defined above have getters and setters.

  has-getter-and-setter :
    {@0 univ : Univalence (a  b)} 
    Has-getter-and-setter (Lens {a = a} {b = b} univ)
  has-getter-and-setter = record
    { get = Lens.get
    ; set = Lens.set
    }

-- Lens can be expressed as a Σ-type.

Lens-as-Σ :
  {A : Type a} {B : Type b} {@0 univ : Univalence (a  b)} 
  Lens univ A B 
   λ (get : A  B)  Coherently-constant-fibres univ get
Lens-as-Σ =
  Eq.↔→≃
     l  Lens.get l , Lens.coherently-constant-fibres-get l)
    _ refl refl

-- Lens univ A B is equivalent to CE.Lens A B (with erased proofs,
-- assuming univalence).

Lens≃ᴱLens :
  Block "Lens≃ᴱLens" 
  {A : Type a} {B : Type b} 
  @0 Univalence (lsuc (a  b)) 
  (@0 univ : Univalence (a  b)) 
  Lens univ A B ≃ᴱ CE.Lens A B
Lens≃ᴱLens  {A = A} {B = B} univ′ univ =
  Lens univ A B                                              ↔⟨ Lens-as-Σ 
  ( λ (get : A  B)  Coherently-constant-fibres univ get)  ↝⟨ (∃-cong λ _ 
                                                                 Coherently-constant-fibres≃ᴱCoherently-constant-⁻¹ᴱ univ′ univ) ⟩□
  ( λ (get : A  B)  CE.Coherently-constant (get ⁻¹ᴱ_))    

-- The equivalence preserves getters and setters.

Lens≃ᴱLens-preserves-getters-and-setters :
  (bl : Block "Lens≃ᴱLens")
  {A : Type a} {B : Type b}
  (@0 univ′ : Univalence (lsuc (a  b)))
  (@0 univ : Univalence (a  b)) 
  Preserves-getters-and-setters-⇔ A B
    (_≃ᴱ_.logical-equivalence (Lens≃ᴱLens bl univ′ univ))
Lens≃ᴱLens-preserves-getters-and-setters  univ′ univ =
     _  refl _ , refl _)
  ,  l 
       let open CE.Lens l in
         refl _
       , ⟨ext⟩ λ a  ⟨ext⟩ λ b 
         proj₁
           (subst  _  get ⁻¹ᴱ b) (refl tt)
              (get⁻¹ᴱ-const (get a) b (a , [ refl (get a) ])))  ≡⟨ cong proj₁ $ subst-refl _ _ ⟩∎

         proj₁ (get⁻¹ᴱ-const (get a) b (a , [ refl (get a) ]))  )

-- Lens univ A B is equivalent to E.Lens A B (with erased proofs,
-- assuming univalence).

Lens≃ᴱLensᴱ :
  Block "Lens≃ᴱLensᴱ" 
  {A : Type a} {B : Type b}
  {@0 univ : Univalence (a  b)} 
  @0 Univalence (lsuc (a  b)) 
  Lens univ A B ≃ᴱ E.Lens A B
Lens≃ᴱLensᴱ bl {A = A} {B = B} {univ = univ} univ′ =
  Lens univ A B  ↝⟨ Lens≃ᴱLens bl univ′ univ 
  CE.Lens A B    ↝⟨ CE.Lens≃ᴱLens bl univ′ univ 
  V.Lens A B     ↝⟨ V.Lens≃ᴱHigher-lens bl univ ⟩□
  E.Lens A B     

-- The equivalence preserves getters and setters (in erased contexts).

