------------------------------------------------------------------------
-- A type for values that should be erased at run-time
------------------------------------------------------------------------

-- Most of the definitions in this module are reexported, in one way
-- or another, from Erased.

-- This module imports Function-universe, but not Equivalence.Erased.

{-# OPTIONS --without-K --safe #-}

open import Equality

module Erased.Level-1
  {e⁺} (eq-J :  {a p}  Equality-with-J a p e⁺) where

open Derived-definitions-and-properties eq-J

open import Logical-equivalence using (_⇔_)
open import Prelude hiding ([_,_])

open import Bijection eq-J as Bijection using (_↔_; Has-quasi-inverse)
open import Embedding eq-J as Emb using (Embedding; Is-embedding)
open import Equality.Decidable-UIP eq-J
open import Equivalence eq-J as Eq using (_≃_; Is-equivalence)
import Equivalence.Contractible-preimages eq-J as CP
open import Equivalence-relation eq-J
open import Function-universe eq-J as F hiding (id; _∘_)
open import H-level eq-J as H-level
open import H-level.Closure eq-J
open import Injection eq-J using (_↣_; Injective)
open import Monad eq-J hiding (map; map-id; map-∘)
open import Preimage eq-J using (_⁻¹_)
open import Surjection eq-J as Surjection using (_↠_; Split-surjective)
open import Univalence-axiom eq-J as U using (≡⇒→)

private
  variable
    a b c  q r   : Level
    A B           : Type a
    eq k k′ p x y : A
    P             : A  Type p
    f g           : A  B
    n             : 

------------------------------------------------------------------------
-- Some basic definitions

open import Erased.Basics eq-J public

------------------------------------------------------------------------
-- Erased is a monad

-- A universe-polymorphic variant of bind.

infixl 5 _>>=′_

_>>=′_ :
  {@0 A : Type a} {@0 B : Type b} 
  Erased A  (A  Erased B)  Erased B
x >>=′ f = [ erased (f (erased x)) ]

instance

  -- Erased is a monad.

  raw-monad : Raw-monad  (A : Type a)  Erased A)
  Raw-monad.return raw-monad = [_]→
  Raw-monad._>>=_  raw-monad = _>>=′_

  monad : Monad  (A : Type a)  Erased A)
  Monad.raw-monad      monad = raw-monad
  Monad.left-identity  monad = λ _ _  refl _
  Monad.right-identity monad = λ _  refl _
  Monad.associativity  monad = λ _ _ _  refl _

------------------------------------------------------------------------
-- Erased preserves some kinds of functions

-- Erased preserves dependent functions.

map :
  {@0 A : Type a} {@0 P : A  Type b} 
  @0 ((x : A)  P x)  (x : Erased A)  Erased (P (erased x))
map f [ x ] = [ f x ]

-- Erased is functorial for dependent functions.

map-id : {@0 A : Type a}  map id  id {A = Erased A}
map-id = refl _

map-∘ :
  {@0 A : Type a} {@0 P : A  Type b} {@0 Q : {x : A}  P x  Type c}
  (@0 f :  {x} (y : P x)  Q y) (@0 g : (x : A)  P x) 
  map (f  g)  map f  map g
map-∘ _ _ = refl _

-- A binary variant of map.

zip :
  {@0 A : Type a} {@0 P : A  Type p} {@0 Q : {x : A}  P x  Type q} 
  @0 ((x : A) (p : P x)  Q p) 
  (([ x ]) : Erased A) (([ p ]) : Erased (P x))  Erased (Q p)
zip f [ x ] [ p ] = [ f x p ]

-- Erased preserves logical equivalences.

Erased-cong-⇔ :
  {@0 A : Type a} {@0 B : Type b} 
  @0 A  B  Erased A  Erased B
Erased-cong-⇔ A⇔B = record
  { to   = map (_⇔_.to   A⇔B)
  ; from = map (_⇔_.from A⇔B)
  }

-- Erased is functorial for logical equivalences.

Erased-cong-⇔-id :
  {@0 A : Type a} 
  Erased-cong-⇔ F.id  F.id {A = Erased A}
Erased-cong-⇔-id = refl _

Erased-cong-⇔-∘ :
  {@0 A : Type a} {@0 B : Type b} {@0 C : Type c}
  (@0 f : B  C) (@0 g : A  B) 
  Erased-cong-⇔ (f F.∘ g)  Erased-cong-⇔ f F.∘ Erased-cong-⇔ g
Erased-cong-⇔-∘ _ _ = refl _

------------------------------------------------------------------------
-- Some isomorphisms

-- In an erased context Erased A is always isomorphic to A.

Erased↔ : {@0 A : Type a}  Erased (Erased A  A)
Erased↔ = [ record
  { surjection = record
    { logical-equivalence = record
      { to   = erased
      ; from = [_]→
      }
    ; right-inverse-of = λ _  refl _
    }
  ; left-inverse-of = λ _  refl _
  } ]

-- The following result is based on a result in Mishra-Linger's PhD
-- thesis (see Section 5.4.4).

-- Erased (Erased A) is isomorphic to Erased A.

Erased-Erased↔Erased :
  {@0 A : Type a} 
  Erased (Erased A)  Erased A
Erased-Erased↔Erased = record
  { surjection = record
    { logical-equivalence = record
      { to   = λ x  [ erased (erased x) ]
      ; from = [_]→
      }
    ; right-inverse-of = λ _  refl _
    }
  ; left-inverse-of = λ _  refl _
  }

-- Erased ⊤ is isomorphic to ⊤.

Erased-⊤↔⊤ : Erased   
Erased-⊤↔⊤ = record
  { surjection = record
    { logical-equivalence = record
      { to   = λ _  tt
      ; from = [_]→
      }
    ; right-inverse-of = λ _  refl _
    }
  ; left-inverse-of = λ _  refl _
  }

-- Erased ⊥ is isomorphic to ⊥.

Erased-⊥↔⊥ : Erased ( { = })   { = }
Erased-⊥↔⊥ = record
  { surjection = record
    { logical-equivalence = record
      { to   = λ { [ () ] }
      ; from = [_]→
      }
    ; right-inverse-of = λ ()
    }
  ; left-inverse-of = λ { [ () ] }
  }

-- Erased commutes with Π A.

Erased-Π↔Π :
  {@0 P : A  Type p} 
  Erased ((x : A)  P x)  ((x : A)  Erased (P x))
Erased-Π↔Π = record
  { surjection = record
    { logical-equivalence = record
      { to   = λ { [ f ] x  [ f x ] }
      ; from = λ f  [  x  erased (f x)) ]
      }
    ; right-inverse-of = λ _  refl _
    }
  ; left-inverse-of = λ _  refl _
  }

-- Erased commutes with Π.

Erased-Π↔Π-Erased :
  {@0 A : Type a} {@0 P : A  Type p} 
  Erased ((x : A)  P x)  ((x : Erased A)  Erased (P (erased x)))
Erased-Π↔Π-Erased = record
  { surjection = record
    { logical-equivalence = record
      { to   = λ ([ f ])  map f
      ; from = λ f  [  x  erased (f [ x ])) ]
      }
    ; right-inverse-of = λ _  refl _
    }
  ; left-inverse-of = λ _  refl _
  }

-- Erased commutes with Σ.

Erased-Σ↔Σ :
  {@0 A : Type a} {@0 P : A  Type p} 
  Erased (Σ A P)  Σ (Erased A)  x  Erased (P (erased x)))
Erased-Σ↔Σ = record
  { surjection = record
    { logical-equivalence = record
      { to   = λ { [ p ]  [ proj₁ p ] , [ proj₂ p ] }
      ; from = λ { ([ x ] , [ y ])  [ x , y ] }
      }
    ; right-inverse-of = λ _  refl _
    }
  ; left-inverse-of = λ _  refl _
  }

-- Erased commutes with ↑ ℓ.

Erased-↑↔↑ :
  {@0 A : Type a} 
  Erased (  A)    (Erased A)
Erased-↑↔↑ = record
  { surjection = record
    { logical-equivalence = record
      { to   = λ { [ x ]  lift [ lower x ] }
      ; from = λ { (lift [ x ])  [ lift x ] }
      }
    ; right-inverse-of = λ _  refl _
    }
  ; left-inverse-of = λ _  refl _
  }

-- Erased commutes with ¬_ (assuming extensionality).

Erased-¬↔¬ :
  {@0 A : Type a} 
  Extensionality? k a lzero 
  Erased (¬ A) ↝[ k ] ¬ Erased A
Erased-¬↔¬ {A = A} ext =
  Erased (A  )         ↔⟨ Erased-Π↔Π-Erased 
  (Erased A  Erased )  ↝⟨ (∀-cong ext λ _  from-isomorphism Erased-⊥↔⊥) ⟩□
  (Erased A  )         

-- Erased can be dropped under ¬_ (assuming extensionality).

