------------------------------------------------------------------------
-- Identity and composition for traditional non-dependent lenses
------------------------------------------------------------------------

import Equality.Path as P

module Lens.Non-dependent.Traditional.Combinators
  {e⁺} (eq :  {a p}  P.Equality-with-paths a p e⁺) where

open P.Derived-definitions-and-properties eq

open import Logical-equivalence using (module _⇔_)
open import Prelude as P hiding (id) renaming (_∘_ to _⊚_)

import Bi-invertibility
open import Bijection equality-with-J as Bijection using (_↔_)
open import Category equality-with-J as C using (Category; Precategory)
open import Circle eq as Circle using (𝕊¹)
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
  using (_≃_; Is-equivalence)
open import Erased.Cubical eq as E using (Erased; [_])
open import Extensionality equality-with-J
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq as T using (∥_∥)
import Integer equality-with-J as Int
open import Preimage equality-with-J using (_⁻¹_)
open import Surjection equality-with-J as Surjection using (_↠_)
open import Univalence-axiom equality-with-J

open import Lens.Non-dependent.Traditional eq

private
  variable
    a b h o : Level
    A B C D : Type a
    l₁ l₂   : Lens A B

------------------------------------------------------------------------
-- Lens combinators

-- If two types are isomorphic, then there is a lens between them.

↔→lens : A  B  Lens A B
↔→lens A↔B = record
  { get     = to
  ; set     = const from
  ; get-set = const right-inverse-of
  ; set-get = left-inverse-of
  ; set-set = λ _ _ _  refl _
  }
  where
  open _↔_ A↔B

-- If two types are equivalent, then there is a lens between them.

≃→lens : A  B  Lens A B
≃→lens = ↔→lens  _≃_.bijection

-- Identity lens.

id : Lens A A
id = ↔→lens F.id

-- Composition of lenses.

infixr 9 _∘_

_∘_ : Lens B C  Lens A B  Lens A C
l₁  l₂ = record
  { get     = λ a  get l₁ (get l₂ a)
  ; set     = λ a c  set l₂ a (set l₁ (get l₂ a) c)
  ; get-set = λ a c 
      get l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c)))  ≡⟨ cong (get l₁) $ get-set l₂ _ _ 
      get l₁                   (set l₁ (get l₂ a) c)    ≡⟨ get-set l₁ _ _ ⟩∎
                                                  c     
  ; set-get = λ a 
      set l₂ a (set l₁ (get l₂ a) (get l₁ (get l₂ a)))  ≡⟨ cong (set l₂ _) $ set-get l₁ _ 
      set l₂ a         (get l₂ a)                       ≡⟨ set-get l₂ _ ⟩∎
             a                                          
  ; set-set = λ a c₁ c₂ 
      set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂)  ≡⟨ set-set l₂ _ _ _ 
      set l₂         a                         (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂)  ≡⟨ cong  b  set l₂ _ (set l₁ b _)) $
                                                                                                          get-set l₂ _ _ 
      set l₂         a                         (set l₁                   (set l₁ (get l₂ a) c₁)   c₂)  ≡⟨ cong (set l₂ _) $ set-set l₁ _ _ _ ⟩∎
      set l₂         a                         (set l₁                           (get l₂ a)       c₂)  
  }
  where
  open Lens

-- Note that composition can be defined in several different ways.
-- Here are two alternative implementations.

infixr 9 _∘′_ _∘″_

_∘′_ : Lens B C  Lens A B  Lens A C
l₁ ∘′ l₂ = record (l₁  l₂)
  { set-set = λ a c₁ c₂ 
      set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂)  ≡⟨ cong
                                                                                                             b  set l₂ (set l₂ _ (set l₁ _ _))
                                                                                                                     (set l₁ b _)) $
                                                                                                          get-set l₂ _ _ 
      set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁                   (set l₁ (get l₂ a) c₁)   c₂)  ≡⟨ set-set l₂ _ _ _ 
      set l₂         a                         (set l₁                   (set l₁ (get l₂ a) c₁)   c₂)  ≡⟨ cong (set l₂ _) $ set-set l₁ _ _ _ ⟩∎
      set l₂         a                         (set l₁                           (get l₂ a)       c₂)  
  }
  where
  open Lens

_∘″_ : Lens B C  Lens A B  Lens A C
l₁ ∘″ l₂ = record (l₁  l₂)
  { set-set = λ a c₁ c₂ 
      set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁ (get l₂ (set l₂ a (set l₁ (get l₂ a) c₁))) c₂)  ≡⟨ cong
                                                                                                             b  set l₂ (set l₂ _ (set l₁ _ _))
                                                                                                                     (set l₁ b _)) $
                                                                                                          get-set l₂ _ _ 
      set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁                   (set l₁ (get l₂ a) c₁)   c₂)  ≡⟨ cong (set l₂ _) $ set-set l₁ _ _ _ 
      set l₂ (set l₂ a (set l₁ (get l₂ a) c₁)) (set l₁                           (get l₂ a)       c₂)  ≡⟨ set-set l₂ _ _ _ ⟩∎
      set l₂         a                         (set l₁                           (get l₂ a)       c₂)  
  }
  where
  open Lens

-- These two implementations are pointwise equal to the other one.
-- However, I don't know if there is some other definition that is
-- distinct from these two (if we require that the definitions are
-- polymorphic, that get and set are implemented in the same way as
-- for _∘_, and that the three composition laws below hold).

∘≡∘′ : l₁  l₂  l₁ ∘′ l₂
∘≡∘′ {l₁ = l₁} {l₂ = l₂} = equal-laws→≡
   _ _  refl _)
   _  refl _)
   a c₁ c₂ 
     let b₁ = set l₁ (get l₂ a) c₁
         b₂ = set l₁ b₁ c₂
         a′ = set l₂ a b₁
         b′ = set l₁ (get l₂ a′) c₂
     in
     set-set (l₁  l₂) a c₁ c₂                                          ≡⟨⟩

     trans (set-set l₂ a b₁ b′)
       (trans (cong  b  set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁))
          (cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂)))              ≡⟨ sym $ trans-assoc _ _ _ 

     trans (trans (set-set l₂ a b₁ b′)
              (cong  b  set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁)))
       (cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))                  ≡⟨ cong (flip trans _) $
                                                                           elim₁
                                                                              eq 
                                                                                trans (set-set l₂ _ b₁ _)
                                                                                  (cong  b  set l₂ _ (set l₁ b _)) eq) 
                                                                                trans (cong  b  set l₂ _ (set l₁ b _)) eq)
                                                                                  (set-set l₂ _ _ _))
                                                                             (
         trans (set-set l₂ a b₁ b₂)
           (cong  b  set l₂ a (set l₁ b c₂)) (refl _))                     ≡⟨ trans (cong (trans _) $ cong-refl _) $
                                                                                 trans-reflʳ _ 

         set-set l₂ a b₁ b₂                                                   ≡⟨ sym $
                                                                                 trans (cong (flip trans _) $ cong-refl _) $
                                                                                 trans-reflˡ _ ⟩∎
         trans (cong  b  set l₂ a′ (set l₁ b c₂)) (refl _))
           (set-set l₂ a b₁ b₂)                                               )
                                                                             (get-set l₂ a b₁) 
     trans (trans (cong  b  set l₂ a′ (set l₁ b c₂))
                     (get-set l₂ a b₁))
              (set-set l₂ a b₁ b₂))
       (cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂))                  ≡⟨ trans-assoc _ _ _ 

     trans (cong  b  set l₂ a′ (set l₁ b c₂)) (get-set l₂ a b₁))
       (trans (set-set l₂ a b₁ b₂)
          (cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂)))              ≡⟨⟩

     set-set (l₁ ∘′ l₂) a c₁ c₂                                         )
  where
  open Lens

∘≡∘″ : l₁  l₂  l₁ ∘″ l₂
∘≡∘″ {l₁ = l₁} {l₂ = l₂} = equal-laws→≡
   _ _  refl _)
   _  refl _)
   a c₁ c₂ 
     let b₁ = set l₁ (get l₂ a) c₁
         b₂ = set l₁ (get l₂ a) c₂
         a′ = set l₂ a b₁
         b′ = set l₁ (get l₂ a′) c₂

         eq : b′  b₂
         eq = trans (cong  b  set l₁ b c₂) (get-set l₂ a b₁))
                (set-set l₁ (get l₂ a) c₁ c₂)
     in
     set-set (l₁  l₂) a c₁ c₂                                         ≡⟨⟩

     trans (set-set l₂ a b₁ b′)
       (trans (cong  b  set l₂ a (set l₁ b c₂)) (get-set l₂ a b₁))
          (cong (set l₂ a) (set-set l₁ (get l₂ a) c₁ c₂)))             ≡⟨ cong (trans (set-set l₂ a b₁ b′)) $
                                                                          trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
                                                                          sym $ cong-trans _ _ _ 

     trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq)                   ≡⟨ elim¹
                                                                             {b₂} eq  trans (set-set l₂ a b₁ b′) (cong (set l₂ a) eq) 
                                                                                         trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂))
                                                                            (
         trans (set-set l₂ a b₁ b′) (cong (set l₂ a) (refl _))               ≡⟨ cong (trans _) $ cong-refl _ 
         trans (set-set l₂ a b₁ b′) (refl _)                                 ≡⟨ trans-reflʳ _ 
         set-set l₂ a b₁ b′                                                  ≡⟨ sym $ trans-reflˡ _ 
         trans (refl _) (set-set l₂ a b₁ b′)                                 ≡⟨ cong (flip trans _) $ sym $ cong-refl _ ⟩∎
         trans (cong (set l₂ a′) (refl _)) (set-set l₂ a b₁ b′)              )
                                                                            eq 

     trans (cong (set l₂ a′) eq) (set-set l₂ a b₁ b₂)                  ≡⟨ trans (cong (flip trans _) $
                                                                                 trans (cong-trans _ _ _) $
                                                                                 cong (flip trans _) $ cong-∘ _ _ _) $
                                                                          trans-assoc _ _ _ 
     trans (cong  b  set l₂ a′ (set l₁ b c₂)) (get-set l₂ a b₁))
       (trans (cong (set l₂ a′) (set-set l₁ (get l₂ a) c₁ c₂))
          (set-set l₂ a b₁ b₂))                                        ≡⟨⟩

     set-set (l₁ ∘″ l₂) a c₁ c₂                                        )
  where
  open Lens

-- id is a left identity of _∘_.

left-identity : (l : Lens A B)  id  l  l
left-identity l = equal-laws→≡
   a b 
     trans (cong P.id (get-set a b)) (refl _)  ≡⟨ trans-reflʳ _ 
     cong P.id (get-set a b)                   ≡⟨ sym $ cong-id _ ⟩∎
     get-set a b                               )
   a 
     trans (cong (set a) (refl _)) (set-get a)  ≡⟨ cong (flip trans _) $ cong-refl _ 
     trans (refl _) (set-get a)                 ≡⟨ trans-reflˡ _ ⟩∎
     set-get a                                  )
   a b₁ b₂ 
     trans (set-set a b₁ b₂)
       (trans (cong  _  set a b₂) (get-set a b₁))
          (cong (set a) (refl _)))                      ≡⟨ cong₂  p q  trans _ (trans p q))
                                                             (cong-const _)
                                                             (cong-refl _) 

     trans (set-set a b₁ b₂) (trans (refl _) (refl _))  ≡⟨ trans (cong (trans _) trans-refl-refl) $
                                                           trans-reflʳ _ ⟩∎
     set-set a b₁ b₂                                    )
  where
  open Lens l

-- id is a right identity of _∘_.

right-identity : (l : Lens A B)  l  id  l
right-identity l = equal-laws→≡
   a b 
     trans (cong get (refl _)) (get-set a b)  ≡⟨ cong (flip trans _) $ cong-refl _ 
     trans (refl _) (get-set a b)             ≡⟨ trans-reflˡ _ ⟩∎
     get-set a b                              )
   a 
     trans (cong P.id (set-get a)) (refl _)  ≡⟨ trans-reflʳ _ 
     cong P.id (set-get a)                   ≡⟨ sym $ cong-id _ ⟩∎
     set-get a                               )
   a b₁ b₂ 
     trans (refl _)
       (trans (cong  b  set b b₂) (refl _))
          (cong P.id (set-set a b₁ b₂)))        ≡⟨ trans-reflˡ _ 

     trans (cong  b  set b b₂) (refl _))
       (cong P.id (set-set a b₁ b₂))            ≡⟨ cong₂ trans (cong-refl _) (sym $ cong-id _) 

     trans (refl _) (set-set a b₁ b₂)           ≡⟨ trans-reflˡ _ ⟩∎

     set-set a b₁ b₂                            )
  where
  open Lens l

-- _∘_ is associative.

