------------------------------------------------------------------------
-- A small library of derived parser combinators
------------------------------------------------------------------------

module TotalParserCombinators.Lib where

open import Codata.Musical.Notation
open import Data.Bool hiding (_≤?_)
open import Data.Char as Char using (Char; _==_)
open import Data.List as List
import Data.List.Effectful
open import Data.List.Membership.Propositional
import Data.List.Membership.Propositional.Properties as 
open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_)
open import Data.List.Relation.Unary.Any
open import Data.Maybe hiding (_>>=_)
open import Data.Nat hiding (_^_)
open import Data.Product as Prod
open import Data.Unit using ()
open import Data.Vec as Vec using (Vec; []; _∷_)
open import Effect.Monad
open import Function
import Level
open import Relation.Binary
open import Relation.Binary.HeterogeneousEquality as H using (_≅_)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
import Relation.Binary.PropositionalEquality.WithK as P
open import Relation.Nullary
open import Relation.Nullary.Decidable

private
  open module ListMonad =
         RawMonad {f = Level.zero} Data.List.Effectful.monad
         using ()
         renaming (_<$>_ to _<$>′_; _⊛_ to _⊛′_; _>>=_ to _>>=′_)

import TotalParserCombinators.InitialBag as I
open import TotalParserCombinators.Parser
open import TotalParserCombinators.Semantics as S
  hiding (_≅_; return; token)

------------------------------------------------------------------------
-- Kleene star

-- The intended semantics of the Kleene star.

infixr 5 _∷_
infix  4 _∈[_]⋆·_

data _∈[_]⋆·_ {Tok R xs} :
              List R  Parser Tok R xs  List Tok  Set₁ where
  []  :  {p}  [] ∈[ p ]⋆· []
  _∷_ :  {x xs s₁ s₂ p} 
        (x∈p : x  p · s₁) (xs∈p⋆ : xs ∈[ p ]⋆· s₂) 
        x  xs ∈[ p ]⋆· s₁ ++ s₂

-- An implementation which requires that the argument parser is not
-- nullable.

infix 55 _⋆ _+

mutual

  _⋆ :  {Tok R} 
       Parser Tok R        [] 
       Parser Tok (List R) [ [] ]
  p  = return []  p +

  _+ :  {Tok R} 
       Parser Tok R        [] 
       Parser Tok (List R) []
  p + = _∷_ <$> p   (p )

module KleeneStar where

  -- The implementation is correct.

  sound :  {Tok R xs s} {p : Parser Tok R []} 
          xs  p  · s  xs ∈[ p ]⋆· s
  sound (∣-left S.return)              = []
  sound (∣-right ._ (<$> x∈p  xs∈p⋆)) = x∈p  sound xs∈p⋆

  complete :  {Tok R xs s} {p : Parser Tok R []} 
             xs ∈[ p ]⋆· s  xs  p  · s
  complete []                           = ∣-left S.return
  complete (_∷_ {s₁ = []}    x∈p xs∈p⋆) with I.complete x∈p
  ... | ()
  complete (_∷_ {s₁ = _  _} x∈p xs∈p⋆) =
    ∣-right [ [] ] ([  -  ] <$> x∈p  complete xs∈p⋆)

  complete∘sound :
     {Tok R xs s} {p : Parser Tok R []} (xs∈ : xs  p  · s) 
    complete (sound xs∈)  xs∈
  complete∘sound (∣-left S.return) = P.refl
  complete∘sound (∣-right ._ (_⊛_ {s₁ = _  _} (<$> x∈p) xs∈p⋆))
    rewrite complete∘sound xs∈p⋆ = P.refl
  complete∘sound (∣-right ._ (_⊛_ {s₁ = []}    (<$> x∈p) xs∈p⋆))
    with I.complete x∈p
  ... | ()

  sound∘complete :  {Tok R xs s} {p : Parser Tok R []}
                   (xs∈ : xs ∈[ p ]⋆· s) 
                   sound (complete xs∈)  xs∈
  sound∘complete []                           = P.refl
  sound∘complete (_∷_ {s₁ = []}    x∈p xs∈p⋆) with I.complete x∈p
  ... | ()
  sound∘complete (_∷_ {s₁ = _  _} x∈p xs∈p⋆) =
    P.cong (_∷_ x∈p) $ sound∘complete xs∈p⋆

  correct :  {Tok R xs s} {p : Parser Tok R []} 
            xs  p  · s  xs ∈[ p ]⋆· s
  correct =
    mk↔ {to = sound}
      (  { P.refl  sound∘complete _ })
      ,  { P.refl  complete∘sound _ })
      )