@0 Lens≃ᴱLensᴱ-preserves-getters-and-setters :
  (bl : Block "Lens→Lens")
  {A : Type a} {B : Type b}
  (@0 univ′ : Univalence (lsuc (a  b)))
  (@0 univ : Univalence (a  b)) 
  Preserves-getters-and-setters-⇔ A B
    (_≃ᴱ_.logical-equivalence (Lens≃ᴱLensᴱ bl {univ = univ} univ′))
Lens≃ᴱLensᴱ-preserves-getters-and-setters bl univ′ univ =
  Preserves-getters-and-setters-⇔-∘
    {f = _≃ᴱ_.logical-equivalence (V.Lens≃ᴱHigher-lens bl univ) F.∘
         _≃ᴱ_.logical-equivalence (CE.Lens≃ᴱLens bl univ′ univ)}
    {g = _≃ᴱ_.logical-equivalence (Lens≃ᴱLens bl univ′ univ)}
    (Preserves-getters-and-setters-⇔-∘
       {f = _≃ᴱ_.logical-equivalence (V.Lens≃ᴱHigher-lens bl univ)}
       {g = _≃ᴱ_.logical-equivalence (CE.Lens≃ᴱLens bl univ′ univ)}
       (V.Lens≃ᴱHigher-lens-preserves-getters-and-setters bl univ)
       (CE.Lens≃ᴱLens-preserves-getters-and-setters bl univ′ univ))
    (Lens≃ᴱLens-preserves-getters-and-setters bl univ′ univ)

-- In erased contexts Lens univ A B is equivalent to S.Lens univ A B.

@0 Lens≃Lens :
  (bl : Block "Constant-≃-get-⁻¹-≃") 
  Lens univ A B  S.Lens univ A B
Lens≃Lens {univ = univ} {A = A} {B = B} bl =
  Lens univ A B                                               ↝⟨ Lens-as-Σ 
  ( λ (get : A  B)  Coherently-constant-fibres univ get)   ↝⟨ (∃-cong λ _  Coherently-constant-fibres≃Coherently-constant-⁻¹ bl univ) 
  ( λ (get : A  B)  S.Coherently-constant univ (get ⁻¹_))  ↝⟨ inverse S.Lens-as-Σ ⟩□
  S.Lens univ A B                                             

-- Lens≃Lens preserves getters and setters.

@0 Lens≃Lens-preserves-getters-and-setters :
  (bl : Block "Lens≃Lens")
  {A : Type a} {B : Type b}
  {univ : Univalence (a  b)} 
  Preserves-getters-and-setters-⇔ A B
    (_≃_.logical-equivalence (Lens≃Lens {univ = univ} bl))
Lens≃Lens-preserves-getters-and-setters  =
     l 
       let open Lens l in
         refl _
       , (S.Lens.set erased-lens  ≡⟨ sym set≡set ⟩∎
          set                     ))
  ,  _  refl _ , refl _)

-- Lenses with stable view types are equal if their setters are equal
-- (in erased contexts, assuming univalence).

@0 lenses-equal-if-setters-equal :
  {A : Type a} {B : Type b} 
  Univalence (lsuc (a  b)) 
  (univ : Univalence (a  b)) 
  (l₁ l₂ : Lens univ A B) 
  ( B   B) 
  Lens.set l₁  Lens.set l₂ 
  l₁  l₂
lenses-equal-if-setters-equal univ′ univ l₁ l₂ stable =
  block λ bl 

  Lens.set l₁  Lens.set l₂                            ↔⟨ ≡⇒≃ $ sym $ cong₂ _≡_
                                                            (proj₂ $ proj₁ (Lens≃Lens-preserves-getters-and-setters bl) l₁)
                                                            (proj₂ $ proj₁ (Lens≃Lens-preserves-getters-and-setters bl) l₂) 
  S.Lens.set (_≃_.to (Lens≃Lens bl) l₁) 
  S.Lens.set (_≃_.to (Lens≃Lens bl) l₂)                ↝⟨ S.lenses-equal-if-setters-equal univ′ _ _ _ stable 

  _≃_.to (Lens≃Lens bl) l₁  _≃_.to (Lens≃Lens bl) l₂  ↔⟨ Eq.≃-≡ $ Lens≃Lens bl ⟩□

  l₁  l₂                                              

------------------------------------------------------------------------
-- Changing the implementation of the getter and the setter