associativity :
  (l₁ : Lens C D) (l₂ : Lens B C) (l₃ : Lens A B) 
  l₁  (l₂  l₃)  (l₁  l₂)  l₃
associativity l₁ l₂ l₃ = equal-laws→≡ lemma₁ lemma₂ lemma₃
  where
  open Lens

  lemma₁ = λ a d 
    let
      f  = get l₁
      g  = get l₂
      b  = get l₃ a
      c  = g b
      c′ = set l₁ c d
      x  = get-set l₃ a (set l₂ b c′)
      y  = get-set l₂ b c′
      z  = get-set l₁ c d
    in
    trans (cong f $ trans (cong g x) y) z           ≡⟨ cong  x  trans x z) (cong-trans f _ y) 
    trans (trans (cong f $ cong g x) (cong f y)) z  ≡⟨ trans-assoc _ _ z 
    trans (cong f $ cong g x) (trans (cong f y) z)  ≡⟨ cong  x  trans x (trans (cong f y) z)) (cong-∘ f g x) ⟩∎
    trans (cong (f  g) x) (trans (cong f y) z)     

  lemma₂ = λ a 
    let
      b = get l₃ a
      f = set l₃ a
      g = set l₂ b
      x = set-get l₁ (get l₂ b)
      y = set-get l₂ b
      z = set-get l₃ a
    in
    trans (cong (f  g) x) (trans (cong f y) z)     ≡⟨ sym $ trans-assoc _ _ z 
    trans (trans (cong (f  g) x) (cong f y)) z     ≡⟨ cong  x  trans (trans x (cong f y)) z) (sym $ cong-∘ f g x) 
    trans (trans (cong f (cong g x)) (cong f y)) z  ≡⟨ cong  x  trans x z) (sym $ cong-trans f _ y) ⟩∎
    trans (cong f $ trans (cong g x) y) z           

  lemma₃ = λ a d₁ d₂ 
    let
      f   = set l₃ a
      g   = set l₂ (get l₃ a)
      h   = λ x  set l₁ x d₂
      i   = get l₂

      c₁  = set l₁ (get (l₂  l₃) a) d₁
      c₂  = h (i (get l₃ a))
      c₂′ = h (i (get l₃ (set (l₂  l₃) a c₁)))
      c₂″ = h (i (set l₂ (get l₃ a) c₁))

      b₁  = g c₁
      b₁′ = get l₃ (f b₁)

      x   = set-set l₃ a b₁ (set l₂ b₁′ c₂′)
      y   = get-set l₃ a b₁
      z   = set-set l₂ (get l₃ a) c₁
      u   = get-set l₂ (get l₃ a) c₁
      v   = set-set l₁ (get (l₂  l₃) a) d₁ d₂

      c₂′≡c₂″ =
        c₂′  ≡⟨ cong (h  i) y ⟩∎
        c₂″  

      lemma₁₀ =
        trans (sym (cong (h  i) y)) (cong h (cong i y))  ≡⟨ cong (trans _) (cong-∘ h i y) 
        trans (sym (cong (h  i) y)) (cong (h  i) y)     ≡⟨ trans-symˡ (cong (h  i) y) ⟩∎
        refl _                                            

      lemma₉ =
        trans (cong  x  set l₂ x c₂′) y) (cong (set l₂ b₁) c₂′≡c₂″)  ≡⟨ cong (trans (cong  x  set l₂ x c₂′) y))
                                                                                (cong-∘ (set l₂ b₁) (h  i) y) 
        trans (cong  x  set l₂ x  (h (i b₁′))) y)
              (cong  x  set l₂ b₁ (h (i x  ))) y)                    ≡⟨ trans-cong-cong  x y  set l₂ x (h (i y))) y ⟩∎

        cong  x  set l₂ x (h (i x))) y                               

      lemma₈ =
        sym (cong (set l₂ b₁) (sym c₂′≡c₂″))  ≡⟨ sym $ cong-sym (set l₂ b₁) (sym c₂′≡c₂″) 
        cong (set l₂ b₁) (sym (sym c₂′≡c₂″))  ≡⟨ cong (cong (set l₂ b₁)) (sym-sym c₂′≡c₂″) ⟩∎
        cong (set l₂ b₁) c₂′≡c₂″              

      lemma₇ =
        trans (cong g (sym c₂′≡c₂″)) (cong g (cong h (cong i y)))  ≡⟨ sym $ cong-trans g _ (cong h (cong i y)) 
        cong g (trans (sym c₂′≡c₂″) (cong h (cong i y)))           ≡⟨ cong (cong g) lemma₁₀ 
        cong g (refl _)                                            ≡⟨ cong-refl _ ⟩∎
        refl _                                                     

      lemma₆ =
        trans (cong  x  set l₂ x c₂′) y)
              (trans (cong (set l₂ b₁) c₂′≡c₂″)
                     (trans (z c₂″) (cong g (sym c₂′≡c₂″))))       ≡⟨ sym $ trans-assoc _ _ (trans _ (cong g (sym c₂′≡c₂″))) 

        trans (trans (cong  x  set l₂ x c₂′) y)
                     (cong (set l₂ b₁) c₂′≡c₂″))
              (trans (z c₂″) (cong g (sym c₂′≡c₂″)))               ≡⟨ cong  e  trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₉ 

        trans (cong  x  set l₂ x (h (i x))) y)
              (trans (z c₂″) (cong g (sym c₂′≡c₂″)))               ≡⟨ sym $ trans-assoc _ _ (cong g (sym c₂′≡c₂″)) ⟩∎

        trans (trans (cong  x  set l₂ x (h (i x))) y) (z c₂″))
              (cong g (sym c₂′≡c₂″))                               

      lemma₅ =
        z c₂′                                                  ≡⟨ sym $ dcong z (sym c₂′≡c₂″) 

        subst  x  set l₂ b₁ x  g x) (sym c₂′≡c₂″) (z c₂″)  ≡⟨ subst-in-terms-of-trans-and-cong {f = set l₂ b₁} {g = g} {x≡y = sym c₂′≡c₂″} 

        trans (sym (cong (set l₂ b₁) (sym c₂′≡c₂″)))
              (trans (z c₂″) (cong g (sym c₂′≡c₂″)))           ≡⟨ cong  e  trans e (trans (z c₂″) (cong g (sym c₂′≡c₂″)))) lemma₈ ⟩∎

        trans (cong (set l₂ b₁) c₂′≡c₂″)
              (trans (z c₂″) (cong g (sym c₂′≡c₂″)))           

      lemma₄ =
        trans (trans (cong  x  set l₂ x c₂′) y) (z c₂′))
              (cong g (cong h (cong i y)))                            ≡⟨ cong  e  trans (trans (cong  x  set l₂ x c₂′) y) e)
                                                                                                  (cong g (cong h (cong i y))))
                                                                              lemma₅ 
        trans (trans (cong  x  set l₂ x c₂′) y)
                     (trans (cong (set l₂ b₁) c₂′≡c₂″)
                            (trans (z c₂″) (cong g (sym c₂′≡c₂″)))))
              (cong g (cong h (cong i y)))                            ≡⟨ cong  e  trans e (cong g (cong h (cong i y)))) lemma₆ 

        trans (trans (trans (cong  x  set l₂ x (h (i x))) y)
                            (z c₂″))
                     (cong g (sym c₂′≡c₂″)))
              (cong g (cong h (cong i y)))                            ≡⟨ trans-assoc _ _ (cong g (cong h (cong i y))) 

        trans (trans (cong  x  set l₂ x (h (i x))) y) (z c₂″))
              (trans (cong g (sym c₂′≡c₂″))
                     (cong g (cong h (cong i y))))                    ≡⟨ cong (trans (trans _ (z c₂″))) lemma₇ 

        trans (trans (cong  x  set l₂ x (h (i x))) y) (z c₂″))
              (refl _)                                                ≡⟨ trans-reflʳ _ ⟩∎

        trans (cong  x  set l₂ x (h (i x))) y) (z c₂″)             

      lemma₃ =
        cong g (trans (cong h (trans (cong i y) u)) v)           ≡⟨ cong  e  cong g (trans e v)) (cong-trans h _ u) 

        cong g (trans (trans (cong h (cong i y)) (cong h u)) v)  ≡⟨ cong (cong g) (trans-assoc _ _ v) 

        cong g (trans (cong h (cong i y)) (trans (cong h u) v))  ≡⟨ cong-trans g _ (trans _ v) ⟩∎

        trans (cong g (cong h (cong i y)))
              (cong g (trans (cong h u) v))                      

      lemma₂ =
        trans (trans (cong  x  set l₂ x c₂′) y) (z c₂′))
              (cong g (trans (cong h (trans (cong i y) u)) v))      ≡⟨ cong (trans (trans _ (z c₂′))) lemma₃ 

        trans (trans (cong  x  set l₂ x c₂′) y) (z c₂′))
              (trans (cong g (cong h (cong i y)))
                     (cong g (trans (cong h u) v)))                 ≡⟨ sym $ trans-assoc _ _ (cong g (trans _ v)) 

        trans (trans (trans (cong  x  set l₂ x c₂′) y) (z c₂′))
                     (cong g (cong h (cong i y))))
              (cong g (trans (cong h u) v))                         ≡⟨ cong  e  trans e (cong g (trans (cong h u) v))) lemma₄ 

        trans (trans (cong  x  set l₂ x (h (i x))) y) (z c₂″))
              (cong g (trans (cong h u) v))                         ≡⟨ trans-assoc _ _ (cong g (trans _ v)) ⟩∎

        trans (cong  x  set l₂ x (h (i x))) y)
              (trans (z c₂″) (cong g (trans (cong h u) v)))         

      lemma₁ =
        trans (cong f (trans (cong  x  set l₂ x c₂′) y) (z c₂′)))
              (cong (f  g) (trans (cong h (trans (cong i y) u)) v))    ≡⟨ cong  e  trans
                                                                                         (cong f (trans (cong  x  set l₂ x c₂′) y) (z c₂′))) e)
                                                                                (sym $ cong-∘ f g (trans _ v)) 
        trans (cong f (trans (cong  x  set l₂ x c₂′) y) (z c₂′)))
              (cong f (cong g (trans (cong h (trans (cong i y) u))
                                     v)))                               ≡⟨ sym $ cong-trans f (trans _ (z c₂′)) (cong g (trans _ v)) 

        cong f (trans (trans (cong  x  set l₂ x c₂′) y) (z c₂′))
                      (cong g (trans (cong h (trans (cong i y) u))
                                     v)))                               ≡⟨ cong (cong f) lemma₂ 

        cong f (trans (cong  x  set l₂ x (h (i x))) y)
                      (trans (z c₂″) (cong g (trans (cong h u) v))))    ≡⟨ cong-trans _ _ _ 

        trans (cong f (cong  x  set l₂ x (h (i x))) y))
          (cong f (trans (z c₂″) (cong g (trans (cong h u) v))))        ≡⟨ cong₂  p q  trans p (cong f (trans (z c₂″) q)))
                                                                             (cong-∘ _ _ _)
                                                                             (trans (cong-trans _ _ _) $
                                                                              cong (flip trans _) $
                                                                              cong-∘ _ _ _) ⟩∎
        trans (cong  x  f (set l₂ x (h (i x)))) y)
          (cong f (trans (z c₂″) (trans (cong (g  h) u) (cong g v))))  

    in
    trans (trans x (trans (cong  x  f (set l₂ x c₂′)) y)
                      (cong f (z c₂′))))
      (trans (cong (f  g  h) (trans (cong i y) u))
         (cong (f  g) v))                                          ≡⟨ cong₂  p q  trans (trans x p) q)
                                                                         (trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
                                                                          sym $ cong-trans _ _ _)
                                                                         (trans (cong (flip trans _) $ sym $ cong-∘ _ _ _) $
                                                                          sym $ cong-trans _ _ _) 
    trans (trans x (cong f (trans (cong  x  set l₂ x c₂′) y)
                                  (z c₂′))))
          (cong (f  g) (trans (cong h (trans (cong i y) u)) v))    ≡⟨ trans-assoc _ _ _ 

    trans x (trans (cong f (trans (cong  x  set l₂ x c₂′) y)
                                  (z c₂′)))
                   (cong (f  g)
                         (trans (cong h (trans (cong i y) u)) v)))  ≡⟨ cong (trans x) lemma₁ ⟩∎

    trans x (trans (cong  x  f (set l₂ x (h (i x)))) y)
               (cong f (trans (z c₂″) (trans (cong (g  h) u)
                                         (cong g v)))))             