¬-Erased↔¬ :
  {A : Type a} 
  Extensionality? k a lzero 
  ¬ Erased A ↝[ k ] ¬ A
¬-Erased↔¬ {a = a} {A = A} =
  generalise-ext?-prop
    (record
       { to   = λ ¬[a] a  ¬[a] [ a ]
       ; from = λ ¬a ([ a ])  _↔_.to Erased-⊥↔⊥ [ ¬a a ]
       })
    ¬-propositional
    ¬-propositional

-- The following two results are inspired by a result in
-- Mishra-Linger's PhD thesis (see Section 5.4.1).
--
-- See also Π-Erased↔Π0[], Π-Erased≃Π0[], Π-Erased↔Π0 and Π-Erased≃Π0
-- in Erased.Cubical and Erased.With-K.

-- There is a logical equivalence between
-- (x : Erased A) → P (erased x) and (@0 x : A) → P x.

Π-Erased⇔Π0 :
  {@0 A : Type a} {@0 P : A  Type p} 
  ((x : Erased A)  P (erased x))  ((@0 x : A)  P x)
Π-Erased⇔Π0 = record
  { to   = λ f x  f [ x ]
  ; from = λ f ([ x ])  f x
  }

-- There is a bijection between (x : Erased A) → P x and
-- (@0 x : A) → P [ x ].

Π-Erased↔Π0[] : ((x : Erased A)  P x)  ((@0 x : A)  P [ x ])
Π-Erased↔Π0[] = record
  { surjection = record
    { logical-equivalence = Π-Erased⇔Π0
    ; right-inverse-of = λ _  refl _
    }
  ; left-inverse-of = λ _  refl _
  }

-- Erased commutes with W up to logical equivalence.

Erased-W⇔W :
  {@0 A : Type a} {@0 P : A  Type p} 
  Erased (W A P)  W (Erased A)  x  Erased (P (erased x)))
Erased-W⇔W {A = A} {P = P} = record { to = to; from = from }
  where
  to : Erased (W A P)  W (Erased A)  x  Erased (P (erased x)))
  to [ sup x f ] = sup [ x ]  ([ y ])  to [ f y ])

  from : W (Erased A)  x  Erased (P (erased x)))  Erased (W A P)
  from (sup [ x ] f) = [ sup x  y  erased (from (f [ y ]))) ]

----------------------------------------------------------------------
-- Erased is a modality

-- Erased is the modal operator of a uniquely eliminating modality
-- with [_]→ as the modal unit.
--
-- The terminology here roughly follows that of "Modalities in
-- Homotopy Type Theory" by Rijke, Shulman and Spitters.

uniquely-eliminating-modality :
  {@0 P : Erased A  Type p} 
  Is-equivalence
     (f : (x : Erased A)  Erased (P x))  f  [_]→ {A = A})
uniquely-eliminating-modality {A = A} {P = P} =
  _≃_.is-equivalence
    (((x : Erased A)  Erased (P x))  ↔⟨ inverse Erased-Π↔Π-Erased 
     Erased ((x : A)  (P [ x ]))     ↔⟨ Erased-Π↔Π 
     ((x : A)  Erased (P [ x ]))     )

-- Two results that are closely related to
-- uniquely-eliminating-modality.
--
-- These results are based on the Coq source code accompanying
-- "Modalities in Homotopy Type Theory" by Rijke, Shulman and
-- Spitters.

-- Precomposition with [_]→ is injective for functions from Erased A
-- to Erased B.

∘-[]-injective :
  {@0 B : Type b} 
  Injective  (f : Erased A  Erased B)  f  [_]→)
∘-[]-injective = _≃_.injective Eq.⟨ _ , uniquely-eliminating-modality 

-- A rearrangement lemma for ext⁻¹ and ∘-[]-injective.

ext⁻¹-∘-[]-injective :
  {@0 B : Type b} {f g : Erased A  Erased B} {p : f  [_]→  g  [_]→} 
  ext⁻¹ (∘-[]-injective {x = f} {y = g} p) [ x ]  ext⁻¹ p x
ext⁻¹-∘-[]-injective {x = x} {f = f} {g = g} {p = p} =
  ext⁻¹ (∘-[]-injective p) [ x ]               ≡⟨ elim₁
                                                     p  ext⁻¹ p [ x ]  ext⁻¹ (_≃_.from equiv p) x) (
      ext⁻¹ (refl g) [ x ]                            ≡⟨ cong-refl (_$ [ x ]) 
      refl (g [ x ])                                  ≡⟨ sym $ cong-refl _ 
      ext⁻¹ (refl (g  [_]→)) x                       ≡⟨ cong  p  ext⁻¹ p x) $ sym $ cong-refl _ ⟩∎
      ext⁻¹ (_≃_.from equiv (refl g)) x               )
                                                    (∘-[]-injective p) 
  ext⁻¹ (_≃_.from equiv (∘-[]-injective p)) x  ≡⟨ cong (flip ext⁻¹ x) $ _≃_.left-inverse-of equiv _ ⟩∎
  ext⁻¹ p x                                    
  where
  equiv = Eq.≃-≡ Eq.⟨ _ , uniquely-eliminating-modality 

------------------------------------------------------------------------
-- A variant of Dec ∘ Erased

-- Dec-Erased A means that either we have A (erased), or we have ¬ A
-- (also erased).

Dec-Erased : @0 Type   Type 
Dec-Erased A = Erased A  Erased (¬ A)

-- Dec A implies Dec-Erased A.

Dec→Dec-Erased :
  {@0 A : Type a}  Dec A  Dec-Erased A
Dec→Dec-Erased (yes a) = yes [ a ]
Dec→Dec-Erased (no ¬a) = no [ ¬a ]

-- In erased contexts Dec-Erased A is equivalent to Dec A.

@0 Dec-Erased≃Dec :
  {@0 A : Type a}  Dec-Erased A  Dec A
Dec-Erased≃Dec {A = A} =
  Eq.with-other-inverse
    (Erased A  Erased (¬ A)  ↔⟨ erased Erased↔ ⊎-cong erased Erased↔ ⟩□
     A  ¬ A                  )
    Dec→Dec-Erased
    Prelude.[  _  refl _) ,  _  refl _) ]

-- Dec-Erased A is isomorphic to Dec (Erased A) (assuming
-- extensionality).

Dec-Erased↔Dec-Erased :
  {@0 A : Type a} 
  Extensionality? k a lzero 
  Dec-Erased A ↝[ k ] Dec (Erased A)
Dec-Erased↔Dec-Erased {A = A} ext =
  Erased A  Erased (¬ A)  ↝⟨ F.id ⊎-cong Erased-¬↔¬ ext ⟩□
  Erased A  ¬ Erased A    

-- A map function for Dec-Erased.

Dec-Erased-map :
  {@0 A : Type a} {@0 B : Type b} 
  @0 A  B  Dec-Erased A  Dec-Erased B
Dec-Erased-map A⇔B =
  ⊎-map (map (_⇔_.to A⇔B))
        (map (_∘ _⇔_.from A⇔B))

-- Dec-Erased preserves logical equivalences.

Dec-Erased-cong-⇔ :
  {@0 A : Type a} {@0 B : Type b} 
  @0 A  B  Dec-Erased A  Dec-Erased B
Dec-Erased-cong-⇔ A⇔B = record
  { to   = Dec-Erased-map A⇔B
  ; from = Dec-Erased-map (inverse A⇔B)
  }

-- If A and B are decided (with erased proofs), then A × B is.

Dec-Erased-× :
  {@0 A : Type a} {@0 B : Type b} 
  Dec-Erased A  Dec-Erased B  Dec-Erased (A × B)
Dec-Erased-× (no [ ¬a ]) _           = no [ ¬a  proj₁ ]
Dec-Erased-× _           (no [ ¬b ]) = no [ ¬b  proj₂ ]
Dec-Erased-× (yes [ a ]) (yes [ b ]) = yes [ a , b ]

-- If A and B are decided (with erased proofs), then A ⊎ B is.