-- One can change the getter of a lens, provided that the new
-- implementation is extensionally equal to the old one.

with-other-getter :
  {A : Type a} {B : Type b}
  (@0 univ : Univalence (a  b))
  (l : Lens univ A B)
  (get : A  B) 
  @0 get  Lens.get l 
  Lens univ A B
with-other-getter {A = A} {B = B} univ l get p = record l
  { get                       = get
  ; get⁻¹-coherently-constant =
      subst (S.Coherently-constant univ  _⁻¹_)
        (sym p) L.get⁻¹-coherently-constant
  ; set≡set =
      L.set          ≡⟨ L.set≡set 
      S.Lens.set l₁  ≡⟨ cong S.Lens.set $ sym l₂≡l₁ ⟩∎
      S.Lens.set l₂  
  }
  where
  module L = Lens l

  @0 l₁ l₂ : S.Lens univ A B

  l₁ = record
    { get                       = L.get
    ; get⁻¹-coherently-constant = L.get⁻¹-coherently-constant
    }

  l₂ = record
    { get                       = get
    ; get⁻¹-coherently-constant =
        subst (S.Coherently-constant univ  _⁻¹_) (sym p)
          L.get⁻¹-coherently-constant
    }

  @0 l₂≡l₁ : l₂  l₁
  l₂≡l₁ =
    _≃_.to (Eq.≃-≡ S.Lens-as-Σ) $ Σ-≡,≡→≡ p
      (subst (S.Coherently-constant univ  _⁻¹_) p
         (subst (S.Coherently-constant univ  _⁻¹_) (sym p)
            L.get⁻¹-coherently-constant)                     ≡⟨ subst-subst-sym _ _ _ ⟩∎

       L.get⁻¹-coherently-constant                           )

_ : Lens.get (with-other-getter univ l g p)  g
_ = refl _

_ : Lens.set (with-other-getter univ l g p)  Lens.set l
_ = refl _

-- The resulting lens is equal to the old one (if the equality proof
-- is not erased).

with-other-getter≡ :
  {A : Type a} {B : Type b}
  (@0 univ : Univalence (a  b))
  (l : Lens univ A B)
  (get : A  B)
  (p : get  Lens.get l) 
  with-other-getter univ l get p  l
with-other-getter≡ {A = A} {B = B} univ l get p =
  _≃_.to (Eq.≃-≡ Lens-as-Σ) $ Σ-≡,≡→≡ p
    (subst (Coherently-constant-fibres univ) p
       L′.coherently-constant-fibres-get                             ≡⟨ push-subst-pair-× _ _ 

     L.set ,
     subst
        get 
          Erased
            ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
             L.set 
             S.Lens.set {univ = univ}
               (record { get⁻¹-coherently-constant = c })))
       p
       [ (L′.get⁻¹-coherently-constant , L′.set≡set) ]               ≡⟨ cong (L.set ,_) push-subst-[] 

     L.set ,
     [ subst
          get 
             λ (c : S.Coherently-constant univ (get ⁻¹_)) 
            L.set 
            S.Lens.set {univ = univ}
              (record { get⁻¹-coherently-constant = c }))
         p
         (L′.get⁻¹-coherently-constant , L′.set≡set)
     ]                                                               ≡⟨ cong (L.set ,_) $ []-cong [ push-subst-pair′ _ _ _ ] 

     L.set ,
     [ ( L.get⁻¹-coherently-constant
       , subst
            ((get , c) :  (S.Coherently-constant univ  _⁻¹_)) 
              L.set 
              S.Lens.set {univ = univ}
                (record { get⁻¹-coherently-constant = c }))
           (Σ-≡,≡→≡ p (subst-subst-sym _ _ _))
           L′.set≡set
       )
     ]                                                               ≡⟨⟩