  -- The definition of _⋆ is restricted to non-nullable parsers. This
  -- restriction cannot be removed: an unrestricted Kleene star
  -- operator would be incomplete because, in the present framework, a
  -- parser can only return a finite number of results.

  unrestricted-incomplete :
     {R Tok} 
    R 
    (f :  {xs}  Parser Tok R xs  List (List R)) 
    (_⋆′ :  {xs} (p : Parser Tok R xs)  Parser Tok (List R) (f p)) 
    ¬ (∀ {xs ys s} {p : Parser Tok R ys} 
         xs ∈[ p ]⋆· s  xs  p ⋆′ · s)
  unrestricted-incomplete {R} x f _⋆′ complete =
    ∈.finite (mk↣ {to = to} injective)
             (f (return x)) (I.complete  complete  lemma)
    where
    to :   List R
    to = flip replicate x

    helper :  {xs ys}  _≡_ {A = List R} (x  xs) (x  ys)  xs  ys
    helper P.refl = P.refl

    injective : Injective _≡_ _≡_ to
    injective {zero}  {zero}  _  = P.refl
    injective {suc m} {suc n} eq = P.cong suc $
                                     injective $ helper eq
    injective {zero}  {suc n} ()
    injective {suc m} {zero}  ()

    lemma :  i  replicate i x ∈[ return x ]⋆· []
    lemma zero    = []
    lemma (suc i) = S.return  lemma i

------------------------------------------------------------------------
-- A combinator for recognising a string a fixed number of times

infixl 55 _^_ _↑_

^-initial :  {R}  List R  (n : )  List (Vec R n)
^-initial xs zero    = [ [] ]
^-initial xs (suc n) = List.map _∷_ xs ⊛′ ^-initial xs n

_^_ :  {Tok R xs} 
      Parser Tok R xs  (n : )  Parser Tok (Vec R n) (^-initial xs n)
p ^ 0     = return []
p ^ suc n = _∷_ <$> p  p ^ n

mutual

  -- A variant.

  -- The two functions below are not actually mutually recursive, but
  -- are placed in a mutual block to ensure that the constraints
  -- generated by the second function can be used to instantiate the
  -- underscores in the body of the first.

  ↑-initial :  {R}  List R    List (List R)
  ↑-initial _ _ = _

  _↑_ :  {Tok R xs} 
        Parser Tok R xs  (n : )  Parser Tok (List R) (↑-initial xs n)
  p  n = Vec.toList <$> p ^ n

-- Some lemmas relating _↑_ to _⋆.

module Exactly where

  ↑≲⋆ :  {Tok R} {p : Parser Tok R []} n  p  n  p 
  ↑≲⋆ {R = R} {p} n = Equivalence.from ≲⇔≲→ λ where
      (<$> ∈pⁿ)  KleeneStar.complete $ helper n ∈pⁿ
    where
    helper :  n {xs s}  xs  p ^ n · s  Vec.toList xs ∈[ p ]⋆· s
    helper zero    S.return       = []
    helper (suc n) (<$> ∈p  ∈pⁿ) = ∈p  helper n ∈pⁿ

  ⋆≲∃↑ :  {Tok R} {p : Parser Tok R []} {xs s} 
         xs  p  · s   λ i  xs  p  i · s
  ⋆≲∃↑ {R = R} {p} ∈p⋆ with helper $ KleeneStar.sound ∈p⋆
    where
    helper :  {xs s}  xs ∈[ p ]⋆· s 
             ∃₂ λ i (ys : Vec R i) 
                  xs  Vec.toList ys × ys  p ^ i · s
    helper []         = (0 , [] , P.refl , S.return)
    helper (∈p  ∈p⋆) =
      Prod.map suc  {i} 
        Prod.map (_∷_ _) (
          Prod.map (P.cong (_∷_ _))
                    ∈pⁱ  [  -  ] <$> ∈p  ∈pⁱ)))
       (helper ∈p⋆)
  ... | (i , ys , P.refl , ∈pⁱ) = (i , <$> ∈pⁱ)