Dec-Erased-⊎ :
  {@0 A : Type a} {@0 B : Type b} 
  Dec-Erased A  Dec-Erased B  Dec-Erased (A  B)
Dec-Erased-⊎ (yes [ a ]) _           = yes [ inj₁ a ]
Dec-Erased-⊎ (no [ ¬a ]) (yes [ b ]) = yes [ inj₂ b ]
Dec-Erased-⊎ (no [ ¬a ]) (no [ ¬b ]) = no [ Prelude.[ ¬a , ¬b ] ]

-- A variant of Equality.Decision-procedures.×.dec⇒dec⇒dec.

dec-erased⇒dec-erased⇒×-dec-erased :
  {@0 A : Type a} {@0 B : Type b} {@0 x₁ x₂ : A} {@0 y₁ y₂ : B} 
  Dec-Erased (x₁  x₂) 
  Dec-Erased (y₁  y₂) 
  Dec-Erased ((x₁ , y₁)  (x₂ , y₂))
dec-erased⇒dec-erased⇒×-dec-erased = λ where
  (no  [ x₁≢x₂ ]) _                no [ x₁≢x₂  cong proj₁ ]
  _               (no  [ y₁≢y₂ ])  no [ y₁≢y₂  cong proj₂ ]
  (yes [ x₁≡x₂ ]) (yes [ y₁≡y₂ ])  yes [ cong₂ _,_ x₁≡x₂ y₁≡y₂ ]

-- A variant of Equality.Decision-procedures.Σ.set⇒dec⇒dec⇒dec.
--
-- See also set⇒dec-erased⇒dec-erased⇒Σ-dec-erased below.

set⇒dec⇒dec-erased⇒Σ-dec-erased :
  {@0 A : Type a} {@0 P : A  Type p}
  {@0 x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} 
  @0 Is-set A 
  Dec (x₁  x₂) 
  (∀ eq  Dec-Erased (subst P eq y₁  y₂)) 
  Dec-Erased ((x₁ , y₁)  (x₂ , y₂))
set⇒dec⇒dec-erased⇒Σ-dec-erased _ (no x₁≢x₂) _ =
  no [ x₁≢x₂  cong proj₁ ]
set⇒dec⇒dec-erased⇒Σ-dec-erased
  {P = P} {y₁ = y₁} {y₂ = y₂} set₁ (yes x₁≡x₂) dec₂ =
  ⊎-map
    (map (Σ-≡,≡→≡ x₁≡x₂))
    (map λ cast-y₁≢y₂ eq 
                                             $⟨ proj₂ (Σ-≡,≡←≡ eq) 
       subst P (proj₁ (Σ-≡,≡←≡ eq)) y₁  y₂  ↝⟨ subst  p  subst _ p _  _) (set₁ _ _) 
       subst P x₁≡x₂ y₁  y₂                 ↝⟨ cast-y₁≢y₂ ⟩□
                                            )
    (dec₂ x₁≡x₂)

-- A variant of Equality.Decision-procedures.Σ.decidable⇒dec⇒dec.
--
-- See also decidable-erased⇒dec-erased⇒Σ-dec-erased below.

decidable⇒dec-erased⇒Σ-dec-erased :
  {@0 A : Type a} {@0 P : A  Type p}
  {x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} 
  Decidable-equality A 
  (∀ eq  Dec-Erased (subst P eq y₁  y₂)) 
  Dec-Erased ((x₁ , y₁)  (x₂ , y₂))
decidable⇒dec-erased⇒Σ-dec-erased dec =
  set⇒dec⇒dec-erased⇒Σ-dec-erased
    (decidable⇒set dec)
    (dec _ _)

------------------------------------------------------------------------
-- Decidable erased equality

-- A variant of Decidable-equality that is defined using Dec-Erased.

Decidable-erased-equality : Type   Type 
Decidable-erased-equality A = (x y : A)  Dec-Erased (x  y)

-- Decidable equality implies decidable erased equality.

Decidable-equality→Decidable-erased-equality :
  {@0 A : Type a} 
  Decidable-equality A 
  Decidable-erased-equality A
Decidable-equality→Decidable-erased-equality dec x y =
  Dec→Dec-Erased (dec x y)

-- In erased contexts Decidable-erased-equality A is equivalent to
-- Decidable-equality A (assuming extensionality).

@0 Decidable-erased-equality≃Decidable-equality :
  {A : Type a} 
  Extensionality? k a a 
  Decidable-erased-equality A ↝[ k ] Decidable-equality A
Decidable-erased-equality≃Decidable-equality {A = A} ext =
  ((x y : A)  Dec-Erased (x  y))  ↝⟨ (∀-cong ext λ _  ∀-cong ext λ _  from-equivalence Dec-Erased≃Dec) ⟩□
  ((x y : A)  Dec (x  y))         

-- A map function for Decidable-erased-equality.

Decidable-erased-equality-map :
  A  B 
  Decidable-erased-equality A  Decidable-erased-equality B
Decidable-erased-equality-map A↠B _≟_ x y =     $⟨ _↠_.from A↠B x  _↠_.from A↠B y 
  Dec-Erased (_↠_.from A↠B x  _↠_.from A↠B y)  ↝⟨ Dec-Erased-map (_↠_.logical-equivalence $ Surjection.↠-≡ A↠B) ⟩□
  Dec-Erased (x  y)                            

-- A variant of Equality.Decision-procedures.×.Dec._≟_.

decidable-erased⇒decidable-erased⇒×-decidable-erased :
  {@0 A : Type a} {@0 B : Type b} 
  Decidable-erased-equality A 
  Decidable-erased-equality B 
  Decidable-erased-equality (A × B)
decidable-erased⇒decidable-erased⇒×-decidable-erased decA decB _ _ =
  dec-erased⇒dec-erased⇒×-dec-erased (decA _ _) (decB _ _)

-- A variant of Equality.Decision-procedures.Σ.Dec._≟_.
--
-- See also decidable-erased⇒decidable-erased⇒Σ-decidable-erased
-- below.

decidable⇒decidable-erased⇒Σ-decidable-erased :
  Decidable-equality A 
  ({x : A}  Decidable-erased-equality (P x)) 
  Decidable-erased-equality (Σ A P)
decidable⇒decidable-erased⇒Σ-decidable-erased
  {P = P} decA decP (_ , x₂) (_ , y₂) =
  decidable⇒dec-erased⇒Σ-dec-erased
    decA
     eq  decP (subst P eq x₂) y₂)

------------------------------------------------------------------------
-- Erased binary relations

-- Lifts binary relations from A to Erased A.

Erasedᴾ :
  {@0 A : Type a} {@0 B : Type b} 
  @0 (A  B  Type r) 
  (Erased A  Erased B  Type r)
Erasedᴾ R [ x ] [ y ] = Erased (R x y)

-- Erasedᴾ preserves Is-equivalence-relation.

Erasedᴾ-preserves-Is-equivalence-relation :
  {@0 A : Type a} {@0 R : A  A  Type r} 
  @0 Is-equivalence-relation R 
  Is-equivalence-relation (Erasedᴾ R)
Erasedᴾ-preserves-Is-equivalence-relation equiv = λ where
  .Is-equivalence-relation.reflexive 
    [ equiv .Is-equivalence-relation.reflexive ]
  .Is-equivalence-relation.symmetric 
    map (equiv .Is-equivalence-relation.symmetric)
  .Is-equivalence-relation.transitive 
    zip (equiv .Is-equivalence-relation.transitive)

------------------------------------------------------------------------
-- Some results that hold in erased contexts

-- In an erased context there is an equivalence between equality of
-- "boxed" values and equality of values.

@0 []≡[]≃≡ : ([ x ]  [ y ])  (x  y)
[]≡[]≃≡ = Eq.↔⇒≃ (record
  { surjection = record
    { logical-equivalence = record
      { to   = cong erased
      ; from = cong [_]→
      }
    ; right-inverse-of = λ eq 
        cong erased (cong [_]→ eq)  ≡⟨ cong-∘ _ _ _ 
        cong id eq                  ≡⟨ sym $ cong-id _ ⟩∎
        eq                          
    }
  ; left-inverse-of = λ eq 
      cong [_]→ (cong erased eq)  ≡⟨ cong-∘ _ _ _ 
      cong id eq                  ≡⟨ sym $ cong-id _ ⟩∎
      eq                          
  })

-- The []-cong axioms can be instantiated in erased contexts.

@0 erased-instance-of-[]-cong-axiomatisation :
  []-cong-axiomatisation a
erased-instance-of-[]-cong-axiomatisation
  .[]-cong-axiomatisation.[]-cong =
  cong [_]→  erased
erased-instance-of-[]-cong-axiomatisation
  .[]-cong-axiomatisation.[]-cong-equivalence {x = x} {y = y} =
  _≃_.is-equivalence
    (Erased (x  y)  ↔⟨ erased Erased↔ 
     x  y           ↝⟨ inverse []≡[]≃≡ ⟩□
     [ x ]  [ y ]   )
erased-instance-of-[]-cong-axiomatisation
  .[]-cong-axiomatisation.[]-cong-[refl] {x = x} =
  cong [_]→ (erased [ refl x ])  ≡⟨⟩
  cong [_]→ (refl x)             ≡⟨ cong-refl _ ⟩∎
  refl [ x ]                     

------------------------------------------------------------------------
-- Some results that follow if "[]-cong" can be defined

module []-cong₁
  ([]-cong :
      {a} {@0 A : Type a} {@0 x y : A} 
     Erased (x  y)  [ x ]  [ y ])
  where

  -- Erased commutes with W (assuming extensionality).