     L.set ,
     [ ( L.get⁻¹-coherently-constant
       , let q = Σ-≡,≡→≡ {p₂ = _ , L.get⁻¹-coherently-constant}
                   p
                   (subst-subst-sym _ _ _)
         in
         subst
            ((get , c) :  (S.Coherently-constant univ  _⁻¹_)) 
              L.set 
              S.Lens.set {univ = univ}
                (record { get⁻¹-coherently-constant = c }))
           q
           (trans L.set≡set
              (cong (S.Lens.set {univ = univ}) $ sym $
               _≃_.to (Eq.≃-≡ S.Lens-as-Σ) q))
       )
     ]                                                               ≡⟨ cong (L.set ,_) $ []-cong
                                                                        [ cong (L.get⁻¹-coherently-constant ,_) $
                                                                          elim₁
                                                                             q 
                                                                               subst
                                                                                  ((get , c) :  (S.Coherently-constant univ  _⁻¹_)) 
                                                                                    L.set 
                                                                                    S.Lens.set {univ = univ}
                                                                                      (record { get⁻¹-coherently-constant = c }))
                                                                                 q
                                                                                 (trans L.set≡set
                                                                                    (cong (S.Lens.set {univ = univ}) $ sym $
                                                                                     _≃_.to (Eq.≃-≡ S.Lens-as-Σ) q)) 
                                                                               L.set≡set)
                                                                            (trans (subst-refl _ _) $
                                                                             trans (cong (trans _) $
                                                                                    trans (cong (cong _) $
                                                                                           trans (cong sym (Eq.to-≃-≡-refl S.Lens-as-Σ))
                                                                                           sym-refl) $
                                                                                    cong-refl _) $
                                                                             trans-reflʳ _)
                                                                            _
                                                                        ] 
     L.set , [ (L.get⁻¹-coherently-constant , L.set≡set) ]           ≡⟨⟩

     L.coherently-constant-fibres-get                                )
  where
  module L = Lens l

  l′ : Lens univ A B
  l′ = record
    { get                       = get
    ; get⁻¹-coherently-constant =
        subst (S.Coherently-constant univ  _⁻¹_) (sym p)
          L.get⁻¹-coherently-constant
    }

  module L′ = Lens l′

-- One can change the setter of a lens, provided that the new
-- implementation is extensionally equal to the old one.

with-other-setter :
  {A : Type a} {B : Type b}
  {@0 univ : Univalence (a  b)}
  (l : Lens univ A B)
  (set : A  B  A) 
  @0 set  Lens.set l 
  Lens univ A B
with-other-setter l set p = record l
  { set     = set
  ; set≡set = trans p (Lens.set≡set l)
  }

_ : Lens.get (with-other-setter l s p)  Lens.get l
_ = refl _

_ : Lens.set (with-other-setter l s p)  s
_ = refl _

-- The resulting lens is equal to the old one (if the equality proof
-- is not erased).

with-other-setter≡ :
  {A : Type a} {B : Type b}
  {@0 univ : Univalence (a  b)}
  (l : Lens univ A B)
  (set : A  B  A)
  (p : set  Lens.set l) 
  with-other-setter l set p  l
with-other-setter≡ {univ = univ} l set p =
  _≃_.to (Eq.≃-≡ Lens-as-Σ) $ cong (get ,_) $ Σ-≡,≡→≡ p
    (subst
        set  Erased
                  ( λ (c : S.Coherently-constant univ (get ⁻¹_)) 
                   set 
                   S.Lens.set {univ = univ}
                     (record { get⁻¹-coherently-constant = c })))
       p
       [ (get⁻¹-coherently-constant , trans p set≡set) ]             ≡⟨ push-subst-[] 

     [ subst
          set   λ (c : S.Coherently-constant univ (get ⁻¹_)) 
                  set 
                  S.Lens.set {univ = univ}
                    (record { get⁻¹-coherently-constant = c }))
         p
         (get⁻¹-coherently-constant , trans p set≡set)
     ]                                                               ≡⟨ []-cong [ push-subst-pair-× _ _ ] 