------------------------------------------------------------------------
-- A parser which returns any element in a given list

return⋆ :  {Tok R} (xs : List R)  Parser Tok R xs
return⋆ []       = fail
return⋆ (x  xs) = return x  return⋆ xs

module Return⋆ where

  sound :  {Tok R x} {s : List Tok}
          (xs : List R)  x  return⋆ xs · s  s  [] × x  xs
  sound []       ()
  sound (y  ys) (∣-left S.return)       = (P.refl , here P.refl)
  sound (y  ys) (∣-right .([ y ]) x∈ys) =
    Prod.map id there $ sound ys x∈ys

  complete :  {Tok R x} {xs : List R} 
             x  xs  x  return⋆ {Tok} xs · []
  complete (here P.refl) = ∣-left S.return
  complete (there x∈xs)  =
    ∣-right [ _ ] (complete x∈xs)

  complete∘sound :  {Tok R x} {s : List Tok}
                   (xs : List R) (x∈xs : x  return⋆ xs · s) 
                   complete {Tok = Tok} (proj₂ $ sound xs x∈xs)  x∈xs
  complete∘sound []       ()
  complete∘sound (y  ys) (∣-left S.return)       = H.refl
  complete∘sound (y  ys) (∣-right .([ y ]) x∈ys)
    with sound ys x∈ys | complete∘sound ys x∈ys
  complete∘sound (y  ys) (∣-right .([ y ]) .(complete p))
    | (P.refl , p) | H.refl = H.refl

  sound∘complete :  {Tok R x} {xs : List R} (x∈xs : x  xs) 
                   sound {Tok = Tok} {s = []} xs (complete x∈xs) 
                   (P.refl , x∈xs)
  sound∘complete       (here P.refl)          = P.refl
  sound∘complete {Tok} (there {xs = xs} x∈xs)
    with sound {Tok = Tok} xs (complete x∈xs)
       | sound∘complete {Tok} {xs = xs} x∈xs
  sound∘complete (there x∈xs) | .(P.refl , x∈xs) | P.refl = P.refl

  correct :  {Tok R} {xs : List R} {x s} 
            (s  [] × x  xs)  x  return⋆ {Tok} xs · s
  correct {xs = xs} {x} =
    mk↔ {from = sound xs}
      (  { P.refl  complete′∘sound xs _ })
      ,  { P.refl  sound∘complete′ _ })
      )
    where
    complete′ :  {Tok R x} {xs : List R} {s : List Tok} 
                s  [] × x  xs  x  return⋆ xs · s
    complete′ (P.refl , x∈xs) = complete x∈xs

    sound∘complete′ :  {Tok R x} {xs : List R} {s : List Tok}
                      (p : s  [] × x  xs)  sound xs (complete′ p)  p
    sound∘complete′ (P.refl , x∈xs) = sound∘complete x∈xs

    complete′∘sound :  {Tok R x} {s : List Tok}
                      (xs : List R) (x∈xs : x  return⋆ xs · s) 
                      complete′ (sound xs x∈xs)  x∈xs
    complete′∘sound xs x∈ with sound xs x∈ | complete∘sound xs x∈
    complete′∘sound xs .(complete x∈xs) | (P.refl , x∈xs) | H.refl =
      P.refl

------------------------------------------------------------------------
-- The sat parser

module Sat where

  -- Helper functions for sat.

  mutual

    ok-bag : {R : Set}  Maybe R  List R
    ok-bag nothing  = _
    ok-bag (just _) = _

    ok : {Tok R : Set}  (x : Maybe R)  Parser Tok R (ok-bag x)
    ok nothing  = fail
    ok (just x) = return x

  ok-correct :  {Tok R x s} (m : Maybe R) 
               (s  [] × m  just x)  x  ok {Tok} m · s
  ok-correct {Tok} {x = x} m =
    mk↔ {to = to m}
      (  { P.refl  to∘from m _ })
      ,  { P.refl  from∘to m _ })
      )
    where
    to :  {s} m  (s  [] × m  just x)  x  ok {Tok} m · s
    to (just .x) (P.refl , P.refl) = S.return
    to nothing   (P.refl , ())