  Erased-W↔W :
    {@0 A : Type a} {@0 P : A  Type p} 
    Extensionality? k p (a  p) 
    Erased (W A P) ↝[ k ] W (Erased A)  x  Erased (P (erased x)))
  Erased-W↔W {a = a} {p = p} {A = A} {P = P} =
    generalise-ext?
      Erased-W⇔W
       ext  record
         { surjection = record
           { logical-equivalence = Erased-W⇔W
           ; right-inverse-of    = to∘from ext }
         ; left-inverse-of = from∘to ext
         })
    where
    open _⇔_ Erased-W⇔W

    to∘from :
      Extensionality p (a  p) 
      (x : W (Erased A)  x  Erased (P (erased x)))) 
      to (from x)  x
    to∘from ext (sup [ x ] f) =
      cong (sup [ x ]) (apply-ext ext  ([ y ]) 
        to∘from ext (f [ y ])))

    from∘to :
      Extensionality p (a  p) 
      (x : Erased (W A P))  from (to x)  x
    from∘to ext [ sup x f ] =
      []-cong [ cong (sup x) (apply-ext ext λ y 
        cong erased (from∘to ext [ f y ])) ]

  -- [_] can be "pushed" through subst.

  push-subst-[] :
    {@0 P : A  Type p} {@0 p : P x} {x≡y : x  y} 
    subst  x  Erased (P x)) x≡y [ p ]  [ subst P x≡y p ]
  push-subst-[] {P = P} {p = p} = elim¹
     x≡y  subst  x  Erased (P x)) x≡y [ p ]  [ subst P x≡y p ])
    (subst  x  Erased (P x)) (refl _) [ p ]  ≡⟨ subst-refl _ _ 
     [ p ]                                      ≡⟨ []-cong [ sym $ subst-refl _ _ ] ⟩∎
     [ subst P (refl _) p ]                     )
    _

  -- Erased preserves some kinds of functions.

  module _ {@0 A : Type a} {@0 B : Type b} where

    Erased-cong-↠ : @0 A  B  Erased A  Erased B
    Erased-cong-↠ A↠B = record
      { logical-equivalence = Erased-cong-⇔
                                (_↠_.logical-equivalence A↠B)
      ; right-inverse-of    = λ { [ x ] 
          []-cong [ _↠_.right-inverse-of A↠B x ] }
      }

    Erased-cong-↔ : @0 A  B  Erased A  Erased B
    Erased-cong-↔ A↔B = record
      { surjection      = Erased-cong-↠ (_↔_.surjection A↔B)
      ; left-inverse-of = λ { [ x ] 
          []-cong [ _↔_.left-inverse-of A↔B x ] }
      }

    Erased-cong-≃ : @0 A  B  Erased A  Erased B
    Erased-cong-≃ A≃B =
      from-isomorphism (Erased-cong-↔ (from-isomorphism A≃B))

    -- A variant of Erased-cong (which is defined in Erased.Level-2).

    Erased-cong? :
       {a b} 
      @0 (∀ {k}  Extensionality? k a b  A ↝[ k ] B) 
      @0 Extensionality? k a b  Erased A ↝[ k ] Erased B
    Erased-cong? hyp = generalise-erased-ext?
      (Erased-cong-⇔ (hyp _))
       ext  Erased-cong-↔ (hyp ext))

  -- Erased commutes with _⇔_.

  Erased-⇔↔⇔ :
    {@0 A : Type a} {@0 B : Type b} 
    Erased (A  B)  (Erased A  Erased B)
  Erased-⇔↔⇔ {A = A} {B = B} =
    Erased (A  B)                                 ↝⟨ Erased-cong-↔ ⇔↔→×→ 
    Erased ((A  B) × (B  A))                     ↝⟨ Erased-Σ↔Σ 
    Erased (A  B) × Erased (B  A)                ↝⟨ Erased-Π↔Π-Erased ×-cong Erased-Π↔Π-Erased 
    (Erased A  Erased B) × (Erased B  Erased A)  ↝⟨ inverse ⇔↔→×→ ⟩□
    (Erased A  Erased B)                          

  ----------------------------------------------------------------------
  -- Variants of subst, cong and the J rule that take erased equality
  -- proofs

  -- A variant of subst that takes an erased equality proof.

  substᴱ :
    {@0 A : Type a} {@0 x y : A}
    (P : @0 A  Type p)  @0 x  y  P x  P y
  substᴱ P eq = subst  ([ x ])  P x) ([]-cong [ eq ])

  -- A variant of elim₁ that takes an erased equality proof.

  elim₁ᴱ :
    {@0 A : Type a} {@0 x y : A}
    (P : {@0 x : A}  @0 x  y  Type p) 
    P (refl y) 
    (@0 x≡y : x  y)  P x≡y
  elim₁ᴱ {x = x} {y = y} P p x≡y =
    substᴱ
       p  P (proj₂ p))
      (proj₂ (singleton-contractible y) (x , x≡y))
      p

  -- A variant of elim¹ that takes an erased equality proof.

  elim¹ᴱ :
    {@0 A : Type a} {@0 x y : A}
    (P : {@0 y : A}  @0 x  y  Type p) 
    P (refl x) 
    (@0 x≡y : x  y)  P x≡y
  elim¹ᴱ {x = x} {y = y} P p x≡y =
    substᴱ
       p  P (proj₂ p))
      (proj₂ (other-singleton-contractible x) (y , x≡y))
      p

  -- A variant of elim that takes an erased equality proof.

  elimᴱ :
    {@0 A : Type a} {@0 x y : A}
    (P : {@0 x y : A}  @0 x  y  Type p) 
    (∀ (@0 x)  P (refl x)) 
    (@0 x≡y : x  y)  P x≡y
  elimᴱ {y = y} P p = elim₁ᴱ P (p y)

  -- A variant of cong that takes an erased equality proof.

  congᴱ :
    {@0 A : Type a} {@0 x y : A}
    (f : @0 A  B)  @0 x  y  f x  f y
  congᴱ f = elimᴱ  {x y} _  f x  f y)  x  refl (f x))

------------------------------------------------------------------------
-- Some results that follow if "[]-cong" is an equivalence

module []-cong₂
  ([]-cong :
      {a} {@0 A : Type a} {@0 x y : A} 
     Erased (x  y)  [ x ]  [ y ])
  ([]-cong-equivalence :
      {a} {@0 A : Type a} {@0 x y : A} 
     Is-equivalence ([]-cong {x = x} {y = y}))
  where

  open []-cong₁ []-cong public

  -- There is a bijection between erased equality proofs and
  -- equalities between erased values.

  Erased-≡↔[]≡[] :
    {@0 A : Type a} {@0 x y : A} 
    Erased (x  y)  [ x ]  [ y ]
  Erased-≡↔[]≡[] = _≃_.bijection Eq.⟨ _ , []-cong-equivalence 

  -- The inverse of []-cong.

  []-cong⁻¹ :
    {@0 A : Type a} {@0 x y : A} 
    [ x ]  [ y ]  Erased (x  y)
  []-cong⁻¹ = _↔_.from Erased-≡↔[]≡[]

  ----------------------------------------------------------------------
  -- All h-levels are closed under Erased

  -- Erased commutes with H-level′ n (assuming extensionality).

  Erased-H-level′↔H-level′ :
    {@0 A : Type a} 
    Extensionality? k a a 
     n  Erased (H-level′ n A) ↝[ k ] H-level′ n (Erased A)
  Erased-H-level′↔H-level′ {A = A} ext zero =
    Erased (H-level′ zero A)                                              ↔⟨⟩
    Erased ( λ (x : A)  (y : A)  x  y)                                ↔⟨ Erased-Σ↔Σ 
    ( λ (x : Erased A)  Erased ((y : A)  erased x  y))                ↔⟨ (∃-cong λ _  Erased-Π↔Π-Erased) 
    ( λ (x : Erased A)  (y : Erased A)  Erased (erased x  erased y))  ↝⟨ (∃-cong λ _  ∀-cong ext λ _  from-isomorphism Erased-≡↔[]≡[]) 
    ( λ (x : Erased A)  (y : Erased A)  x  y)                         ↔⟨⟩
    H-level′ zero (Erased A)                                              
  Erased-H-level′↔H-level′ {A = A} ext (suc n) =
    Erased (H-level′ (suc n) A)                                      ↔⟨⟩
    Erased ((x y : A)  H-level′ n (x  y))                          ↔⟨ Erased-Π↔Π-Erased 
    ((x : Erased A)  Erased ((y : A)  H-level′ n (erased x  y)))  ↝⟨ (∀-cong ext λ _  from-isomorphism Erased-Π↔Π-Erased) 
    ((x y : Erased A)  Erased (H-level′ n (erased x  erased y)))   ↝⟨ (∀-cong ext λ _  ∀-cong ext λ _  Erased-H-level′↔H-level′ ext n) 
    ((x y : Erased A)  H-level′ n (Erased (erased x  erased y)))   ↝⟨ (∀-cong ext λ _  ∀-cong ext λ _  H-level′-cong ext n Erased-≡↔[]≡[]) 
    ((x y : Erased A)  H-level′ n (x  y))                          ↔⟨⟩
    H-level′ (suc n) (Erased A)                                      

  -- Erased commutes with H-level n (assuming extensionality).