-- Every lens of type Lens A A that satisfies a certain right
-- identity law is equal to the identity lens.

id-unique :
  (id′ : Lens A A) 
  ((l : Lens A A)  l  id′  l) 
  id′  id
id-unique id′ right-identity =
  id′       ≡⟨ sym $ left-identity _ 
  id  id′  ≡⟨ right-identity _ ⟩∎
  id        

-- An equality characterisation lemma that can be used when one of
-- the lenses is the identity.

equality-characterisation-id :
  {l : Lens A A}  let open Lens l in

  l  id
    
   λ (g :  a  get a  a) 
   λ (s :  a b  set a b  b) 
    (∀ a b  get-set a b  trans (cong get (s a b)) (g b)) ×
    (∀ a  set-get a  trans (s a (get a)) (g a)) ×
    (∀ a b₁ b₂ 
       trans (set-set a b₁ b₂) (s a b₂) 
       cong  set  set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩  s)))
equality-characterisation-id {l = l} =
  l  id                                                              ↝⟨ equality-characterisation₄ 

  ( λ (g :  a  get a  a) 
    λ (s :  a b  set a b  b) 
     (∀ a b 
        trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) 
        refl _) ×
     (∀ a 
        trans (sym (trans (s a (get a)) (cong P.id (g a))))
          (set-get a) 
        refl _) ×
     (∀ a b₁ b₂ 
        trans (set-set a b₁ b₂) (s a b₂) 
        trans (cong  set  set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩  s)))
          (refl _)))                                                  ↝⟨ (∃-cong λ g  ∃-cong λ _  ∃-cong λ _ 
                                                                          (∀-cong ext λ _ 
                                                                           ≡⇒↝ _ $ cong  eq  trans (sym (trans _ eq)) (set-get _)  _) $ sym $
                                                                           cong-id (g _))
                                                                           ×-cong
                                                                          ∀-cong ext λ _  ∀-cong ext λ _  ∀-cong ext λ _ 
                                                                           ≡⇒↝ _ $ cong (_ ≡_) $ trans-reflʳ _) 
  ( λ (g :  a  get a  a) 
    λ (s :  a b  set a b  b) 
     (∀ a b 
        trans (sym (trans (cong get (s a b)) (g b))) (get-set a b) 
        refl _) ×
     (∀ a 
        trans (sym (trans (s a (get a)) (g a))) (set-get a) 
        refl _) ×
     (∀ a b₁ b₂ 
        trans (set-set a b₁ b₂) (s a b₂) 
        cong  set  set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩  s))))        ↝⟨ (∃-cong λ g  ∃-cong λ s 
                                                                          (∀-cong ext λ _  ∀-cong ext λ _ 
                                                                           ≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘
                                                                           ≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm)
                                                                            ×-cong
                                                                          (∀-cong ext λ _ 
                                                                           ≡-comm F.∘ ≡⇒↝ _ (cong (_≡ _) $ trans-reflʳ _) F.∘
                                                                           ≡⇒↝ _ (sym $ [trans≡]≡[≡trans-symˡ] _ _ _) F.∘ ≡-comm)
                                                                            ×-cong
                                                                          F.id) ⟩□
  ( λ (g :  a  get a  a) 
    λ (s :  a b  set a b  b) 
     (∀ a b  get-set a b  trans (cong get (s a b)) (g b)) ×
     (∀ a  set-get a  trans (s a (get a)) (g a)) ×
     (∀ a b₁ b₂ 
        trans (set-set a b₁ b₂) (s a b₂) 
        cong  set  set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩  s))))        
  where
  open Lens l

-- A lemma that can be used to show that a lens with a constant
-- setter (such as the ones produced by getter-equivalence→lens
-- below) is equal to the identity lens.

constant-setter→≡id :
  {l′ :  λ (get : A  A) 
         λ (set : A  A) 
          (A   a  get (set a)  a) ×
          (∀ a  set (get a)  a) ×
          (A  A   a  set a  set a)} 

  let l   = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′)
      set = proj₁ (proj₂ l′)
      open Lens l hiding (set)
  in

  ( λ (g :  a  get a  a) 
    λ (s :  a  set a  a) 
     (∀ a₁ a₂  get-set a₁ a₂  trans (cong get (s a₂)) (g a₂)) ×
     (∀ a  set-get a  trans (s (get a)) (g a)) ×
     (∀ a a₁ a₂  set-set a a₁ a₂  refl _)) 
  l  id
constant-setter→≡id {A = A} {l′ = l′} =
  ( λ (g :  a  get a  a) 
    λ (s :  a  set a  a) 
     (∀ a₁ a₂  get-set a₁ a₂  trans (cong get (s a₂)) (g a₂)) ×
     (∀ a  set-get a  trans (s (get a)) (g a)) ×
     (∀ a a₁ a₂  set-set a a₁ a₂  refl _))                          ↝⟨ (Σ-map P.id $ Σ-map P.id λ {s}  Σ-map P.id $ Σ-map P.id λ hyp a a₁ a₂ 

      trans (set-set a a₁ a₂) (s a₂)                                        ≡⟨ cong  eq  trans eq (s a₂)) $ hyp _ _ _ 
      trans (refl _) (s a₂)                                                 ≡⟨ trans-reflˡ (s _) ⟩∎
      s a₂                                                                  ) 

  ( λ (g :  a  get a  a) 
    λ (s :  a  set a  a) 
     (∀ a₁ a₂  get-set a₁ a₂  trans (cong get (s a₂)) (g a₂)) ×
     (∀ a  set-get a  trans (s (get a)) (g a)) ×
     (∀ a a₁ a₂  trans (set-set a a₁ a₂) (s a₂)  s a₂))             ↔⟨ (∃-cong λ _  ∃-cong λ s  ∃-cong λ _  ∃-cong λ _ 
                                                                          ∀-cong ext λ a  ∀-cong ext λ a₁  ∀-cong ext λ a₂ 
                                                                          ≡⇒↝ equivalence $ cong (trans _ (s _) ≡_) (
      s a₂                                                                  ≡⟨ sym $ cong-ext ext 
      cong  set  set a₂) (⟨ext⟩ s)                                       ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ s) 
      cong  set  set (set a a₁) a₂) (cong const (⟨ext⟩ s))               ≡⟨ cong (cong  set  set (set a a₁) a₂)) $ sym $
                                                                               ext-const ext ⟩∎
      cong  set  set (set a a₁) a₂) (⟨ext⟩ λ _  ⟨ext⟩ s)                )) 

  ( λ (g :  a  get a  a) 
    λ (s :  a  set a  a) 
     (∀ a₁ a₂  get-set a₁ a₂  trans (cong get (s a₂)) (g a₂)) ×
     (∀ a  set-get a  trans (s (get a)) (g a)) ×
     (∀ a a₁ a₂ 
        trans (set-set a a₁ a₂) (s a₂) 
        cong  set  set (set a a₁) a₂) (⟨ext⟩ λ _  ⟨ext⟩ s)))      ↝⟨ Σ-map P.id (Σ-map const P.id) 

  ( λ (g :  a  get a  a) 
    λ (s : A   a  set a  a) 
     (∀ a₁ a₂  get-set a₁ a₂  trans (cong get (s a₁ a₂)) (g a₂)) ×
     (∀ a  set-get a  trans (s a (get a)) (g a)) ×
     (∀ a a₁ a₂ 
        trans (set-set a a₁ a₂) (s a a₂) 
        cong  set  set (set a a₁) a₂) (⟨ext⟩ (⟨ext⟩  s))))        ↔⟨ inverse equality-characterisation-id ⟩□

  l″  id                                                             
  where
  l″  = _↔_.from Lens-as-Σ (Σ-map P.id (Σ-map const P.id) l′)
  set = proj₁ (proj₂ l′)

  open Lens l″ hiding (set)

-- An identity function for lenses for which the forward direction
-- is an equivalence.
--
-- Note that the setter of the resulting lens is definitionally
-- equal to a constant function returning the right-to-left
-- direction of the equivalence.
--
-- Note also that two proofs, set-get and set-set, have been
-- "obfuscated". They could have been shorter, but then it might not
-- have been possible to prove getter-equivalence→lens≡.

getter-equivalence→lens :
  (l : Lens A B) 
  Is-equivalence (Lens.get l) 
  Lens A B
getter-equivalence→lens l is-equiv = record
  { get     = to
  ; set     = const from
  ; get-set = const right-inverse-of
  ; set-get = λ a 
              from (to a)                ≡⟨ cong from (sym (get-set a (to a))) 
              from (get (set a (to a)))  ≡⟨⟩
              from (to (set a (get a)))  ≡⟨ cong (from  to) (set-get a) 
              from (to a)                ≡⟨ left-inverse-of _ ⟩∎
              a                          
  ; set-set = λ a b₁ b₂ 
              let s = from≡set l is-equiv in
              from b₂            ≡⟨ cong  set  set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩  s)) 
              set (set a b₁) b₂  ≡⟨ set-set a b₁ b₂ 
              set a b₂           ≡⟨ sym (s a b₂) ⟩∎
              from b₂            
  }
  where
  A≃B = Eq.⟨ _ , is-equiv 

  open _≃_ A≃B
  open Lens l

-- The function getter-equivalence→lens returns its input.

getter-equivalence→lens≡ :
   (l : Lens A B) is-equiv 
  getter-equivalence→lens l is-equiv  l
getter-equivalence→lens≡ l is-equiv =
  _↔_.from equality-characterisation₄
    ( g
    , s
    , lemma₁
    , lemma₂
    , lemma₃
    )
  where
  open Lens

  A≃B = Eq.⟨ get l , is-equiv 

  open _≃_ A≃B

  l′ = getter-equivalence→lens l is-equiv

  g = λ _  refl _

  s = from≡set l is-equiv

  lemma₁ = λ a b 
    let lem =
          cong (get l) (s a b)                               ≡⟨⟩

          cong (get l)
            (trans (cong from (sym (get-set l a b)))
               (left-inverse-of _))                          ≡⟨ cong-trans _ _ (left-inverse-of _) 

          trans (cong (get l)
                   (cong from (sym (get-set l a b))))
            (cong (get l) (left-inverse-of _))               ≡⟨ cong₂ trans
                                                                  (cong-∘ _ _ (sym (get-set l a b)))
                                                                  (left-right-lemma _) ⟩∎
          trans (cong (get l  from) (sym (get-set l a b)))
            (right-inverse-of _)                             
    in
    trans (sym (trans (cong (get l) (s a b))
                  (g (set l a b))))
      (get-set l′ a b)                                        ≡⟨⟩

    trans (sym (trans (cong (get l) (s a b)) (refl _)))
      (right-inverse-of _)                                    ≡⟨ cong  eq  trans (sym eq) (right-inverse-of _)) $
                                                                 trans-reflʳ _ 
    trans (sym (cong (get l) (s a b)))
      (right-inverse-of _)                                    ≡⟨ cong  eq  trans (sym eq) (right-inverse-of _)) lem 

    trans (sym (trans (cong (get l  from)
                         (sym (get-set l a b)))
                  (right-inverse-of _)))
      (right-inverse-of _)                                    ≡⟨ elim¹
                                                                    eq  trans (sym (trans (cong (get l  from) (sym eq))
                                                                                         (right-inverse-of _)))
                                                                             (right-inverse-of _)  eq) (
      trans (sym (trans (cong (get l  from) (sym (refl _)))
                    (right-inverse-of _)))
        (right-inverse-of _)                                         ≡⟨ cong  eq  trans (sym (trans (cong (get l  from) eq) _)) _)
                                                                        sym-refl 
      trans (sym (trans (cong (get l  from) (refl _))
                    (right-inverse-of _)))
        (right-inverse-of _)                                         ≡⟨ cong  eq  trans (sym (trans eq _)) _) $
                                                                        cong-refl _ 
      trans (sym (trans (refl _) (right-inverse-of _)))
        (right-inverse-of _)                                         ≡⟨ cong  eq  trans (sym eq) (right-inverse-of _)) $
                                                                        trans-reflˡ (right-inverse-of _) 
      trans (sym (right-inverse-of _))
        (right-inverse-of _)                                         ≡⟨ trans-symˡ (right-inverse-of _) ⟩∎

      refl _                                                         )
                                                                   _ ⟩∎
    get-set l a b                                             