     [ ( get⁻¹-coherently-constant
       , subst (_≡ S.Lens.set {univ = univ}
                     (record { get⁻¹-coherently-constant =
                                 get⁻¹-coherently-constant }))
           p
           (trans p set≡set)
       )
     ]                                                               ≡⟨ []-cong [ cong (_ ,_) subst-trans-sym ] 

     [ ( get⁻¹-coherently-constant
       , trans (sym p) (trans p set≡set)
       )
     ]                                                               ≡⟨ []-cong [ cong (_ ,_) $ trans-sym-[trans] _ _ ] ⟩∎

     [ (get⁻¹-coherently-constant , set≡set) ]                       )
  where
  open Lens l

------------------------------------------------------------------------
-- Code for converting from S.Lens to Lens

-- Data corresponding to the erased proofs of a lens.

record Erased-proofs
         {A : Type a} {B : Type b}
         (univ : Univalence (a  b))
         (get : A  B) (set : A  B  A) : Type (a  b) where
  field
    @0 get⁻¹-coherently-constant : S.Coherently-constant univ (get ⁻¹_)

  @0 erased-lens : S.Lens univ A B
  erased-lens = record
    { get                       = get
    ; get⁻¹-coherently-constant = get⁻¹-coherently-constant
    }

  field
    @0 set≡set : set  S.Lens.set erased-lens

-- Extracts "erased proofs" from a lens (in erased contexts).

@0 Lens→Erased-proofs :
  (l : S.Lens univ A B) 
  Erased-proofs univ (S.Lens.get l) (S.Lens.set l)
Lens→Erased-proofs {univ = univ} l = proofs 
  where
  module _ (bl : Unit) where

    open Erased-proofs

    l′ = _≃_.from (Lens≃Lens bl) l

    proofs : Erased-proofs univ (Lens.get l′) (Lens.set l′)
    proofs .get⁻¹-coherently-constant =
      Lens.get⁻¹-coherently-constant l′
    proofs .set≡set = Lens.set≡set l′

-- Converts two functions and some erased proofs to a lens.
--
-- Note that Agda can in many cases infer "get" and "set" from the
-- first explicit argument, see (for instance) id below.

Erased-proofs→Lens :
  {A : Type a} {B : Type b} {get : A  B} {set : A  B  A}
  {@0 univ : Univalence (a  b)} 
  @0 Erased-proofs univ get set 
  Lens univ A B
Erased-proofs→Lens {get = get} {set = set} ep = λ where
  .Lens.get                        get
  .Lens.set                        set
  .Lens.get⁻¹-coherently-constant 
    Erased-proofs.get⁻¹-coherently-constant ep
  .Lens.set≡set  Erased-proofs.set≡set ep

------------------------------------------------------------------------
-- Identity and composition

-- An identity lens.

id :
  {A : Type a}
  (@0 univ : Univalence a) 
  Lens univ A A
id univ = Erased-proofs→Lens (Lens→Erased-proofs (S.id univ))

-- Composition.

infix 9 ⟨_,_⟩_∘_

⟨_,_⟩_∘_ :
  {A : Type a} {B : Type b} {C : Type c}
  {@0 univ₁ : Univalence (b  c)}
  {@0 univ₂ : Univalence (a  b)}
  (@0 univ₃ : Univalence (a  c)) 
  @0 Univalence (a  b  c) 
  Lens univ₁ B C  Lens univ₂ A B  Lens univ₃ A C
 univ₃ , univ  l₁  l₂ =
  Erased-proofs→Lens
    (subst (Erased-proofs _ _)
       (⟨ext⟩ λ a  ⟨ext⟩ λ c 
        S.Lens.set l₂′ a (S.Lens.set l₁′ (get l₂ a) c)  ≡⟨ cong  s  s a (S.Lens.set l₁′ (get l₂ a) c)) $
                                                           proj₂ $ proj₁ (Lens≃Lens-preserves-getters-and-setters ) l₂ 
        set l₂ a (S.Lens.set l₁′ (get l₂ a) c)          ≡⟨ cong  s  set l₂ a (s (get l₂ a) c)) $
                                                           proj₂ $ proj₁ (Lens≃Lens-preserves-getters-and-setters ) l₁ ⟩∎
        set l₂ a (set l₁ (get l₂ a) c)                  ) $
     Lens→Erased-proofs (S.⟨ univ₃ , univ  l₁′  l₂′))
  where
  open Lens