  Erased-H-level↔H-level :
    {@0 A : Type a} 
    Extensionality? k a a 
     n  Erased (H-level n A) ↝[ k ] H-level n (Erased A)
  Erased-H-level↔H-level {A = A} ext n =
    Erased (H-level n A)   ↝⟨ Erased-cong? H-level↔H-level′ ext 
    Erased (H-level′ n A)  ↝⟨ Erased-H-level′↔H-level′ ext n 
    H-level′ n (Erased A)  ↝⟨ inverse-ext? H-level↔H-level′ ext ⟩□
    H-level n (Erased A)   

  -- H-level n is closed under Erased.

  H-level-Erased :
    {@0 A : Type a} 
     n  @0 H-level n A  H-level n (Erased A)
  H-level-Erased n h = Erased-H-level↔H-level _ n [ h ]

  ----------------------------------------------------------------------
  -- Some closure properties

  -- If A is a proposition, then Dec-Erased A is a proposition
  -- (assuming extensionality).

  Is-proposition-Dec-Erased :
    {@0 A : Type a} 
    Extensionality a lzero 
    @0 Is-proposition A 
    Is-proposition (Dec-Erased A)
  Is-proposition-Dec-Erased {A = A} ext p =
                                     $⟨ Dec-closure-propositional ext (H-level-Erased 1 p) 
    Is-proposition (Dec (Erased A))  ↝⟨ H-level-cong _ 1 (inverse $ Dec-Erased↔Dec-Erased {k = equivalence} ext)  (_  _) ⟩□
    Is-proposition (Dec-Erased A)    

  -- If A is a set, then Decidable-erased-equality A is a proposition
  -- (assuming extensionality).

  Is-proposition-Decidable-erased-equality :
    {A : Type a} 
    Extensionality a a 
    @0 Is-set A 
    Is-proposition (Decidable-erased-equality A)
  Is-proposition-Decidable-erased-equality ext s =
    Π-closure ext 1 λ _ 
    Π-closure ext 1 λ _ 
    Is-proposition-Dec-Erased (lower-extensionality lzero _ ext) s

  -- Erasedᴾ preserves Is-proposition.

  Is-proposition-Erasedᴾ :
    {@0 A : Type a} {@0 B : Type b} {@0 R : A  B  Type r} 
    @0 (∀ {x y}  Is-proposition (R x y)) 
     {x y}  Is-proposition (Erasedᴾ R x y)
  Is-proposition-Erasedᴾ prop =
    H-level-Erased 1 prop

  ----------------------------------------------------------------------
  -- Some properties related to "Modalities in Homotopy Type Theory"
  -- by Rijke, Shulman and Spitters

  -- Erased is a lex modality (see Theorem 3.1, case (i) in
  -- "Modalities in Homotopy Type Theory" for the definition used
  -- here).

  lex-modality :
    {x y : A}  Contractible (Erased A)  Contractible (Erased (x  y))
  lex-modality {A = A} {x = x} {y = y} =
    Contractible (Erased A)        ↝⟨ _⇔_.from (Erased-H-level↔H-level _ 0) 
    Erased (Contractible A)        ↝⟨ map (⇒≡ 0) 
    Erased (Contractible (x  y))  ↝⟨ Erased-H-level↔H-level _ 0 ⟩□
    Contractible (Erased (x  y))  

  -- A function f is Erased-connected in the sense of Rijke et al.
  -- exactly when there is an erased proof showing that f is an
  -- equivalence (assuming extensionality).
  --
  -- See also Erased-Is-equivalence↔Is-equivalence below.

  Erased-connected↔Erased-Is-equivalence :
    {A : Type a} {B : Type b} {f : A  B} 
    Extensionality? k (a  b) (a  b) 
    (∀ y  Contractible (Erased (f ⁻¹ y))) ↝[ k ]
    Erased (Is-equivalence f)
  Erased-connected↔Erased-Is-equivalence {a = a} {k = k} {f = f} ext =
    (∀ y  Contractible (Erased (f ⁻¹ y)))  ↝⟨ (∀-cong (lower-extensionality? k a lzero ext) λ _ 
                                                inverse-ext?  ext  Erased-H-level↔H-level ext 0) ext) 
    (∀ y  Erased (Contractible (f ⁻¹ y)))  ↔⟨ inverse Erased-Π↔Π 
    Erased (∀ y  Contractible (f ⁻¹ y))    ↔⟨⟩
    Erased (CP.Is-equivalence f)            ↝⟨ inverse-ext?  ext  Erased-cong? Is-equivalence≃Is-equivalence-CP ext) ext ⟩□
    Erased (Is-equivalence f)               

  ----------------------------------------------------------------------
  -- Some isomorphisms

  -- Erased "commutes" with _⁻¹_.

  Erased-⁻¹ :
    {@0 A : Type a} {@0 B : Type b} {@0 f : A  B} {@0 y : B} 
    Erased (f ⁻¹ y)  map f ⁻¹ [ y ]
  Erased-⁻¹ {f = f} {y = y} =
    Erased ( λ x  f x  y)             ↝⟨ Erased-Σ↔Σ 
    ( λ x  Erased (f (erased x)  y))  ↝⟨ (∃-cong λ _  Erased-≡↔[]≡[]) ⟩□
    ( λ x  map f x  [ y ])            

  -- Erased "commutes" with Is-equivalence.

  Erased-Is-equivalence↔Is-equivalence :
    {@0 A : Type a} {@0 B : Type b} {@0 f : A  B} 
    Extensionality? k (a  b) (a  b) 
    Erased (Is-equivalence f) ↝[ k ] Is-equivalence (map f)
  Erased-Is-equivalence↔Is-equivalence {a = a} {k = k} {f = f} ext =
    Erased (Is-equivalence f)                      ↝⟨ Erased-cong? Is-equivalence≃Is-equivalence-CP ext 
    Erased (∀ x  Contractible (f ⁻¹ x))           ↔⟨ Erased-Π↔Π-Erased 
    (∀ x  Erased (Contractible (f ⁻¹ erased x)))  ↝⟨ (∀-cong ext′ λ _  Erased-H-level↔H-level ext 0) 
    (∀ x  Contractible (Erased (f ⁻¹ erased x)))  ↝⟨ (∀-cong ext′ λ _  H-level-cong ext 0 Erased-⁻¹) 
    (∀ x  Contractible (map f ⁻¹ x))              ↝⟨ inverse-ext? Is-equivalence≃Is-equivalence-CP ext ⟩□
    Is-equivalence (map f)                         
    where
    ext′ = lower-extensionality? k a lzero ext

  -- Erased "commutes" with Split-surjective.

  Erased-Split-surjective↔Split-surjective :
    {@0 A : Type a} {@0 B : Type b} {@0 f : A  B} 
    Extensionality? k b (a  b) 
    Erased (Split-surjective f) ↝[ k ]
    Split-surjective (map f)
  Erased-Split-surjective↔Split-surjective {f = f} ext =
    Erased (∀ y   λ x  f x  y)                    ↔⟨ Erased-Π↔Π-Erased 
    (∀ y  Erased ( λ x  f x  erased y))           ↝⟨ (∀-cong ext λ _  from-isomorphism Erased-Σ↔Σ) 
    (∀ y   λ x  Erased (f (erased x)  erased y))  ↝⟨ (∀-cong ext λ _  ∃-cong λ _  from-isomorphism Erased-≡↔[]≡[]) 
    (∀ y   λ x  [ f (erased x) ]  y)              ↔⟨⟩
    (∀ y   λ x  map f x  y)                       

  -- Erased "commutes" with Has-quasi-inverse.