  lemma₂ = λ a 
    trans (sym (trans (s a (get l a)) (cong (set l a) (g a))))
       (set-get l′ a)                                                  ≡⟨⟩

    trans (sym (trans (s a (get l a)) (cong (set l a) (refl _))))
       (set-get l′ a)                                                  ≡⟨ cong  eq  trans (sym (trans (s a (get l a)) eq)) (set-get l′ a)) $
                                                                          cong-refl _ 

    trans (sym (trans (s a (get l a)) (refl _))) (set-get l′ a)        ≡⟨ cong  eq  trans (sym eq) (set-get l′ a)) $
                                                                          trans-reflʳ _ 

    trans (sym (s a (get l a))) (set-get l′ a)                         ≡⟨⟩

    trans (sym (trans (cong from (sym (get-set l a (get l a))))
                  (left-inverse-of _)))
      (trans (cong from (sym (get-set l a (get l a))))
         (trans (cong (from  get l) (set-get l a))
            (left-inverse-of _)))                                      ≡⟨ cong  eq  trans (sym (trans
                                                                                                     (cong from (sym (get-set l a (get l a))))
                                                                                                     (left-inverse-of _)))
                                                                                         (trans (cong from (sym (get-set l a (get l a)))) eq)) $
                                                                          elim¹
                                                                             eq  trans (cong (from  get l) eq) (left-inverse-of _) 
                                                                                    trans (left-inverse-of _) eq)
                                                                            (
        trans (cong (from  get l) (refl _))
          (left-inverse-of (set l a (get l a)))                              ≡⟨ cong (flip trans _) $ cong-refl _ 

        trans (refl _) (left-inverse-of (set l a (get l a)))                 ≡⟨ trans-reflˡ _ 

        left-inverse-of (set l a (get l a))                                  ≡⟨ sym $ trans-reflʳ _ ⟩∎

        trans (left-inverse-of (set l a (get l a))) (refl _)                 )
                                                                            (set-get l a) 
    trans (sym (trans (cong from
                         (sym (get-set l a (get l a))))
                  (left-inverse-of _)))
      (trans (cong from (sym (get-set l a (get l a))))
         (trans (left-inverse-of _) (set-get l a)))                    ≡⟨ cong (trans _) $ sym $
                                                                          trans-assoc _ _ (set-get l a) 
    trans (sym (trans (cong from
                         (sym (get-set l a (get l a))))
                  (left-inverse-of _)))
      (trans (trans (cong from (sym (get-set l a (get l a))))
               (left-inverse-of _))
         (set-get l a))                                                ≡⟨ trans-sym-[trans] _ _ ⟩∎

    set-get l a                                                        

  lemma₃ = λ a b₁ b₂ 
    trans (set-set l′ a b₁ b₂) (s a b₂)                           ≡⟨⟩

    trans (trans (cong  set  set (set a b₁) b₂)
                    (⟨ext⟩ (⟨ext⟩  s)))
             (trans (set-set l a b₁ b₂)
                (sym (s a b₂))))
      (s a b₂)                                                    ≡⟨ cong  eq  trans eq (s a b₂)) $ sym $
                                                                     trans-assoc _ _ (sym (s a b₂)) 
    trans (trans (trans (cong  set  set (set a b₁) b₂)
                           (⟨ext⟩ (⟨ext⟩  s)))
                    (set-set l a b₁ b₂))
             (sym (s a b₂)))
      (s a b₂)                                                    ≡⟨ trans-[trans-sym]- _ (s a b₂) ⟩∎

    trans (cong  set  set (set a b₁) b₂) (⟨ext⟩ (⟨ext⟩  s)))
      (set-set l a b₁ b₂)                                         

------------------------------------------------------------------------
-- Some existence results

-- The lenses bad a and id {A = ↑ a 𝕊¹} have equal setters, and their
-- getters are equivalences, but they are not equal (assuming
-- univalence).

equal-setters-and-equivalences-as-getters-but-not-equal :
  Univalence lzero 
  let l₁ = bad a
      l₂ = id {A =  a 𝕊¹}
  in
  Is-equivalence (Lens.get l₁) ×
  Is-equivalence (Lens.get l₂) ×
  Lens.set l₁  Lens.set l₂ ×
  l₁  l₂
equal-setters-and-equivalences-as-getters-but-not-equal {a = ℓa} univ =
  let is-equiv , not-coherent , _ =
        getter-equivalence-but-not-coherent univ
  in
    is-equiv
  , _≃_.is-equivalence F.id
  , refl _
  , (bad ℓa  id                                        ↝⟨  eq  subst  l   a  cong (get l) (set-get l a) 
                                                                                      get-set l a (get l a))
                                                                         (sym eq)
                                                                          _  cong-refl _)) 
     (∀ a  cong (get (bad ℓa)) (set-get (bad ℓa) a) 
            get-set (bad ℓa) a (get (bad ℓa) a))        ↝⟨ not-coherent ⟩□
                                                       )
  where
  open Lens

-- There is in general no split surjection from equivalences to lenses
-- with getters that are equivalences, if the right-to-left direction
-- of the split surjection is required to return the lens's getter
-- plus some proof (assuming univalence).

¬-≃-↠-Σ-Lens-Is-equivalence-get :
  Univalence lzero 
  ¬  λ (f : ( a 𝕊¹   a 𝕊¹) 
             ( λ (l : Lens ( a 𝕊¹) ( a 𝕊¹)) 
                Is-equivalence (Lens.get l))) 
       p  _≃_.to (_↠_.from f p)  Lens.get (proj₁ p)
¬-≃-↠-Σ-Lens-Is-equivalence-get {a = a} univ =
  let is-equiv₁ , is-equiv₂ , _ , bad≢id =
        equal-setters-and-equivalences-as-getters-but-not-equal univ
  in
  λ (f , hyp)                                 $⟨ refl _ 

    Lens.get (bad a)  Lens.get id             ↝⟨  eq  trans (hyp _) (trans eq (sym (hyp _)))) 

    _≃_.to (_↠_.from f (bad a , is-equiv₁)) 
    _≃_.to (_↠_.from f (id , is-equiv₂))       ↝⟨ Eq.lift-equality ext 

    _↠_.from f (bad a , is-equiv₁) 
    _↠_.from f (id , is-equiv₂)                ↝⟨ _↠_.to (Surjection.↠-≡ f) 

    (bad a , is-equiv₁)  (id , is-equiv₂)     ↝⟨ cong proj₁ 

    bad a  id                                 ↝⟨ bad≢id ⟩□

                                              

-- There is in general no equivalence from equivalences to lenses with
-- getters that are equivalences, if the right-to-left direction of
-- the equivalence is required to return the lens's getter plus some
-- proof (assuming univalence).

¬-≃-≃-Σ-Lens-Is-equivalence-get :
  Univalence lzero 
  ¬  λ (f : ( a 𝕊¹   a 𝕊¹) 
             ( λ (l : Lens ( a 𝕊¹) ( a 𝕊¹))  Is-equivalence (Lens.get l))) 
       p  _≃_.to (_≃_.from f p)  Lens.get (proj₁ p)
¬-≃-≃-Σ-Lens-Is-equivalence-get {a = a} univ =
  ( λ (f : ( a 𝕊¹   a 𝕊¹) 
            ( λ (l : Lens ( a 𝕊¹) ( a 𝕊¹)) 
               Is-equivalence (Lens.get l))) 
      p  _≃_.to (_≃_.from f p)  Lens.get (proj₁ p))  ↝⟨ Σ-map _≃_.surjection P.id 

  ( λ (f : ( a 𝕊¹   a 𝕊¹) 
            ( λ (l : Lens ( a 𝕊¹) ( a 𝕊¹)) 
               Is-equivalence (Lens.get l))) 
      p  _≃_.to (_↠_.from f p)  Lens.get (proj₁ p))  ↝⟨ ¬-≃-↠-Σ-Lens-Is-equivalence-get univ ⟩□

                                                       

-- The lemma ≃Σ∥set⁻¹∥× does not hold in general if the requirement
-- that A is a set is dropped (assuming univalence).
--
-- I proved this together with Paolo Capriotti.

≄Σ∥set⁻¹∥× :
  Univalence lzero 
  ¬ ({A B : Type a} (l : Lens A B) 
     A  (( λ (f : B  A)   Lens.set l ⁻¹ f ) × B))
≄Σ∥set⁻¹∥× {a = a} univ =
  ({A B : Type a} (l : Lens A B) 
   A  (( λ (f : B  A)   Lens.set l ⁻¹ f ) × B))                      ↝⟨  hyp  hyp) 

  ((l : Lens ( a 𝕊¹) ( a 𝕊¹)) 
    a 𝕊¹  (( λ (f :  a 𝕊¹   a 𝕊¹)   Lens.set l ⁻¹ f ) ×  a 𝕊¹))  ↝⟨ _$ id 

   a 𝕊¹  (( λ (f :  a 𝕊¹   a 𝕊¹)   const P.id ⁻¹ f ) ×  a 𝕊¹)    ↝⟨ lemma 

  𝕊¹  (𝕊¹ × 𝕊¹)                                                           ↝⟨ 𝕊¹≄𝕊¹×𝕊¹ ⟩□

                                                                          
  where
  open Circle
  open Int

  lemma = λ hyp 
    𝕊¹                                                            ↔⟨ inverse Bijection.↑↔ 

     a 𝕊¹                                                        ↝⟨ hyp 

    ( λ (f :  a 𝕊¹   a 𝕊¹)   const P.id ⁻¹ f ) ×  a 𝕊¹    ↔⟨⟩

    ( λ (f :  a 𝕊¹   a 𝕊¹)    a 𝕊¹ × P.id  f ) ×  a 𝕊¹  ↝⟨ (×-cong₁ λ _  ∃-cong λ _  T.∥∥-cong-⇔ $
                                                                      record { to = proj₂; from = λ eq  lift base , eq }) 

    ( λ (f :  a 𝕊¹   a 𝕊¹)   P.id  f ) ×  a 𝕊¹           ↝⟨ (Σ-cong (→-cong ext Bijection.↑↔ Bijection.↑↔) λ _  T.∥∥-cong $
                                                                      inverse $ Eq.≃-≡ (Eq.↔⇒≃ $ →-cong ext Bijection.↑↔ Bijection.↑↔))
                                                                       ×-cong
                                                                     Eq.↔⇒≃ Bijection.↑↔ 

    ( λ (f : 𝕊¹  𝕊¹)   P.id  f ) × 𝕊¹                       ↝⟨ (×-cong₁ λ _ 
                                                                      Σ-cong (𝕊¹→𝕊¹≃𝕊¹×ℤ univ) λ f 
                                                                      T.∥∥-cong (
      P.id  f                                                          ↝⟨ inverse $ Eq.≃-≡ $ 𝕊¹→𝕊¹≃𝕊¹×ℤ univ 
      _≃_.to (𝕊¹→𝕊¹≃𝕊¹×ℤ univ) P.id  _≃_.to (𝕊¹→𝕊¹≃𝕊¹×ℤ univ) f        ↝⟨ ≡⇒≃ $ cong (_≡ _≃_.to (𝕊¹→𝕊¹≃𝕊¹×ℤ univ) f) $ 𝕊¹→𝕊¹≃𝕊¹×ℤ-id univ 
      (base , + 1)  _≃_.to (𝕊¹→𝕊¹≃𝕊¹×ℤ univ) f                         ↔⟨ ≡-comm ⟩□
      _≃_.to (𝕊¹→𝕊¹≃𝕊¹×ℤ univ) f  (base , + 1)                         )) 

    ( λ (p : 𝕊¹ × )   p  (base , + 1) ) × 𝕊¹                ↔⟨ (×-cong₁ λ _  ∃-cong λ _  inverse $
                                                                      T.∥∥-cong ≡×≡↔≡ F.∘ T.∥∥×∥∥↔∥×∥) 

    ( λ ((x , i) : 𝕊¹ × )   x  base  ×  i  + 1 ) × 𝕊¹    ↔⟨ (×-cong₁ λ _ 
                                                                      Σ-assoc F.∘
                                                                      (∃-cong λ _  ∃-comm) F.∘
                                                                      inverse Σ-assoc) 

    (( λ x   x  base ) × ( λ i   i  + 1 )) × 𝕊¹         ↔⟨ (×-cong₁ λ _ 
                                                                      (drop-⊤-right λ _ 
                                                                       T.inhabited⇒∥∥↔⊤ $ all-points-on-the-circle-are-merely-equal _)
                                                                        ×-cong
                                                                      ∃-cong λ _  T.∥∥↔ ℤ-set) 

    (𝕊¹ × ( λ i  i  + 1)) × 𝕊¹                                 ↔⟨ (×-cong₁ λ _  drop-⊤-right λ _  _⇔_.to contractible⇔↔⊤ $
                                                                      singleton-contractible _) ⟩□
    𝕊¹ × 𝕊¹                                                       

------------------------------------------------------------------------
-- Isomorphisms expressed using lens quasi-inverses

private

  module B {a} =
    Bi-invertibility
      equality-with-J (Type a) Lens id _∘_
  module BM {a} =
    B.More {a = a} left-identity right-identity associativity

-- A form of isomorphism between types, expressed using lenses.

open B public
  using ()
  renaming (_≅_ to _≅_; Has-quasi-inverse to Has-quasi-inverse)

-- An equality characterisation lemma for A ≅ B that applies when A is
-- a set.

equality-characterisation-for-sets-≅ :
  let open Lens in
  {f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A  B} 
  Is-set A 
  f₁  f₂  set l₁₁  set l₁₂
equality-characterisation-for-sets-≅
  {f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set =
  f₁  f₂            ↔⟨ BM.equality-characterisation-≅-domain (lens-preserves-h-level-of-domain 1 A-set) _ _ 
  l₁₁  l₁₂          ↝⟨ equality-characterisation-for-sets A-set ⟩□
  set l₁₁  set l₁₂  
  where
  open Lens

-- There is a split surjection from A ≅ B to A ≃ B.