  @0 l₁′ : _
  l₁′ = _≃_.to (Lens≃Lens ) l₁

  @0 l₂′ : _
  l₂′ = _≃_.to (Lens≃Lens ) l₂

-- The setter of a lens formed using composition is defined in the
-- "right" way.

set-∘ :
   {A : Type a} {B : Type b} {C : Type c}
    {@0 univ₁ : Univalence (b  c)}
    {@0 univ₂ : Univalence (a  b)}
  (@0 univ₃ : Univalence (a  c))
  (@0 univ₄ : Univalence (a  b  c))
  (l₁ : Lens univ₁ B C) (l₂ : Lens univ₂ A B) {a c} 
  Lens.set ( univ₃ , univ₄  l₁  l₂) a c 
  Lens.set l₂ a (Lens.set l₁ (Lens.get l₂ a) c)
set-∘ _ _ _ _ = refl _

-- Composition is associative if the view type of the resulting lens
-- is stable (in erased contexts, assuming univalence).

@0 associativity :
  {A : Type a} {B : Type b} {C : Type c} {D : Type d} 
  ( D   D) 
  (univ₁  : Univalence (c  d))
  (univ₂  : Univalence (b  c))
  (univ₃  : Univalence (a  b))
  (univ₄  : Univalence (a  d))
  (univ₅  : Univalence (a  c  d))
  (univ₆  : Univalence (a  c))
  (univ₇  : Univalence (a  b  c))
  (univ₈  : Univalence (a  b  d))
  (univ₉  : Univalence (b  d))
  (univ₁₀ : Univalence (b  c  d)) 
  Univalence (lsuc (a  d)) 
  (l₁ : Lens univ₁ C D) (l₂ : Lens univ₂ B C) (l₃ : Lens univ₃ A B) 
   univ₄ , univ₅  l₁  ( univ₆ , univ₇  l₂  l₃) 
   univ₄ , univ₈  ( univ₉ , univ₁₀  l₁  l₂)  l₃
associativity stable _ _ _ univ₄ _ _ _ _ _ _ univ₁₁ l₁ l₂ l₃ =
  lenses-equal-if-setters-equal
    univ₁₁
    univ₄
    _
    _
    stable
    (refl _)

-- The identity lens is a left identity of composition if the view
-- type of the resulting lens is stable (assuming univalence).

@0 left-identity :
  {A : Type a} {B : Type b} 
  ( B   B) 
  (univ₁ : Univalence (a  b))
  (univ₂ : Univalence (a  b))
  (univ₃ : Univalence b) 
  Univalence (lsuc (a  b)) 
  (l : Lens univ₁ A B) 
   univ₁ , univ₂  id univ₃  l  l
left-identity stable univ₁ univ₂ univ₃ univ₄ l =
  lenses-equal-if-setters-equal
    univ₄
    univ₁
    _
    _
    stable
    (refl _)

-- The identity lens is a right identity of composition if the view
-- type of the resulting lens is stable (assuming univalence).

@0 right-identity :
  {A : Type a} {B : Type b} 
  ( B   B) 
  (univ₁ : Univalence (a  b))
  (univ₂ : Univalence (a  b))
  (univ₃ : Univalence a) 
  Univalence (lsuc (a  b)) 
  (l : Lens univ₁ A B) 
   univ₁ , univ₂  l  id univ₃  l
right-identity stable univ₁ univ₂ univ₃ univ₄ l =
  lenses-equal-if-setters-equal
    univ₄
    univ₁
    _
    _
    stable
    (refl _)