  Erased-Has-quasi-inverse↔Has-quasi-inverse :
    {@0 A : Type a} {@0 B : Type b} {@0 f : A  B} 
    Extensionality? k (a  b) (a  b) 
    Erased (Has-quasi-inverse f) ↝[ k ]
    Has-quasi-inverse (map f)
  Erased-Has-quasi-inverse↔Has-quasi-inverse
    {A = A} {B = B} {f = f} ext =

    Erased ( λ g  (∀ x  f (g x)  x) × (∀ x  g (f x)  x))            ↔⟨ Erased-Σ↔Σ 

    ( λ g 
       Erased ((∀ x  f (erased g x)  x) × (∀ x  erased g (f x)  x)))  ↝⟨ (∃-cong λ _  from-isomorphism Erased-Σ↔Σ) 

    ( λ g 
       Erased (∀ x  f (erased g x)  x) ×
       Erased (∀ x  erased g (f x)  x))                                 ↝⟨ Σ-cong Erased-Π↔Π-Erased  g 
                                                                             lemma ext f (erased g) ×-cong lemma ext (erased g) f) ⟩□
    ( λ g  (∀ x  map f (g x)  x) × (∀ x  g (map f x)  x))           
    where
    lemma :
      {@0 A : Type a} {@0 B : Type b} 
      Extensionality? k (a  b) (a  b) 
      (@0 f : A  B) (@0 g : B  A)  _ ↝[ k ] _
    lemma {a = a} {k = k} ext f g =
      Erased (∀ x  f (g x)  x)                    ↔⟨ Erased-Π↔Π-Erased 
      (∀ x  Erased (f (g (erased x))  erased x))  ↝⟨ (∀-cong (lower-extensionality? k a a ext) λ _  from-isomorphism Erased-≡↔[]≡[]) 
      (∀ x  [ f (g (erased x)) ]  x)              ↔⟨⟩
      (∀ x  map (f  g) x  x)                     

  -- Erased "commutes" with Injective.

  Erased-Injective↔Injective :
    {@0 A : Type a} {@0 B : Type b} {@0 f : A  B} 
    Extensionality? k (a  b) (a  b) 
    Erased (Injective f) ↝[ k ] Injective (map f)
  Erased-Injective↔Injective {a = a} {b = b} {k = k} {f = f} ext =
    Erased (∀ {x y}  f x  f y  x  y)                          ↔⟨ Erased-cong-↔ Bijection.implicit-Π↔Π 

    Erased (∀ x {y}  f x  f y  x  y)                          ↝⟨ Erased-cong?  {k} ext  ∀-cong (lower-extensionality? k b lzero ext) λ _ 
                                                                     from-isomorphism Bijection.implicit-Π↔Π) ext 

    Erased (∀ x y  f x  f y  x  y)                            ↔⟨ Erased-Π↔Π-Erased 

    (∀ x  Erased (∀ y  f (erased x)  f y  erased x  y))      ↝⟨ (∀-cong ext′ λ _  from-isomorphism Erased-Π↔Π-Erased) 

    (∀ x y 
     Erased (f (erased x)  f (erased y)  erased x  erased y))  ↝⟨ (∀-cong ext′ λ _  ∀-cong ext′ λ _  from-isomorphism Erased-Π↔Π-Erased) 

    (∀ x y 
     Erased (f (erased x)  f (erased y)) 
     Erased (erased x  erased y))                                ↝⟨ (∀-cong ext′ λ _  ∀-cong ext′ λ _ 
                                                                      generalise-ext?-sym
                                                                         {k} ext  →-cong (lower-extensionality?  k ⌋-sym a b ext)
                                                                                            (from-isomorphism Erased-≡↔[]≡[])
                                                                                            (from-isomorphism Erased-≡↔[]≡[]))
                                                                        ext) 

    (∀ x y  [ f (erased x) ]  [ f (erased y) ]  x  y)         ↝⟨ (∀-cong ext′ λ _  from-isomorphism $ inverse Bijection.implicit-Π↔Π) 

    (∀ x {y}  [ f (erased x) ]  [ f (erased y) ]  x  y)       ↔⟨ inverse Bijection.implicit-Π↔Π ⟩□

    (∀ {x y}  [ f (erased x) ]  [ f (erased y) ]  x  y)       
    where
    ext′ = lower-extensionality? k b lzero ext

  -- Erased preserves injections.

  Erased-cong-↣ :
    {@0 A : Type a} {@0 B : Type b} 
    @0 A  B  Erased A  Erased B
  Erased-cong-↣ A↣B = record
    { to        = map (_↣_.to A↣B)
    ; injective = Erased-Injective↔Injective _ [ _↣_.injective A↣B ]
    }

  ----------------------------------------------------------------------
  -- Some lemmas related to whether [_]→ is injective or an embedding

  -- In erased contexts [_]→ is injective.
  --
  -- See also Erased.With-K.Injective-[].

  @0 Injective-[] : Injective {A = A} [_]→
  Injective-[] = erased  []-cong⁻¹

  -- If A is a proposition, then [_]→ {A = A} is an embedding.
  --
  -- See also Erased-Is-embedding-[] and Erased-Split-surjective-[]
  -- below as well as Very-stable→Is-embedding-[] and
  -- Very-stable→Split-surjective-[] in Erased.Stability and
  -- Injective-[] and Is-embedding-[] in Erased.With-K.

  Is-proposition→Is-embedding-[] :
    Is-proposition A  Is-embedding ([_]→ {A = A})
  Is-proposition→Is-embedding-[] prop =
    _⇔_.to (Emb.Injective⇔Is-embedding
              set (H-level-Erased 2 set) [_]→)
       _  prop _ _)
    where
    set = mono₁ 1 prop

------------------------------------------------------------------------
-- More lemmas

-- In an erased context [_]→ is always an embedding.

Erased-Is-embedding-[] :
  {@0 A : Type a}  Erased (Is-embedding ([_]→ {A = A}))
Erased-Is-embedding-[] =
  [  x y  _≃_.is-equivalence (
       x  y          ↝⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ $ inverse $ erased Erased↔ ⟩□
       [ x ]  [ y ]  ))
  ]

-- In an erased context [_]→ is always split surjective.

Erased-Split-surjective-[] :
  {@0 A : Type a}  Erased (Split-surjective ([_]→ {A = A}))
Erased-Split-surjective-[] = [  ([ x ])  x , refl _) ]

------------------------------------------------------------------------
-- Some results that follow if "[]-cong" is an equivalence that maps
-- [ refl x ] to refl [ x ]

-- Some consequences of the axiomatisation.

module []-cong₃ (ax :  {a}  []-cong-axiomatisation a) where

  private
    module A {a} = []-cong-axiomatisation (ax {a = a})
  open A public hiding ([]-cong-[refl])
  open A renaming ([]-cong-[refl] to []-cong-[refl]′)

  open []-cong₂ []-cong []-cong-equivalence public

  ----------------------------------------------------------------------
  -- Some definitions directly related to []-cong and []-cong⁻¹

  -- Rearrangement lemmas for []-cong and []-cong⁻¹.

  []-cong-[]≡cong-[] :
    {x≡y : x  y}  []-cong [ x≡y ]  cong [_]→ x≡y
  []-cong-[]≡cong-[] {x = x} {x≡y = x≡y} = elim¹
     x≡y  []-cong [ x≡y ]  cong [_]→ x≡y)
    ([]-cong [ refl x ]  ≡⟨ []-cong-[refl]′ 
     refl [ x ]          ≡⟨ sym $ cong-refl _ ⟩∎
     cong [_]→ (refl x)  )
    x≡y

  []-cong⁻¹≡[cong-erased] :
    {@0 A : Type a} {@0 x y : A} {@0 x≡y : [ x ]  [ y ]} 
    []-cong⁻¹ x≡y  [ cong erased x≡y ]
  []-cong⁻¹≡[cong-erased] {x≡y = x≡y} = []-cong
    [ erased ([]-cong⁻¹ x≡y)      ≡⟨ cong erased (_↔_.from (from≡↔≡to $ Eq.↔⇒≃ Erased-≡↔[]≡[]) lemma) 
      erased [ cong erased x≡y ]  ≡⟨⟩
      cong erased x≡y             
    ]
    where
    @0 lemma : _
    lemma =
      x≡y                          ≡⟨ cong-id _ 
      cong id x≡y                  ≡⟨⟩
      cong ([_]→  erased) x≡y     ≡⟨ sym $ cong-∘ _ _ _ 
      cong [_]→ (cong erased x≡y)  ≡⟨ sym []-cong-[]≡cong-[] ⟩∎
      []-cong [ cong erased x≡y ]  

  -- A "computation rule" for []-cong⁻¹.

  []-cong⁻¹-refl :
    {@0 A : Type a} {@0 x : A} 
    []-cong⁻¹ (refl [ x ])  [ refl x ]
  []-cong⁻¹-refl {x = x} =
    []-cong⁻¹ (refl [ x ])        ≡⟨ []-cong⁻¹≡[cong-erased] 
    [ cong erased (refl [ x ]) ]  ≡⟨ []-cong [ cong-refl _ ] ⟩∎
    [ refl x ]                    

  -- A stronger variant of []-cong-[refl]′.