≅↠≃ : (A  B)  (A  B)
≅↠≃ {A = A} {B = B} = record
  { logical-equivalence = record
    { to   = λ (l₁ , l₂ , eq₁ , eq₂)  Eq.↔⇒≃ (record
               { surjection = record
                 { logical-equivalence = record
                   { to   = get l₁
                   ; from = get l₂
                   }
                 ; right-inverse-of = ext⁻¹ $
                     getters-equal-if-setters-equal (l₁  l₂) id
                       (cong set eq₁)
               }
               ; left-inverse-of = ext⁻¹ $
                   getters-equal-if-setters-equal (l₂  l₁) id
                     (cong set eq₂)
               })
    ; from = λ A≃B  ≃→lens A≃B
                   , ≃→lens (inverse A≃B)
                   , lemma A≃B
                   , (≃→lens (inverse A≃B)  ≃→lens A≃B  ≡⟨ cong  A≃B′  ≃→lens (inverse A≃B)  ≃→lens A≃B′) $
                                                            sym $ Eq.inverse-involutive ext A≃B 
                      ≃→lens (inverse A≃B) 
                      ≃→lens (inverse $ inverse A≃B)     ≡⟨ lemma (inverse A≃B) ⟩∎

                      id                                 )
    }
  ; right-inverse-of = λ _  Eq.lift-equality ext (refl _)
  }
  where
  open Lens

  lemma :
    (C≃D : C  D)  ≃→lens C≃D  ≃→lens (inverse C≃D)  id
  lemma C≃D = _↔_.from equality-characterisation₂
    ( ⟨ext⟩ (_≃_.right-inverse-of C≃D)
    , (⟨ext⟩ λ _  ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
    , lemma₁
    , lemma₂
    , lemma₃
    )
    where
    lemma₁ = λ d₁ d₂ 
      let lemma =
            cong  set  _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))
              (⟨ext⟩ λ _  ⟨ext⟩ $ _≃_.right-inverse-of C≃D)      ≡⟨ cong (cong  set  _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))) $
                                                                     ext-const ext 

            cong  set  _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))
              (cong const $ ⟨ext⟩ $ _≃_.right-inverse-of C≃D)     ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃_.right-inverse-of C≃D) 

            cong  set  _≃_.to C≃D (_≃_.from C≃D (set d₂)))
              (⟨ext⟩ $ _≃_.right-inverse-of C≃D)                  ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ $ _≃_.right-inverse-of C≃D) 

            cong (_≃_.to C≃D  _≃_.from C≃D)
              (cong  set  set d₂)
                 (⟨ext⟩ $ _≃_.right-inverse-of C≃D))              ≡⟨ cong (cong (_≃_.to C≃D  _≃_.from C≃D)) $ cong-ext ext 

            cong (_≃_.to C≃D  _≃_.from C≃D)
              (_≃_.right-inverse-of C≃D _)                        ≡⟨ sym $ cong-∘ _ _ (_≃_.right-inverse-of C≃D _) 

            cong (_≃_.to C≃D)
              (cong (_≃_.from C≃D) (_≃_.right-inverse-of C≃D _))  ≡⟨ cong (cong (_≃_.to C≃D)) $ _≃_.right-left-lemma C≃D _ ⟩∎

            cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _)         
      in

      trans (sym
        (trans (cong  set  _≃_.to C≃D (_≃_.from C≃D (set d₁ d₂)))
                  (⟨ext⟩ λ _  ⟨ext⟩ $ _≃_.right-inverse-of C≃D))
           (cong  get  get d₂)
              (⟨ext⟩ $ _≃_.right-inverse-of C≃D))))
      (trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
         (_≃_.right-inverse-of C≃D _))                                ≡⟨ cong₂  p q  trans (sym (trans p q))
                                                                                          (trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
                                                                                             (_≃_.right-inverse-of C≃D _)))
                                                                           lemma
                                                                           (cong-ext ext) 
      trans (sym
        (trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
           (_≃_.right-inverse-of C≃D _)))
      (trans (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
         (_≃_.right-inverse-of C≃D _))                                ≡⟨ trans-symˡ (trans _ (_≃_.right-inverse-of C≃D _)) ⟩∎

      refl _                                                          

    lemma₂ = λ d 
      let lemma =
            cong  set  set d (_≃_.to C≃D (_≃_.from C≃D d)))
              (⟨ext⟩ λ _  ⟨ext⟩ $ _≃_.right-inverse-of C≃D)    ≡⟨ cong (cong  set  set d (_≃_.to C≃D (_≃_.from C≃D d)))) $
                                                                   ext-const ext 

            cong  set  set d (_≃_.to C≃D (_≃_.from C≃D d)))
              (cong const $ ⟨ext⟩ $ _≃_.right-inverse-of C≃D)   ≡⟨ cong-∘ _ _ (⟨ext⟩ $ _≃_.right-inverse-of C≃D) 

            cong  set  set (_≃_.to C≃D (_≃_.from C≃D d)))
              (⟨ext⟩ $ _≃_.right-inverse-of C≃D)                ≡⟨ cong-ext ext ⟩∎

            _≃_.right-inverse-of C≃D _                          
      in
      trans (sym
        (trans (cong  set  set d (_≃_.to C≃D (_≃_.from C≃D d)))
                  (⟨ext⟩ λ _  ⟨ext⟩ $ _≃_.right-inverse-of C≃D))
           (cong  get  get d)
              (⟨ext⟩ $ _≃_.right-inverse-of C≃D))))
        (trans
           (cong (_≃_.to C≃D) (_≃_.left-inverse-of C≃D _))
           (_≃_.left-inverse-of (inverse C≃D) _))                   ≡⟨ cong₂  p q  trans (sym p) q)
                                                                         (cong₂ trans lemma (cong-ext ext))
                                                                         (cong₂ trans
                                                                            (_≃_.left-right-lemma C≃D _)
                                                                            (Eq.left-inverse-of∘inverse C≃D)) 
      trans (sym (trans (_≃_.right-inverse-of C≃D _)
                    (_≃_.right-inverse-of C≃D _)))
        (trans (_≃_.right-inverse-of C≃D _)
           (_≃_.right-inverse-of C≃D _))                            ≡⟨ trans-symˡ (trans _ (_≃_.right-inverse-of C≃D _)) ⟩∎

      refl _                                                        

    lemma₃ = λ d d₁ d₂ 
      subst  set  set (set d d₁) d₂  set d d₂)
         (⟨ext⟩ λ _  ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
         (trans (refl _)
            (trans
               (cong  _  _≃_.to C≃D (_≃_.from C≃D d₂))
                  (_≃_.right-inverse-of (inverse C≃D)
                     (_≃_.from C≃D d₁)))
               (cong (_≃_.to C≃D) (refl _))))              ≡⟨ cong (subst  set  set (set d d₁) d₂  set d d₂)
                                                                       (⟨ext⟩ λ _  ⟨ext⟩ $ _≃_.right-inverse-of C≃D)) $
                                                              trans (trans-reflˡ _) $
                                                              trans (cong (flip trans _) $ cong-const _) $
                                                              trans (trans-reflˡ _) $
                                                              cong-refl _ 
      subst  set  set (set d d₁) d₂  set d d₂)
         (⟨ext⟩ λ _  ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
         (refl _)                                          ≡⟨ cong (flip (subst  set  set (set d d₁) d₂  set d d₂)) _) $
                                                              ext-const ext 
      subst  set  set (set d d₁) d₂  set d d₂)
        (cong const $ ⟨ext⟩ $ _≃_.right-inverse-of C≃D)
        (refl _)                                           ≡⟨ sym $ subst-∘ _ _ _ 

      subst  set  set d₂  set d₂)
        (⟨ext⟩ $ _≃_.right-inverse-of C≃D)
        (refl _)                                           ≡⟨ subst-ext ext 

      subst  set  set  set)
        (_≃_.right-inverse-of C≃D d₂)
        (refl _)                                           ≡⟨ ≡⇒↝ _ (sym [subst≡]≡[trans≡trans]) (

          trans (refl _) (_≃_.right-inverse-of C≃D d₂)          ≡⟨ trans-reflˡ _ 
          _≃_.right-inverse-of C≃D d₂                           ≡⟨ sym $ trans-reflʳ _ 
          trans (_≃_.right-inverse-of C≃D d₂) (refl _)          ) 

      refl _                                               

-- The right-to-left direction of ≅↠≃ maps identity to an isomorphism
-- for which the first projection is the identity.

≅↠≃-id≡id : proj₁ (_↠_.from ≅↠≃ F.id)  id {A = A}
≅↠≃-id≡id = equal-laws→≡
   _ _  refl _)
   a 
     _≃_.left-inverse-of F.id a               ≡⟨ sym $ _≃_.right-left-lemma F.id _ 
     cong P.id (_≃_.right-inverse-of F.id a)  ≡⟨⟩
     cong P.id (refl _)                       ≡⟨ sym $ cong-id _ ⟩∎
     refl _                                   )
   _ _ _  refl _)

-- If A is a set, then there is an equivalence between A ≃ B and A ≅ B.

≃≃≅ :
  Is-set A 
  (A  B)  (A  B)
≃≃≅ {A = A} {B = B} A-set = Eq.↔⇒≃ $ inverse (record
  { surjection      = ≅↠≃
  ; left-inverse-of = λ (l₁ , l₂ , eq₁ , eq₂) 
      _↔_.from (equality-characterisation-for-sets-≅ A-set) $
      ⟨ext⟩ λ a  ⟨ext⟩ λ b 
        get l₂ b                                            ≡⟨ sym $ ext⁻¹ (ext⁻¹ (cong set eq₂) _) _ 

        set l₁ (set l₁ a b)
          (set l₂ (get l₁ (set l₁ a b)) (get l₂ b))         ≡⟨ set-set l₁ _ _ _ 

        set l₁ a (set l₂ (get l₁ (set l₁ a b)) (get l₂ b))  ≡⟨ cong  b′  set l₁ a (set l₂ b′ (get l₂ b))) $ get-set l₁ _ _ 

        set l₁ a (set l₂ b (get l₂ b))                      ≡⟨ cong (set l₁ a) $ set-get l₂ _ ⟩∎

        set l₁ a b                                          
  })
  where
  open Lens

-- The equivalence maps identity to an isomorphism for which the first
-- projection is the identity.

≃≃≅-id≡id :
  (A-set : Is-set A) 
  proj₁ (_≃_.to (≃≃≅ A-set) F.id)  id
≃≃≅-id≡id _ = ≅↠≃-id≡id

-- The type Has-quasi-inverse id is not necessarily a proposition
-- (assuming univalence).
--
-- (The lemma does not actually use the univalence argument, but
-- univalence is used by Circle.¬-type-of-refl-propositional.)