    from :  {s} m  x  ok {Tok} m · s  s  [] × m  just x
    from (just .x) S.return = (P.refl , P.refl)
    from nothing   ()

    from∘to :  {s} m (eqs : s  [] × m  just x) 
              from m (to m eqs)  eqs
    from∘to (just .x) (P.refl , P.refl) = P.refl
    from∘to nothing   (P.refl , ())

    to∘from :  {s} m (x∈ : x  ok {Tok} m · s) 
              to m (from m x∈)  x∈
    to∘from (just .x) S.return = P.refl
    to∘from nothing   ()

  -- sat p accepts a single token t iff p t ≡ just x for some x. The
  -- returned value is x.

  sat :  {Tok R}  (Tok  Maybe R)  Parser Tok R _
  sat p = token >>= (ok  p)

  correct :  {Tok R x s} (p : Tok  Maybe R) 
            ( λ t  s  [ t ] × p t  just x)  x  sat p · s
  correct {x = x} p =
    mk↔ {to = to}
      (  { P.refl  to∘from _ })
      ,  { P.refl  from∘to _ })
      )
    where
    to :  {s}  ( λ t  s  [ t ] × p t  just x)  x  sat p · s
    to (t , P.refl , p-t≡just-x) =
      [  -  ] S.token >>=
                (Inverse.to (ok-correct (p t)) (P.refl , p-t≡just-x))

    from :  {s}  x  sat p · s   λ t  s  [ t ] × p t  just x
    from (S.token {x = t} >>= x∈ok-p-t) =
      (t , Prod.map (P.cong (_∷_ t)) id
             (Inverse.from (ok-correct (p t)) x∈ok-p-t))

    from∘to :  {s} (eqs :  λ t  s  [ t ] × p t  just x) 
              from (to eqs)  eqs
    from∘to (t , P.refl , p-t≡just-x) =
      P.cong₂  eq₁ eq₂  (t , eq₁ , eq₂))
              (P.≡-irrelevant _ _)
              (P.≡-irrelevant _ _)

    to∘from :  {s} (x∈ : x  sat p · s)  to (from x∈)  x∈
    to∘from (S.token {x = t} >>= x∈ok-p-t)
      with Inverse.from (ok-correct (p t)) x∈ok-p-t
         | Inverse.inverseˡ (ok-correct (p t)) {x = x∈ok-p-t} P.refl
    to∘from (S.token {x = t} >>= .(Inverse.to (ok-correct (p t))
                                     (P.refl , p-t≡just-x)))
      | (P.refl , p-t≡just-x) | P.refl = P.refl

open Sat public using (sat)

-- A simplified variant of sat. Does not return anything interesting.

sat′ :  {Tok}  (Tok  Bool)  Parser Tok  _
sat′ p = sat (boolToMaybe  p)

-- Accepts a single whitespace character (from a limited set of such
-- characters).

whitespace : Parser Char  _
whitespace = sat′ isSpace
  where
  isSpace = λ c 
    (c == ' ')  (c == '\t')  (c == '\n')  (c == '\r')

------------------------------------------------------------------------
-- A parser for a given token

module Token
         (Tok : Set)
         (_≟_ : Decidable (_≡_ {A = Tok}))
         where

  private
    p : Tok  Tok  Maybe Tok
    p t t′ = if  t  t′  then just t′ else nothing

  tok : Tok  Parser Tok Tok []
  tok t = sat (p t)

  sound :  t {t′ s} 
          t′  tok t · s  t  t′ × s  [ t′ ]
  sound t t′∈ with Inverse.from (Sat.correct (p t)) t′∈
  sound t t′∈ | (t″ , P.refl , p-t-t″≡just-t′) with t  t″
  sound t t∈  | (.t , P.refl , P.refl) | yes P.refl = (P.refl , P.refl)
  sound t t′∈ | (t″ , P.refl , ())     | no  _

  private
    p-lemma :  t  p t t  just t
    p-lemma t with t  t
    ... | yes P.refl = P.refl
    ... | no  t≢t    with t≢t P.refl
    ...   | ()

  complete :  {t}  t  tok t · [ t ]
  complete {t} =
    Inverse.to (Sat.correct (p t)) (t , P.refl , p-lemma t)