  []-cong-[refl] :
    {@0 A : Type a} {@0 x : A} 
    []-cong [ refl x ]  refl [ x ]
  []-cong-[refl] {A = A} {x = x} =
    sym $ _↔_.to (from≡↔≡to $ Eq.↔⇒≃ Erased-≡↔[]≡[]) (
      []-cong⁻¹ (refl [ x ])  ≡⟨ []-cong⁻¹-refl ⟩∎
      [ refl x ]              )

  -- []-cong and []-cong⁻¹ commute (kind of) with sym.

  []-cong⁻¹-sym :
    {@0 A : Type a} {@0 x y : A} {x≡y : [ x ]  [ y ]} 
    []-cong⁻¹ (sym x≡y)  map sym ([]-cong⁻¹ x≡y)
  []-cong⁻¹-sym = elim¹
     x≡y  []-cong⁻¹ (sym x≡y)  map sym ([]-cong⁻¹ x≡y))
    ([]-cong⁻¹ (sym (refl _))      ≡⟨ cong []-cong⁻¹ sym-refl 
     []-cong⁻¹ (refl _)            ≡⟨ []-cong⁻¹-refl 
     [ refl _ ]                    ≡⟨ []-cong [ sym sym-refl ] 
     [ sym (refl _) ]              ≡⟨⟩
     map sym [ refl _ ]            ≡⟨ cong (map sym) $ sym []-cong⁻¹-refl ⟩∎
     map sym ([]-cong⁻¹ (refl _))  )
    _

  []-cong-[sym] :
    {@0 A : Type a} {@0 x y : A} {@0 x≡y : x  y} 
    []-cong [ sym x≡y ]  sym ([]-cong [ x≡y ])
  []-cong-[sym] {x≡y = x≡y} =
    sym $ _↔_.to (from≡↔≡to $ Eq.↔⇒≃ Erased-≡↔[]≡[]) (
      []-cong⁻¹ (sym ([]-cong [ x≡y ]))      ≡⟨ []-cong⁻¹-sym 
      map sym ([]-cong⁻¹ ([]-cong [ x≡y ]))  ≡⟨ cong (map sym) $ _↔_.left-inverse-of Erased-≡↔[]≡[] _ ⟩∎
      map sym [ x≡y ]                        )

  -- []-cong and []-cong⁻¹ commute (kind of) with trans.

  []-cong⁻¹-trans :
    {@0 A : Type a} {@0 x y z : A}
    {x≡y : [ x ]  [ y ]} {y≡z : [ y ]  [ z ]} 
    []-cong⁻¹ (trans x≡y y≡z) 
    [ trans (erased ([]-cong⁻¹ x≡y)) (erased ([]-cong⁻¹ y≡z)) ]
  []-cong⁻¹-trans {y≡z = y≡z} = elim₁
     x≡y  []-cong⁻¹ (trans x≡y y≡z) 
             [ trans (erased ([]-cong⁻¹ x≡y)) (erased ([]-cong⁻¹ y≡z)) ])
    ([]-cong⁻¹ (trans (refl _) y≡z)                                    ≡⟨ cong []-cong⁻¹ $ trans-reflˡ _ 
     []-cong⁻¹ y≡z                                                     ≡⟨⟩
     [ erased ([]-cong⁻¹ y≡z) ]                                        ≡⟨ []-cong [ sym $ trans-reflˡ _ ] 
     [ trans (refl _) (erased ([]-cong⁻¹ y≡z)) ]                       ≡⟨⟩
     [ trans (erased [ refl _ ]) (erased ([]-cong⁻¹ y≡z)) ]            ≡⟨ []-cong [ cong (flip trans _) $ cong erased $ sym
                                                                          []-cong⁻¹-refl ] ⟩∎
     [ trans (erased ([]-cong⁻¹ (refl _))) (erased ([]-cong⁻¹ y≡z)) ]  )
    _

  []-cong-[trans] :
    {@0 A : Type a} {@0 x y z : A} {@0 x≡y : x  y} {@0 y≡z : y  z} 
    []-cong [ trans x≡y y≡z ] 
    trans ([]-cong [ x≡y ]) ([]-cong [ y≡z ])
  []-cong-[trans] {x≡y = x≡y} {y≡z = y≡z} =
    sym $ _↔_.to (from≡↔≡to $ Eq.↔⇒≃ Erased-≡↔[]≡[]) (
      []-cong⁻¹ (trans ([]-cong [ x≡y ]) ([]-cong [ y≡z ]))  ≡⟨ []-cong⁻¹-trans 

      [ trans (erased ([]-cong⁻¹ ([]-cong [ x≡y ])))
              (erased ([]-cong⁻¹ ([]-cong [ y≡z ]))) ]       ≡⟨ []-cong [ cong₂  p q  trans (erased p) (erased q))
                                                                            (_↔_.left-inverse-of Erased-≡↔[]≡[] _)
                                                                            (_↔_.left-inverse-of Erased-≡↔[]≡[] _) ] ⟩∎
      [ trans x≡y y≡z ]                                      )

  -- In an erased context there is an equivalence between equality of
  -- values and equality of "boxed" values.

  @0 ≡≃[]≡[] : (x  y)  ([ x ]  [ y ])
  ≡≃[]≡[] = Eq.↔⇒≃ (record
    { surjection = record
      { logical-equivalence = record
        { to   = []-cong  [_]→
        ; from = cong erased
        }
      ; right-inverse-of = λ eq 
          []-cong [ cong erased eq ]  ≡⟨ []-cong-[]≡cong-[] 
          cong [_]→ (cong erased eq)  ≡⟨ cong-∘ _ _ _ 
          cong id eq                  ≡⟨ sym $ cong-id _ ⟩∎
          eq                          
      }
    ; left-inverse-of = λ eq 
        cong erased ([]-cong [ eq ])  ≡⟨ cong (cong erased) []-cong-[]≡cong-[] 
        cong erased (cong [_]→ eq)    ≡⟨ cong-∘ _ _ _ 
        cong id eq                    ≡⟨ sym $ cong-id _ ⟩∎
        eq                            
    })

  -- The left-to-right and right-to-left directions of the equivalence
  -- are definitionally equal to certain functions.

  _ : _≃_.to (≡≃[]≡[] {x = x} {y = y})  []-cong  [_]→
  _ = refl _

  @0 _ : _≃_.from (≡≃[]≡[] {x = x} {y = y})  cong erased
  _ = refl _

  -- The function map (cong f) can be expressed in terms of
  -- cong (map f) (up to pointwise equality).

  map-cong≡cong-map :
    {@0 A : Type a} {@0 B : Type b} {@0 x y : A}
    {@0 f : A  B} {x≡y : Erased (x  y)} 
    map (cong f) x≡y  []-cong⁻¹ (cong (map f) ([]-cong x≡y))
  map-cong≡cong-map {f = f} {x≡y = [ x≡y ]} =
    [ cong f x≡y ]                                    ≡⟨⟩
    [ cong (erased  map f  [_]→) x≡y ]              ≡⟨ []-cong [ sym $ cong-∘ _ _ _ ] 
    [ cong (erased  map f) (cong [_]→ x≡y) ]         ≡⟨ []-cong [ cong (cong _) $ sym []-cong-[]≡cong-[] ] 
    [ cong (erased  map f) ([]-cong [ x≡y ]) ]       ≡⟨ []-cong [ sym $ cong-∘ _ _ _ ] 
    [ cong erased (cong (map f) ([]-cong [ x≡y ])) ]  ≡⟨ sym []-cong⁻¹≡[cong-erased] ⟩∎
    []-cong⁻¹ (cong (map f) ([]-cong [ x≡y ]))        

  ----------------------------------------------------------------------
  -- Lemmas related to substᴱ, elim₁ᴱ, elim¹ᴱ, elimᴱ and congᴱ

  -- A "computation rule" for substᴱ.

  substᴱ-refl :
    {@0 A : Type a} {@0 x : A} {P : @0 A  Type p} {p : P x} 
    substᴱ P (refl x) p  p
  substᴱ-refl {P = P} {p = p} =
    subst  ([ x ])  P x) ([]-cong [ refl _ ]) p  ≡⟨ cong (flip (subst _) _) []-cong-[refl] 
    subst  ([ x ])  P x) (refl [ _ ]) p          ≡⟨ subst-refl _ _ ⟩∎
    p                                               

  -- If all arguments are non-erased, then one can replace substᴱ with
  -- subst (if the first explicit argument is η-expanded).

  substᴱ≡subst :
    {P : @0 A  Type p} {p : P x} 
    substᴱ P eq p  subst  x  P x) eq p
  substᴱ≡subst {eq = eq} {P = P} {p = p} = elim¹
     eq  substᴱ P eq p  subst  x  P x) eq p)
    (substᴱ P (refl _) p           ≡⟨ substᴱ-refl 
     p                             ≡⟨ sym $ subst-refl _ _ ⟩∎
     subst  x  P x) (refl _) p  )
    eq