Has-quasi-inverse-id-not-proposition :
  Univalence lzero 
   λ (A : Type a) 
    ¬ Is-proposition (Has-quasi-inverse (id {A = A}))
Has-quasi-inverse-id-not-proposition _ =
    X
  , (Is-proposition (Has-quasi-inverse id)         ↝⟨ flip propositional⇒inhabited⇒contractible q 
     Contractible (Has-quasi-inverse id)           ↝⟨ H-level-cong _ 0 lemma₁ 
     Contractible ( λ (g : (x : X)  x  x)  _)  ↝⟨ flip proj₁-closure 0
                                                         g   _ x  sym (g x)) , lemma₂ g , lemma₃ g , lemma₄ g) 
     Contractible ((x : X)  x  x)                ↝⟨ mono₁ 0 
     Is-proposition ((x : X)  x  x)              ↝⟨ ¬-prop ⟩□
                                                  )
  where
  X      = Erased (proj₁ Circle.¬-type-of-refl-propositional)
  ¬-prop =
    E.Stable-¬
      [ Is-proposition ((x : X)  x  x)       ↝⟨ H-level-cong _ 1 (Π-cong ext (E.erased E.Erased↔) λ _  inverse E.≡≃[]≡[]) 
        Is-proposition ((x :  _ 𝕊¹)  x  x)  ↝⟨ proj₂ Circle.¬-type-of-refl-propositional ⟩□
                                              
      ]

  q = id , left-identity _ , right-identity _

  lemma₁ =
    Has-quasi-inverse id                                             ↝⟨ BM.Has-quasi-inverse≃id≡id-domain q 

    id  id                                                          ↔⟨ equality-characterisation₄ ⟩□

    ( λ (g :  x  x  x) 
      λ (s : X   x  x  x) 
       (∀ x y 
          trans (sym (trans (cong P.id (s x y)) (g y))) (refl _) 
          refl _) ×
       (∀ x 
          trans (sym (trans (s x x) (cong P.id (g x)))) (refl _) 
          refl _) ×
       (∀ x y z 
         trans (refl _) (s x z) 
         trans (cong  set  set (set x y) z) (⟨ext⟩ (⟨ext⟩  s)))
           (refl _)))                                                

  lemma₂ : (g :  x  x  x) (x y : X)  _
  lemma₂ g x y =
    trans (sym (trans (cong P.id (sym (g y))) (g y))) (refl _)  ≡⟨ trans-reflʳ _ 
    sym (trans (cong P.id (sym (g y))) (g y))                   ≡⟨ cong  eq  sym (trans eq (g y))) $ sym $ cong-id _ 
    sym (trans (sym (g y)) (g y))                               ≡⟨ cong sym $ trans-symˡ (g y) 
    sym (refl _)                                                ≡⟨ sym-refl ⟩∎
    refl _                                                      

  lemma₃ : (g :  x  x  x) (x : X)  _
  lemma₃ g x =
    trans (sym (trans (sym (g x)) (cong P.id (g x)))) (refl _)  ≡⟨ trans-reflʳ _ 
    sym (trans (sym (g x)) (cong P.id (g x)))                   ≡⟨ cong  eq  sym (trans (sym (g x)) eq)) $ sym $ cong-id (g x) 
    sym (trans (sym (g x)) (g x))                               ≡⟨ cong sym $ trans-symˡ (g x) 
    sym (refl _)                                                ≡⟨ sym-refl ⟩∎
    refl _                                                      

  lemma₄ : (g :  x  x  x) (x y z : X)  _
  lemma₄ g x y z =
    trans (refl _) (sym (g z))                                            ≡⟨ trans-reflˡ (sym (g z)) 
    sym (g z)                                                             ≡⟨ sym $ cong-ext ext 
    cong (_$ z) (⟨ext⟩ (sym  g))                                         ≡⟨ sym $ cong-∘ _ _ (⟨ext⟩ (sym  g)) 
    cong  set  set (set x y) z) (cong const (⟨ext⟩ (sym  g)))         ≡⟨ cong (cong  set  set (set x y) z)) $ sym $ ext-const ext 
    cong  set  set (set x y) z) (⟨ext⟩ λ _  ⟨ext⟩ (sym  g))          ≡⟨ sym $ trans-reflʳ _ ⟩∎
    trans (cong  set  set (set x y) z) (⟨ext⟩ λ _  ⟨ext⟩ (sym  g)))
      (refl _)                                                            

-- There is not necessarily a split surjection from
-- Is-equivalence (Lens.get l) to Has-quasi-inverse l, if l is a lens
-- between types in the same universe (assuming univalence).

¬Is-equivalence↠Has-quasi-inverse :
  Univalence lzero 
  ¬ ({A B : Type a}
     (l : Lens A B) 
     Is-equivalence (Lens.get l)  Has-quasi-inverse l)
¬Is-equivalence↠Has-quasi-inverse univ surj =
                                         $⟨ mono₁ 0 ⊤-contractible 
  Is-proposition                        ↝⟨ H-level.respects-surjection lemma 1 
  Is-proposition (Has-quasi-inverse id)  ↝⟨ proj₂ $ Has-quasi-inverse-id-not-proposition univ ⟩□
                                        
  where
  lemma =
                         ↔⟨ inverse $ _⇔_.to contractible⇔↔⊤ $
                             propositional⇒inhabited⇒contractible
                               (Is-equivalence-propositional ext)
                               (_≃_.is-equivalence Eq.id) 
    Is-equivalence P.id   ↝⟨ surj id ⟩□
    Has-quasi-inverse id  

------------------------------------------------------------------------
-- Isomorphisms expressed using bi-invertibility for lenses

-- A form of isomorphism between types, expressed using lenses.

open B public
  using ()
  renaming (_≊_ to _≊_;
            Has-left-inverse to Has-left-inverse;
            Has-right-inverse to Has-right-inverse;
            Is-bi-invertible to Is-bi-invertible)

open BM public
  using ()
  renaming (Is-bi-invertible-propositional to
            Is-bi-invertible-propositional)

-- An equality characterisation lemma for A ≊ B that applies when A is
-- a set.

equality-characterisation-for-sets-≊ :
  let open Lens in
  {f₁@(l₁₁ , _) f₂@(l₁₂ , _) : A  B} 
  Is-set A 
  f₁  f₂  set l₁₁  set l₁₂
equality-characterisation-for-sets-≊
  {f₁ = f₁@(l₁₁ , _)} {f₂ = f₂@(l₁₂ , _)} A-set =
  f₁  f₂            ↔⟨ BM.equality-characterisation-≊ _ _ 
  l₁₁  l₁₂          ↝⟨ equality-characterisation-for-sets A-set ⟩□
  set l₁₁  set l₁₂  
  where
  open Lens

-- There is a split surjection from A ≊ B to A ≃ B.

≊↠≃ : (A  B)  (A  B)
≊↠≃ = record
  { logical-equivalence = record
    { to   = _↠_.to ≅↠≃  _↠_.from BM.≅↠≊
    ; from = _↠_.to BM.≅↠≊  _↠_.from ≅↠≃
    }
  ; right-inverse-of = λ _  Eq.lift-equality ext (refl _)
  }

-- The right-to-left direction maps identity to an isomorphism for
-- which the first projection is the identity.

≊↠≃-id≡id :
  proj₁ (_↠_.from ≊↠≃ F.id)  id {A = A}
≊↠≃-id≡id = equal-laws→≡
   _ _  refl _)
   a 
     _≃_.left-inverse-of F.id a               ≡⟨ sym $ _≃_.right-left-lemma F.id _ 
     cong P.id (_≃_.right-inverse-of F.id a)  ≡⟨⟩
     cong P.id (refl _)                       ≡⟨ sym $ cong-id _ ⟩∎
     refl _                                   )
   _ _ _  refl _)

-- If A is a set, then there is an equivalence between A ≊ B and
-- A ≃ B.

≃≃≊ : Is-set A  (A  B)  (A  B)
≃≃≊ {A = A} {B = B} A-set =
  A  B  ↝⟨ ≃≃≅ A-set 
  A  B  ↝⟨ inverse $ BM.≊≃≅-domain (lens-preserves-h-level-of-domain 1 A-set) ⟩□
  A  B  

-- The equivalence ≃≃≊ maps identity to an isomorphism for which the
-- first projection is the identity.

≃≃≊-id≡id :
  (A-set : Is-set A) 
  proj₁ (_≃_.to (≃≃≊ A-set) F.id)  id
≃≃≊-id≡id _ = ≊↠≃-id≡id

-- The right-to-left direction of ≃≃≊ maps bi-invertible lenses to
-- their getter functions.

to-from-≃≃≊≡get :
  (A-set : Is-set A) (A≊B@(l , _) : A  B) 
  _≃_.to (_≃_.from (≃≃≊ A-set) A≊B)  Lens.get l
to-from-≃≃≊≡get _ _ = refl _

-- The getter function of a bi-invertible lens is an equivalence.

Is-bi-invertible→Is-equivalence-get :
  (l : Lens A B) 
  Is-bi-invertible l  Is-equivalence (Lens.get l)
Is-bi-invertible→Is-equivalence-get l is-bi-inv =
  _≃_.is-equivalence (_↠_.to ≊↠≃ (l , is-bi-inv))

-- If the getter function is an equivalence, then the lens is
-- bi-invertible.

Is-equivalence-get→Is-bi-invertible :
  (l : Lens A B) 
  Is-equivalence (Lens.get l)  Is-bi-invertible l
Is-equivalence-get→Is-bi-invertible {A = A} {B = B} l′ is-equiv =
                       $⟨ l⁻¹ , l∘l⁻¹≡id , l⁻¹∘l≡id 
  Has-quasi-inverse l  ↝⟨ B.Has-quasi-inverse→Is-bi-invertible l 
  Is-bi-invertible l   ↝⟨ subst Is-bi-invertible (getter-equivalence→lens≡ l′ is-equiv) ⟩□
  Is-bi-invertible l′  
  where
  open Lens

  -- A lens that is equal to l′.

  l : Lens A B
  l = getter-equivalence→lens l′ is-equiv

  A≃B = Eq.⟨ get l , is-equiv 

  open _≃_ A≃B

  -- An inverse of l.
  --
  -- Note that the set-get and set-set proofs have been "obfuscated".
  -- They could have been shorter, but then it might not have been
  -- possible to prove l∘l⁻¹≡id and l⁻¹∘l≡id.

  l⁻¹ : Lens B A
  l⁻¹ = record
    { get     = from
    ; set     = λ _  get l
    ; get-set = λ _ a 
                  from (get l a)  ≡⟨ left-inverse-of a ⟩∎
                  a               
    ; set-get = λ b 
                  get l (from b)                 ≡⟨ sym $ cong (get l) $ set-get l (from b) 
                  get l (from (get l (from b)))  ≡⟨ right-inverse-of (get l (from b)) 
                  get l (from b)                 ≡⟨ right-inverse-of b ⟩∎
                  b                              
    ; set-set = λ b a₁ a₂ 
                  get l a₂                 ≡⟨ sym $ right-inverse-of _ 
                  get l (from (get l a₂))  ≡⟨ sym $ cong (get l) (set-set l (from b) (get l a₁) (get l a₂)) 
                  get l (from (get l a₂))  ≡⟨ right-inverse-of _ ⟩∎
                  get l a₂                 
    }

  opaque

    -- The lens l⁻¹ is a right inverse of l.