  η :  {t} (t∈ : t  tok t · [ t ])  t∈  complete {t = t}
  η {t = t} t∈ = H.≅-to-≡ $ helper t∈ P.refl
    where
    helper₂ : (t∈ : t  Sat.ok {Tok = Tok} (p t t) · []) 
              t∈  Inverse.to (Sat.ok-correct (p t t))
                     (P.refl , p-lemma t)
    helper₂ t∈       with t  t
    helper₂ S.return | yes P.refl = P.refl
    helper₂ t∈       | no  t≢t  with t≢t P.refl
    helper₂ t∈       | no  t≢t  | ()

    helper :  {s} (t∈ : t  tok t · s)  s  [ t ] 
             t∈  complete {t = t}
    helper (S.token >>= t∈) P.refl rewrite helper₂ t∈ = H.refl

------------------------------------------------------------------------
-- Map then choice

-- y ∈ ⋁ f xs · s  iff  ∃ x ∈ xs. y ∈ f x · s.

 :  {Tok R₁ R₂} {f : R₁  List R₂} 
    ((x : R₁)  Parser Tok R₂ (f x))  (xs : List R₁) 
    Parser Tok R₂ (xs >>=′ f)
 f xs = return⋆ xs >>= f

module  where

  sound :  {Tok R₁ R₂ y s} {i : R₁  List R₂} 
          (f : (x : R₁)  Parser Tok R₂ (i x)) (xs : List R₁) 
          y   f xs · s   λ x  (x  xs) × (y  f x · s)
  sound f xs (∈ret⋆ >>= y∈fx) with Return⋆.sound xs ∈ret⋆
  ...   | (P.refl , x∈xs) = (_ , x∈xs , y∈fx)

  complete :  {Tok R₁ R₂ x y s} {i : R₁  List R₂} 
             (f : (x : R₁)  Parser Tok R₂ (i x)) {xs : List R₁} 
             x  xs  y  f x · s  y   f xs · s
  complete f x∈xs y∈fx =
    [  -  ] Return⋆.complete x∈xs >>= y∈fx

  complete∘sound :  {Tok R₁ R₂ y s} {i : R₁  List R₂} 
                   (f : (x : R₁)  Parser Tok R₂ (i x)) (xs : List R₁)
                   (y∈⋁fxs : y   f xs · s) 
                   let p = proj₂ $ sound f xs y∈⋁fxs in
                   complete f (proj₁ p) (proj₂ p)  y∈⋁fxs
  complete∘sound f xs (∈ret⋆ >>= y∈fx)
    with Return⋆.sound xs ∈ret⋆
       | Inverse.inverseˡ Return⋆.correct {x = ∈ret⋆} P.refl
  complete∘sound f xs (.(Return⋆.complete x∈xs) >>= y∈fx)
    | (P.refl , x∈xs) | P.refl = P.refl

  sound∘complete :
     {Tok R₁ R₂ x y s} {i : R₁  List R₂} 
    (f : (x : R₁)  Parser Tok R₂ (i x)) {xs : List R₁} 
    (x∈xs : x  xs) (y∈fx : y  f x · s) 
    sound f xs (complete f x∈xs y∈fx)  (x , x∈xs , y∈fx)
  sound∘complete {Tok} f {xs} x∈xs y∈fx
    with Return⋆.sound {Tok = Tok} xs (Return⋆.complete x∈xs)
       | Inverse.inverseʳ (Return⋆.correct {Tok = Tok})
           {x = P.refl , x∈xs} P.refl
  ... | (P.refl , .x∈xs) | P.refl = P.refl

------------------------------------------------------------------------
-- Digits and numbers

-- Digits.

digit = sat  t  if in-range t then just (to-number t) else nothing)
  where
  in-range : Char  Bool
  in-range t =  Char.toℕ '0' ≤? Char.toℕ  t   
                Char.toℕ  t  ≤? Char.toℕ '9' 

  to-number : Char  
  to-number t = Char.toℕ t  Char.toℕ '0'

-- Numbers.

number : Parser Char  _
number = digit + >>= (return  foldl  n d  10 * n + d) 0)