  -- A computation rule for elim₁ᴱ.

  elim₁ᴱ-refl :
     {@0 A : Type a} {@0 y}
      {P : {@0 x : A}  @0 x  y  Type p}
      {p : P (refl y)} 
    elim₁ᴱ P p (refl y)  p
  elim₁ᴱ-refl {y = y} {P = P} {p = p} =
    substᴱ
       p  P (proj₂ p))
      (proj₂ (singleton-contractible y) (y , refl y))
      p                                                ≡⟨ congᴱ  q  substᴱ  p  P (proj₂ p)) q _)
                                                            (singleton-contractible-refl _) 

    substᴱ  p  P (proj₂ p)) (refl (y , refl y)) p   ≡⟨ substᴱ-refl ⟩∎

    p                                                  

  -- If all arguments are non-erased, then one can replace elim₁ᴱ with
  -- elim₁ (if the first explicit argument is η-expanded).

  elim₁ᴱ≡elim₁ :
    {P : {@0 x : A}  @0 x  y  Type p} {r : P (refl y)} 
    elim₁ᴱ P r eq  elim₁  x  P x) r eq
  elim₁ᴱ≡elim₁ {eq = eq} {P = P} {r = r} = elim₁
     eq  elim₁ᴱ P r eq  elim₁  x  P x) r eq)
    (elim₁ᴱ P r (refl _)           ≡⟨ elim₁ᴱ-refl 
     r                             ≡⟨ sym $ elim₁-refl _ _ ⟩∎
     elim₁  x  P x) r (refl _)  )
    eq

  -- A computation rule for elim¹ᴱ.

  elim¹ᴱ-refl :
     {@0 A : Type a} {@0 x}
      {P : {@0 y : A}  @0 x  y  Type p}
      {p : P (refl x)} 
    elim¹ᴱ P p (refl x)  p
  elim¹ᴱ-refl {x = x} {P = P} {p = p} =
    substᴱ
       p  P (proj₂ p))
      (proj₂ (other-singleton-contractible x) (x , refl x))
      p                                                      ≡⟨ congᴱ  q  substᴱ  p  P (proj₂ p)) q _)
                                                                  (other-singleton-contractible-refl _) 

    substᴱ  p  P (proj₂ p)) (refl (x , refl x)) p         ≡⟨ substᴱ-refl ⟩∎

    p                                                        

  -- If all arguments are non-erased, then one can replace elim¹ᴱ with
  -- elim¹ (if the first explicit argument is η-expanded).

  elim¹ᴱ≡elim¹ :
    {P : {@0 y : A}  @0 x  y  Type p} {r : P (refl x)} 
    elim¹ᴱ P r eq  elim¹  x  P x) r eq
  elim¹ᴱ≡elim¹ {eq = eq} {P = P} {r = r} = elim¹
     eq  elim¹ᴱ P r eq  elim¹  x  P x) r eq)
    (elim¹ᴱ P r (refl _)           ≡⟨ elim¹ᴱ-refl 
     r                             ≡⟨ sym $ elim¹-refl _ _ ⟩∎
     elim¹  x  P x) r (refl _)  )
    eq

  -- A computation rule for elimᴱ.

  elimᴱ-refl :
     {@0 A : Type a} {@0 x} {P : {@0 x y : A}  @0 x  y  Type p}
    (r :  (@0 x)  P (refl x)) 
    elimᴱ P r (refl x)  r x
  elimᴱ-refl _ = elim₁ᴱ-refl

  -- If all arguments are non-erased, then one can replace elimᴱ with
  -- elim (if the first two explicit arguments are η-expanded).

  elimᴱ≡elim :
    {P : {@0 x y : A}  @0 x  y  Type p}
    {r :  (@0 x)  P (refl x)} 
    elimᴱ P r eq  elim  x  P x)  x  r x) eq
  elimᴱ≡elim {eq = eq} {P = P} {r = r} = elim
     eq  elimᴱ P r eq  elim  x  P x)  x  r x) eq)
     x 
       elimᴱ P r (refl _)                     ≡⟨ elimᴱ-refl r 
       r x                                    ≡⟨ sym $ elim-refl _ _ ⟩∎
       elim  x  P x)  x  r x) (refl _)  )
    eq

  -- A "computation rule" for congᴱ.

  congᴱ-refl :
    {@0 A : Type a} {@0 x : A} {f : @0 A  B} 
    congᴱ f (refl x)  refl (f x)
  congᴱ-refl {x = x} {f = f} =
    elimᴱ  {x y} _  f x  f y)  x  refl (f x)) (refl x)  ≡⟨ elimᴱ-refl  x  refl (f x)) ⟩∎
    refl (f x)                                                 

  -- If all arguments are non-erased, then one can replace congᴱ with
  -- cong (if the first explicit argument is η-expanded).

  congᴱ≡cong :
    {f : @0 A  B} 
    congᴱ f eq  cong  x  f x) eq
  congᴱ≡cong {eq = eq} {f = f} = elim¹
     eq  congᴱ f eq  cong  x  f x) eq)
    (congᴱ f (refl _)           ≡⟨ congᴱ-refl 
     refl _                     ≡⟨ sym $ cong-refl _ ⟩∎
     cong  x  f x) (refl _)  )
    eq

  ----------------------------------------------------------------------
  -- Variants of some functions from Equality.Decision-procedures

  -- A variant of Equality.Decision-procedures.Σ.set⇒dec⇒dec⇒dec.

  set⇒dec-erased⇒dec-erased⇒Σ-dec-erased :
    {@0 A : Type a} {@0 P : A  Type p}
    {@0 x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} 
    @0 Is-set A 
    Dec-Erased (x₁  x₂) 
    (∀ (@0 eq)  Dec-Erased (substᴱ  x  P x) eq y₁  y₂)) 
    Dec-Erased ((x₁ , y₁)  (x₂ , y₂))
  set⇒dec-erased⇒dec-erased⇒Σ-dec-erased _ (no [ x₁≢x₂ ]) _ =
    no [ x₁≢x₂  cong proj₁ ]
  set⇒dec-erased⇒dec-erased⇒Σ-dec-erased
    {P = P} {y₁ = y₁} {y₂ = y₂} set₁ (yes [ x₁≡x₂ ]) dec₂ =
    ⊎-map
      (map λ cast-y₁≡y₂ 
         Σ-≡,≡→≡ x₁≡x₂
           (subst  x  P x) x₁≡x₂ y₁   ≡⟨ sym substᴱ≡subst 
            substᴱ  x  P x) x₁≡x₂ y₁  ≡⟨ cast-y₁≡y₂ ⟩∎
            y₂                           ))
      (map λ cast-y₁≢y₂ eq                               $⟨ proj₂ (Σ-≡,≡←≡ eq) 
         subst  x  P x) (proj₁ (Σ-≡,≡←≡ eq)) y₁  y₂   ↝⟨ ≡⇒↝ _ $ cong (_≡ _) $ sym substᴱ≡subst 
         substᴱ  x  P x) (proj₁ (Σ-≡,≡←≡ eq)) y₁  y₂  ↝⟨ subst  p  substᴱ _ p _  _) (set₁ _ _) 
         substᴱ  x  P x) x₁≡x₂ y₁  y₂                 ↝⟨ cast-y₁≢y₂ ⟩□
                                                         )
      (dec₂ x₁≡x₂)

  -- A variant of Equality.Decision-procedures.Σ.decidable⇒dec⇒dec.

  decidable-erased⇒dec-erased⇒Σ-dec-erased :
    {@0 A : Type a} {@0 P : A  Type p}
    {x₁ x₂ : A} {@0 y₁ : P x₁} {@0 y₂ : P x₂} 
    Decidable-erased-equality A 
    (∀ (@0 eq)  Dec-Erased (substᴱ  x  P x) eq y₁  y₂)) 
    Dec-Erased ((x₁ , y₁)  (x₂ , y₂))
  decidable-erased⇒dec-erased⇒Σ-dec-erased dec =
    set⇒dec-erased⇒dec-erased⇒Σ-dec-erased
      (decidable⇒set
         (Decidable-erased-equality≃Decidable-equality _ dec))
      (dec _ _)

  -- A variant of Equality.Decision-procedures.Σ.Dec._≟_.

  decidable-erased⇒decidable-erased⇒Σ-decidable-erased :
    {@0 A : Type a} {P : @0 A  Type p} 
    Decidable-erased-equality A 
    ({x : A}  Decidable-erased-equality (P x)) 
    Decidable-erased-equality (Σ A λ x  P x)
  decidable-erased⇒decidable-erased⇒Σ-decidable-erased
    {P = P} decA decP (_ , x₂) (_ , y₂) =
    decidable-erased⇒dec-erased⇒Σ-dec-erased
      decA
       eq  decP (substᴱ P eq x₂) y₂)