    l∘l⁻¹≡id : l  l⁻¹  id
    l∘l⁻¹≡id = constant-setter→≡id
      ( right-inverse-of
      , right-inverse-of
      ,  b₁ b₂ 
           get-set (l  l⁻¹) b₁ b₂                                 ≡⟨⟩

           trans (cong (get l) (get-set l⁻¹ b₁ (from b₂)))
             (get-set l (from b₁) b₂)                              ≡⟨⟩

           trans (cong (get l) (left-inverse-of (from b₂)))
             (right-inverse-of b₂)                                 ≡⟨ cong  eq  trans (cong (get l) eq) (right-inverse-of b₂)) $ sym $
                                                                      right-left-lemma _ 
           trans (cong (get l) (cong from (right-inverse-of b₂)))
             (right-inverse-of b₂)                                 ≡⟨ cong  eq  trans eq (right-inverse-of b₂)) $
                                                                      cong-∘ _ _ (right-inverse-of b₂) 
           trans (cong (get l  from) (right-inverse-of b₂))
             (right-inverse-of b₂)                                 ≡⟨⟩

           trans (cong (get (l  l⁻¹)) (right-inverse-of b₂))
             (right-inverse-of b₂)                                 )
      ,  b 
           set-get (l  l⁻¹) b                                 ≡⟨⟩

           trans (cong (get l) (set-get l (from b)))
             (set-get l⁻¹ b)                                   ≡⟨⟩

           trans (cong (get l) (set-get l (from b)))
             (trans (sym (cong (get l) (set-get l (from b))))
                (trans (right-inverse-of (get l (from b)))
                   (right-inverse-of b)))                      ≡⟨ trans--[trans-sym] _ _ 

           trans (right-inverse-of (get l (from b)))
             (right-inverse-of b)                              ≡⟨⟩

           trans (right-inverse-of (get (l  l⁻¹) b))
             (right-inverse-of b)                              )
      ,  b b₁ b₂ 
           set-set (l  l⁻¹) b b₁ b₂                                      ≡⟨⟩

           trans (set-set l⁻¹ b (from b₁) (from b₂))
             (trans (cong  _  get l (from b₂))
                       (get-set l⁻¹ b (from b₁)))
                (cong (get l) (set-set l (from b) b₁ b₂)))                ≡⟨ cong (trans _) $
                                                                             trans (cong (flip trans _) $ cong-const _) $
                                                                             trans-reflˡ _ 
           trans (set-set l⁻¹ b (from b₁) (from b₂))
             (cong (get l) (set-set l (from b) b₁ b₂))                    ≡⟨⟩

           trans (trans (sym (right-inverse-of _))
                    (trans (sym (cong (get l)
                                   (set-set l (from b) (get l (from b₁))
                                      (get l (from b₂)))))
                       (right-inverse-of _)))
             (cong (get l) (set-set l (from b) b₁ b₂))                    ≡⟨ cong  b′  trans (trans (sym (right-inverse-of _))
                                                                                                   (trans (sym (cong (get l)
                                                                                                                  (set-set l (from b) b′
                                                                                                                     (get l (from b₂)))))
                                                                                                      (right-inverse-of _)))
                                                                                            (cong (get l) (set-set l (from b) b₁ b₂))) $
                                                                             right-inverse-of _ 
           trans (trans (sym (right-inverse-of _))
                    (trans (sym (cong (get l)
                                   (set-set l (from b) b₁
                                      (get l (from b₂)))))
                       (right-inverse-of _)))
             (cong (get l) (set-set l (from b) b₁ b₂))                    ≡⟨ cong  f  trans (trans (sym (f _))
                                                                                                  (trans (sym (cong (get l)
                                                                                                                 (set-set l (from b) b₁
                                                                                                                    (get l (from b₂)))))
                                                                                                     (f _)))
                                                                                           (cong (get l) (set-set l (from b) b₁ b₂))) $ sym $
                                                                             _≃_.left-inverse-of (Eq.extensionality-isomorphism ext)
                                                                               right-inverse-of 
           trans (trans (sym (ext⁻¹ (⟨ext⟩ right-inverse-of) _))
                    (trans (sym (cong (get l)
                                   (set-set l (from b) b₁
                                      (get l (from b₂)))))
                       (ext⁻¹ (⟨ext⟩ right-inverse-of) _)))
             (cong (get l) (set-set l (from b) b₁ b₂))                    ≡⟨ elim₁
                                                                                {f} (p : f  P.id) 
                                                                                  (q :  b  f b  f b) 
                                                                                  trans (trans (sym (ext⁻¹ p (f b₂)))
                                                                                           (trans (sym (q (f b₂))) (ext⁻¹ p (f b₂))))
                                                                                    (q b₂) 
                                                                                  refl _)
                                                                                q 
               trans (trans (sym (ext⁻¹ (refl P.id) _))
                        (trans (sym (q _)) (ext⁻¹ (refl P.id) _)))
                 (q _)                                                            ≡⟨ cong  eq  trans (trans (sym eq) (trans (sym (q _)) eq))
                                                                                                    (q _)) $
                                                                                     ext⁻¹-refl _ 
               trans (trans (sym (refl _))
                        (trans (sym (q _)) (refl _)))
                 (q _)                                                            ≡⟨ cong₂  p r  trans (trans p r) (q _))
                                                                                       sym-refl
                                                                                       (trans-reflʳ _) 

               trans (trans (refl _) (sym (q _))) (q _)                           ≡⟨ cong  eq  trans eq (q _)) $ trans-reflˡ (sym (q _)) 

               trans (sym (q _)) (q _)                                            ≡⟨ trans-symˡ (q _) ⟩∎

               refl _                                                             )
                                                                               (⟨ext⟩ right-inverse-of)
                                                                               (cong (get l)  set-set l (from b) b₁) 
           refl _                                                         )
      )

    -- The lens l⁻¹ is a left inverse of l.

    l⁻¹∘l≡id : l⁻¹  l  id
    l⁻¹∘l≡id = constant-setter→≡id
      ( left-inverse-of
      , left-inverse-of
      ,  a₁ a₂ 
           get-set (l⁻¹  l) a₁ a₂                                ≡⟨⟩

           trans (cong from (get-set l a₁ (to a₂)))
             (get-set l⁻¹ (get l a₁) a₂)                          ≡⟨⟩

           trans (cong from (right-inverse-of (to a₂)))
             (left-inverse-of a₂)                                 ≡⟨ cong  eq  trans (cong from eq) (left-inverse-of _)) $ sym $
                                                                     left-right-lemma _ 
           trans (cong from (cong (get l) (left-inverse-of a₂)))
             (left-inverse-of a₂)                                 ≡⟨ cong  eq  trans eq (left-inverse-of _)) $
                                                                     cong-∘ _ _ (left-inverse-of _) 
           trans (cong (from  get l) (left-inverse-of a₂))
             (left-inverse-of a₂)                                 ≡⟨⟩

           trans (cong (get (l⁻¹  l)) (left-inverse-of a₂))
             (left-inverse-of a₂)                                 )
      ,  a 
           let lemma₁ =
                 cong from
                   (trans (sym (cong (get l)
                                  (set-get l (from (get l a)))))
                      (trans (right-inverse-of _)
                         (right-inverse-of _)))                        ≡⟨ cong-trans _ _ (trans _ (right-inverse-of _)) 

                 trans (cong from (sym (cong (get l) $
                                        set-get l (from (get l a)))))
                   (cong from (trans (right-inverse-of _)
                                 (right-inverse-of _)))                ≡⟨ cong  eq  trans (cong from eq)
                                                                                         (cong from (trans (right-inverse-of _)
                                                                                                       (right-inverse-of _)))) $ sym $
                                                                          cong-sym _ (set-get l (from (get l a))) 
                 trans (cong from (cong (get l) $
                                   sym (set-get l (from (get l a)))))
                   (cong from (trans (right-inverse-of _)
                                 (right-inverse-of _)))                ≡⟨ cong₂ trans
                                                                            (cong-∘ _ _ (sym (set-get l (from (get l a)))))
                                                                            (cong-trans _ _ (right-inverse-of _)) 
                 trans (cong (from  get l)
                          (sym (set-get l (from (get l a)))))
                   (trans (cong from (right-inverse-of _))
                      (cong from (right-inverse-of _)))                ≡⟨ cong₂  p q  trans (cong (from  get l)
                                                                                                  (sym (set-get l (from (get l a)))))
                                                                                           (trans p q))
                                                                            (right-left-lemma _)
                                                                            (right-left-lemma _) ⟩∎
                 trans (cong (from  get l)
                          (sym (set-get l (from (get l a)))))
                   (trans (left-inverse-of _)
                      (left-inverse-of _))                             

               f = from  get l

               lemma₂ :  _  _
               lemma₂ = λ a 
                 trans (left-inverse-of (f a))
                   (left-inverse-of a)                        ≡⟨ cong  g  trans (g (f a)) (g a)) $ sym $
                                                                 _≃_.left-inverse-of (Eq.extensionality-isomorphism ext)
                                                                   left-inverse-of ⟩∎
                 trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))
                   (ext⁻¹ (⟨ext⟩ left-inverse-of) a)          

               lemma₃ =
                 trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a)  ≡⟨ cong₂ trans (ext⁻¹-refl _) (ext⁻¹-refl _) 
                 trans (refl _) (refl _)                            ≡⟨ trans-refl-refl ⟩∎
                 refl _                                             
           in
           trans (cong from (set-get l⁻¹ (get l a)))
             (set-get l a)                                            ≡⟨⟩

           trans (cong from
                    (trans (sym (cong (get l)
                                   (set-get l (from (get l a)))))
                       (trans (right-inverse-of _)
                          (right-inverse-of _))))
             (set-get l a)                                            ≡⟨ cong  eq  trans eq (set-get l a)) lemma₁ 

           trans (trans (cong f (sym (set-get l (f a))))
                    (trans (left-inverse-of (f (f a)))
                       (left-inverse-of (f a))))
             (set-get l a)                                            ≡⟨ cong  eq  trans (trans (cong f (sym (set-get l (f a)))) eq)
                                                                                        (set-get l a)) $
                                                                         lemma₂ _ 
           trans (trans (cong f (sym (set-get l (f a))))
                    (trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f (f a)))
                       (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))))
             (set-get l a)                                            ≡⟨ elim₁
                                                                            {f} (p : f  P.id) 
                                                                              (q :  a  f a  a) 
                                                                              trans (trans (cong f (sym (q (f a))))
                                                                                       (trans (ext⁻¹ p (f (f a))) (ext⁻¹ p (f a))))
                                                                                (q a) 
                                                                              trans (ext⁻¹ p (f a)) (ext⁻¹ p a))
                                                                            q 
               trans (trans (cong P.id (sym (q a)))
                        (trans (ext⁻¹ (refl P.id) a)
                           (ext⁻¹ (refl P.id) a)))
                 (q a)                                                        ≡⟨ cong₂  p r  trans (trans p r) (q a))
                                                                                   (sym $ cong-id _)
                                                                                   lemma₃ 

               trans (trans (sym (q a)) (refl _)) (q a)                       ≡⟨ cong (flip trans _) $ trans-reflʳ _ 

               trans (sym (q a)) (q a)                                        ≡⟨ trans-symˡ (q a) 

               refl _                                                         ≡⟨ sym lemma₃ ⟩∎

               trans (ext⁻¹ (refl P.id) a) (ext⁻¹ (refl P.id) a)              )
                                                                           (⟨ext⟩ left-inverse-of)
                                                                           (set-get l) 
           trans (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a))
             (ext⁻¹ (⟨ext⟩ left-inverse-of) a)                        ≡⟨ sym $ lemma₂ _ 

           trans (left-inverse-of (f a))
             (left-inverse-of a)                                      ≡⟨⟩

           trans (left-inverse-of (get (l⁻¹  l) a))
             (left-inverse-of a)                                      )
      ,  a a₁ a₂ 
           let q = set-set l a (get l a₁) (get l a₂)

               lemma =
                 cong from
                   (trans (sym (right-inverse-of _))
                      (trans (sym (cong (get l) q))
                         (right-inverse-of _)))                    ≡⟨ cong-trans _ _ (trans (sym (cong (get l) q)) (right-inverse-of _)) 

                 trans (cong from (sym (right-inverse-of _)))
                   (cong from (trans (sym (cong (get l) q))
                                 (right-inverse-of _)))            ≡⟨ cong₂ trans
                                                                        (cong-sym _ (right-inverse-of _))
                                                                        (cong-trans _ _ (right-inverse-of _)) 
                 trans (sym (cong from (right-inverse-of _)))
                   (trans (cong from (sym (cong (get l) q)))
                      (cong from (right-inverse-of _)))            ≡⟨ cong₂  p r  trans (sym p) (trans (cong from (sym (cong (get l) q))) r))
                                                                        (right-left-lemma _)
                                                                        (right-left-lemma _) 
                 trans (sym (left-inverse-of _))
                   (trans (cong from (sym (cong (get l) q)))
                      (left-inverse-of _))                         ≡⟨ cong  eq  trans (sym (left-inverse-of _))
                                                                                     (trans eq (left-inverse-of _))) $
                                                                      cong-sym _ (cong (get l) q) 
                 trans (sym (left-inverse-of _))
                   (trans (sym (cong from (cong (get l) q)))
                      (left-inverse-of _))                         ≡⟨ cong  eq  trans (sym (left-inverse-of _))
                                                                                     (trans (sym eq) (left-inverse-of _))) $
                                                                      cong-∘ _ _ q 
                 trans (sym (left-inverse-of _))
                   (trans (sym (cong (from  get l) q))
                      (left-inverse-of _))                         ≡⟨ cong  g  trans (sym (g _))
                                                                                    (trans (sym (cong (from  get l) q)) (g _))) $ sym $
                                                                      _≃_.left-inverse-of (Eq.extensionality-isomorphism ext)
                                                                        left-inverse-of ⟩∎
                 trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) _))
                   (trans (sym (cong (from  get l) q))
                      (ext⁻¹ (⟨ext⟩ left-inverse-of) _))           

               f = from  get l
           in
           set-set (l⁻¹  l) a a₁ a₂                                     ≡⟨⟩

           trans (set-set l a (get l a₁) (get l a₂))
             (trans (cong  _  from (get l a₂))
                       (right-inverse-of (get l a₁)))
                (cong from (set-set l⁻¹ (get l a) a₁ a₂)))               ≡⟨ cong (trans _) $
                                                                            trans (cong (flip trans _) $ cong-const _) $
                                                                            trans-reflˡ _ 
           trans (set-set l a (get l a₁) (get l a₂))
             (cong from (set-set l⁻¹ (get l a) a₁ a₂))                   ≡⟨⟩

           trans (set-set l a (get l a₁) (get l a₂))
             (cong from
                (trans (sym (right-inverse-of _))
                   (trans (sym (cong (get l)
                                  (set-set l (from (get l a))
                                     (get l a₁) (get l a₂))))
                      (right-inverse-of _))))                            ≡⟨ cong  a′  trans q
                                                                                           (cong from
                                                                                              (trans (sym (right-inverse-of _))
                                                                                                 (trans (sym (cong (get l)
                                                                                                                (set-set l a′ (get l a₁) (get l a₂))))
                                                                                                    (right-inverse-of _))))) $
                                                                            left-inverse-of _ 
           trans q
             (cong from
                (trans (sym (right-inverse-of _))
                   (trans (sym (cong (get l) q))
                      (right-inverse-of _))))                            ≡⟨ cong (trans q) lemma 

           trans q
             (trans (sym (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂)))
                (trans (sym (cong f q))
                   (ext⁻¹ (⟨ext⟩ left-inverse-of) (f a₂))))              ≡⟨ elim₁
                                                                               {f} (p : f  P.id) 
                                                                                 (q : f a₂  f a₂) 
                                                                                 trans q
                                                                                   (trans (sym (ext⁻¹ p (f a₂)))
                                                                                      (trans (sym (cong f q))
                                                                                         (ext⁻¹ p (f a₂)))) 
                                                                                 refl _)
                                                                             q 
               trans q
                 (trans (sym (ext⁻¹ (refl P.id) a₂))
                    (trans (sym (cong P.id q))
                       (ext⁻¹ (refl P.id) a₂)))                                ≡⟨ cong  eq  trans q (trans (sym eq)
                                                                                                          (trans (sym (cong P.id q)) eq))) $
                                                                                  ext⁻¹-refl _ 
               trans q (trans (sym (refl _))
                          (trans (sym (cong P.id q)) (refl _)))                ≡⟨ cong₂  p r  trans q (trans p r))
                                                                                    sym-refl
                                                                                    (trans-reflʳ _) 

               trans q (trans (refl _) (sym (cong P.id q)))                    ≡⟨ cong (trans q) $ trans-reflˡ (sym (cong P.id q)) 

               trans q (sym (cong P.id q))                                     ≡⟨ cong  eq  trans q (sym eq)) $ sym $ cong-id q 

               trans q (sym q)                                                 ≡⟨ trans-symʳ q ⟩∎

               refl _                                                          )
                                                                            (⟨ext⟩ left-inverse-of)
                                                                            q 

           refl _                                                        )
      )

-- There is an equivalence between "l is bi-invertible" and "the
-- getter of l is an equivalence".

Is-bi-invertible≃Is-equivalence-get :
  (l : Lens A B) 
  Is-bi-invertible l  Is-equivalence (Lens.get l)
Is-bi-invertible≃Is-equivalence-get l = Eq.⇔→≃
  (BM.Is-bi-invertible-propositional l)
  (Is-equivalence-propositional ext)
  (Is-bi-invertible→Is-equivalence-get l)
  (Is-equivalence-get→Is-bi-invertible l)

-- There is in general no split surjection from equivalences to
-- bi-invertible lenses, if the right-to-left direction of the split
-- surjection is required to map bi-invertible lenses to their getter
-- functions (assuming univalence).

¬≃↠≊ :
  Univalence lzero 
  ¬  λ (≃↠≊ : ( a 𝕊¹   a 𝕊¹)  ( a 𝕊¹   a 𝕊¹)) 
      (x@(l , _) :  a 𝕊¹   a 𝕊¹) 
      _≃_.to (_↠_.from ≃↠≊ x)  Lens.get l
¬≃↠≊ {a = a} univ =
  ( λ (f : ( a 𝕊¹   a 𝕊¹)  ( a 𝕊¹   a 𝕊¹)) 
      p  _≃_.to (_↠_.from f p)  Lens.get (proj₁ p))  ↝⟨ Σ-map
                                                             ((∃-cong λ l  _≃_.surjection $ Is-bi-invertible≃Is-equivalence-get l) F.∘_)
                                                              hyp _  hyp _) 
  ( λ (f : ( a 𝕊¹   a 𝕊¹) 
            ( λ (l : Lens ( a 𝕊¹) ( a 𝕊¹)) 
               Is-equivalence (Lens.get l))) 
      p  _≃_.to (_↠_.from f p)  Lens.get (proj₁ p))  ↝⟨ ¬-≃-↠-Σ-Lens-Is-equivalence-get univ ⟩□

                                                       

-- There is in general no equivalence between equivalences and
-- bi-invertible lenses, if the right-to-left direction of the
-- equivalence is required to map bi-invertible lenses to their getter
-- functions (assuming univalence).

¬≃≃≊ :
  Univalence lzero 
  ¬  λ (≃≃≊ : ( a 𝕊¹   a 𝕊¹)  ( a 𝕊¹   a 𝕊¹)) 
      (x@(l , _) :  a 𝕊¹   a 𝕊¹) 
      _≃_.to (_≃_.from ≃≃≊ x)  Lens.get l
¬≃≃≊ {a = a} univ =
  ( λ (≃≃≊ : ( a 𝕊¹   a 𝕊¹)  ( a 𝕊¹   a 𝕊¹)) 
     (x@(l , _) :  a 𝕊¹   a 𝕊¹) 
     _≃_.to (_≃_.from ≃≃≊ x)  Lens.get l)              ↝⟨ Σ-map _≃_.surjection P.id 

  ( λ (≃↠≊ : ( a 𝕊¹   a 𝕊¹)  ( a 𝕊¹   a 𝕊¹)) 
     (x@(l , _) :  a 𝕊¹   a 𝕊¹) 
     _≃_.to (_↠_.from ≃↠≊ x)  Lens.get l)              ↝⟨ ¬≃↠≊ univ ⟩□

                                                       

------------------------------------------------------------------------
-- A category

-- Lenses between sets with the same universe level form a
-- precategory.

precategory : Precategory (lsuc a) a
precategory {a = a} = record
  { precategory =
      Set a
    ,  (A , A-set) (B , _) 
           Lens A B
         , lens-preserves-h-level-of-domain 1 A-set)
    , id
    , _∘_
    , left-identity _
    , right-identity _
    ,  {_ _ _ _ l₁ l₂ l₃}  associativity l₃ l₂ l₁)
  }

-- Lenses between sets with the same universe level form a
-- category (assuming univalence).

category :
  Univalence a 
  Category (lsuc a) a
category {a = a} univ =
  C.precategory-with-Set-to-category
    ext
     _ _  univ)
    (proj₂ Pre.precategory)
     (_ , A-set) _  ≃≃≅ A-set)
     (_ , A-set)  ≃≃≅-id≡id A-set)
  where
  module Pre = C.Precategory precategory

-- The following four results (up to and including ¬-univalent) are
-- based on a suggestion by Paolo Capriotti, in response to a question
-- from an anonymous reviewer.

-- A "naive" notion of category.
--
-- Note that the hom-sets are not required to be sets.

Naive-category : (o h : Level)  Type (lsuc (o  h))
Naive-category o h =
   λ (Obj : Type o) 
   λ (Hom : Obj  Obj  Type h) 
   λ (id : {A : Obj}  Hom A A) 
   λ (_∘_ : {A B C : Obj}  Hom B C  Hom A B  Hom A C) 
    ({A B : Obj} (h : Hom A B)  id  h  h) ×
    ({A B : Obj} (h : Hom A B)  h  id  h) ×
    ({A B C D : Obj} (h₁ : Hom C D) (h₂ : Hom B C) (h₃ : Hom A B) 
     (h₁  (h₂  h₃))  ((h₁  h₂)  h₃))

-- A notion of univalence for naive categories.

Univalent : Naive-category o h  Type (o  h)
Univalent (Obj , Hom , id , _∘_ , id-∘ , ∘-id , assoc) =
  Bi-invertibility.More.Univalence-≊
    equality-with-J Obj Hom id _∘_ id-∘ ∘-id assoc

-- Types in a fixed universe and traditional lenses between them form
-- a naive category.

naive-category :  a  Naive-category (lsuc a) a
naive-category a =
    Type a
  , Lens
  , id
  , _∘_
  , left-identity
  , right-identity
  , associativity

-- However, this category is not univalent (assuming univalence).

¬-univalent :
  Univalence lzero 
  Univalence a 
  ¬ Univalent (naive-category a)
¬-univalent {a = a} univ₀ univ u = ¬≃≃≊ univ₀ (equiv , lemma₂)
  where
  equiv : {A B : Type a}  (A  B)  (A  B)
  equiv {A = A} {B = B} =
    (A  B)  ↝⟨ inverse $ ≡≃≃ univ 
    (A  B)  ↝⟨ Eq.⟨ _ , u  ⟩□
    (A  B)  

  lemma₁ :
    (eq :  a 𝕊¹   a 𝕊¹) 
    _≃_.to eq  Lens.get (proj₁ (_≃_.to equiv eq))
  lemma₁ =
    ≃-elim₁
      univ
       eq  _≃_.to eq  Lens.get (proj₁ (_≃_.to equiv eq)))
      (P.id                                        ≡⟨ cong (Lens.get  proj₁) $ sym $ elim-refl _ _ 
       Lens.get (proj₁ (BM.≡→≊ (refl _)))          ≡⟨ cong (Lens.get  proj₁  BM.≡→≊) $ sym $ ≃⇒≡-id univ 
       Lens.get (proj₁ (BM.≡→≊ (≃⇒≡ univ Eq.id)))  ≡⟨⟩
       Lens.get (proj₁ (_≃_.to equiv Eq.id))       )

  lemma₂ :
    (x@(l , _) :  a 𝕊¹   a 𝕊¹) 
    _≃_.to (_≃_.from equiv x)  Lens.get l
  lemma₂ x@(l , _) =
    _≃_.to (_≃_.from equiv x)                           ≡⟨ lemma₁ (_≃_.from equiv x) 
    Lens.get (proj₁ (_≃_.to equiv (_≃_.from equiv x)))  ≡⟨ cong (Lens.get  proj₁) $ _≃_.right-inverse-of equiv _ 
    Lens.get (proj₁ x)                                  ≡⟨⟩
    Lens.get l                                          

-- There is in general no pointwise equivalence between equivalences
-- and bi-invertible lenses (assuming univalence).

¬Π≃≃≊ :
  Univalence lzero 
  Univalence a 
  ¬ ({A B : Type a}  (A  B)  (A  B))
¬Π≃≃≊ {a = a} univ₀ univ =
  ({A B : Type a}  (A  B)  (A  B))  ↝⟨ F._∘ ≡≃≃ univ 
  ({A B : Type a}  (A  B)  (A  B))  ↝⟨ BM.≡≃≊→Univalence-≊ 
  Univalent (naive-category a)          ↝⟨ ¬-univalent univ₀ univ ⟩□
                                       

-- There is in general no pointwise equivalence between equivalences
-- (between types in the same universe) and lenses with getters that
-- are equivalences (assuming univalence).

¬Π≃-≃-Σ-Lens-Is-equivalence-get :
  Univalence lzero 
  Univalence a 
  ¬ ({A B : Type a} 
     (A  B)   λ (l : Lens A B)  Is-equivalence (Lens.get l))
¬Π≃-≃-Σ-Lens-Is-equivalence-get {a = a} univ₀ univ =
  ({A B : Type a} 
   (A  B)   λ (l : Lens A B)  Is-equivalence (Lens.get l))  ↝⟨ inverse (∃-cong Is-bi-invertible≃Is-equivalence-get) F.∘_ 

  ({A B : Type a}  (A  B)  (A  B))                          ↝⟨ ¬Π≃≃≊ univ₀ univ ⟩□