------------------------------------------------------------------------
-- Some definitions related to and properties of finite sets
------------------------------------------------------------------------

{-# OPTIONS --without-K #-}

open import Equality

module Fin
  {reflexive} (eq :  {a p}  Equality-with-J a p reflexive) where

open import Logical-equivalence hiding (id; _∘_; inverse)
open import Prelude hiding (id)

open import Bijection eq using (_↔_; module _↔_)
open Derived-definitions-and-properties eq
open import Equality.Decision-procedures eq
open import Equivalence eq as Eq using (_≃_)
open import Function-universe eq hiding (_∘_)
open import H-level eq
open import H-level.Closure eq
open import List eq
open import Nat eq using (_≤_; ≤-refl; ≤-step)
open import Univalence-axiom eq

------------------------------------------------------------------------
-- Some bijections relating Fin and ∃

∃-Fin-zero :  {p } (P : Fin zero  Set p)   P   { = }
∃-Fin-zero P = Σ-left-zero

∃-Fin-suc :  {p n} (P : Fin (suc n)  Set p) 
             P  P fzero   (P  fsuc)
∃-Fin-suc P =
   P                          ↔⟨ ∃-⊎-distrib-right 
   (P  inj₁)   (P  inj₂)  ↔⟨ Σ-left-identity ⊎-cong id ⟩□
  P (inj₁ tt)   (P  inj₂)   

------------------------------------------------------------------------
-- Fin n is a set

abstract

  Fin-set :  n  Is-set (Fin n)
  Fin-set zero    = mono₁ 1 ⊥-propositional
  Fin-set (suc n) = ⊎-closure 0 (mono 0≤2 ⊤-contractible) (Fin-set n)
    where
    0≤2 : 0  2
    0≤2 = ≤-step (≤-step ≤-refl)

------------------------------------------------------------------------
-- If two nonempty finite sets are isomorphic, then we can remove one
-- element from each and get new isomorphic finite sets

private

  well-behaved :  {m n} (f : Fin (1 + m)  Fin (1 + n)) 
                 Well-behaved (_↔_.to f)
  well-behaved f {b = i} eq₁ eq₂ = ⊎.inj₁≢inj₂ (
    fzero         ≡⟨ sym $ to-from f eq₂ 
    from f fzero  ≡⟨ to-from f eq₁ ⟩∎
    fsuc i        )
    where open _↔_

cancel-suc :  {m n}  Fin (1 + m)  Fin (1 + n)  Fin m  Fin n
cancel-suc f =
  ⊎-left-cancellative f (well-behaved f) (well-behaved $ inverse f)

-- In fact, we can do it in such a way that, if the input bijection
-- relates elements of two lists with equal heads, then the output
-- bijection relates elements of the tails of the lists.
--
-- xs And ys Are-related-by f is inhabited if the indices of xs and ys
-- which are related by f point to equal elements.

infix 4 _And_Are-related-by_

_And_Are-related-by_ :
   {a} {A : Set a}
  (xs ys : List A)  Fin (length xs)  Fin (length ys)  Set a
xs And ys Are-related-by f =
   i  index xs i  index ys (_↔_.to f i)

abstract

  -- The tails are related.

  cancel-suc-preserves-relatedness :
     {a} {A : Set a} (x : A) xs ys
    (f : Fin (length (x  xs))  Fin (length (x  ys))) 
    x  xs And x  ys Are-related-by f 
    xs And ys Are-related-by cancel-suc f
  cancel-suc-preserves-relatedness x xs ys f related = helper
    where
    open _↔_ f

    helper : xs And ys Are-related-by cancel-suc f
    helper i with inspect (to (fsuc i)) | related (fsuc i)
    helper i | fsuc k , eq₁ | hyp₁ =
      index xs i                    ≡⟨ hyp₁ 
      index (x  ys) (to (fsuc i))  ≡⟨ cong (index (x  ys)) eq₁ 
      index (x  ys) (fsuc k)       ≡⟨ refl _ ⟩∎
      index ys k                    
    helper i | fzero , eq₁ | hyp₁
      with inspect (to (fzero)) | related (fzero)
    helper i | fzero , eq₁ | hyp₁ | fsuc j , eq₂ | hyp₂ =
      index xs i                    ≡⟨ hyp₁ 
      index (x  ys) (to (fsuc i))  ≡⟨ cong (index (x  ys)) eq₁ 
      index (x  ys) (fzero)        ≡⟨ refl _ 
      x                             ≡⟨ hyp₂ 
      index (x  ys) (to (fzero))   ≡⟨ cong (index (x  ys)) eq₂ 
      index (x  ys) (fsuc j)       ≡⟨ refl _ ⟩∎
      index ys j                    
    helper i | fzero , eq₁ | hyp₁ | fzero , eq₂ | hyp₂ =
      ⊥-elim $ well-behaved f eq₁ eq₂

-- By using cancel-suc we can show that finite sets are isomorphic iff
-- they have equal size.

isomorphic-same-size :  {m n}  (Fin m  Fin n)  m  n
isomorphic-same-size {m} {n} = record
  { to   = to m n
  ; from = λ m≡n  subst  n  Fin m  Fin n) m≡n id
  }
  where
  abstract
    to :  m n  (Fin m  Fin n)  m  n
    to zero    zero    _       = refl _
    to (suc m) (suc n) 1+m↔1+n = cong suc $ to m n $ cancel-suc 1+m↔1+n
    to zero    (suc n)   0↔1+n = ⊥-elim $ _↔_.from 0↔1+n fzero
    to (suc m) zero    1+m↔0   = ⊥-elim $ _↔_.to 1+m↔0 fzero

------------------------------------------------------------------------
-- "Type arithmetic" using Fin

-- Taking the disjoint union of two finite sets amounts to the same
-- thing as adding the sizes.

Fin⊎Fin↔Fin+ :  m n  Fin m  Fin n  Fin (m + n)
Fin⊎Fin↔Fin+ zero n =
  Fin 0  Fin n  ↝⟨ id 
    Fin n      ↝⟨ ⊎-left-identity 
  Fin n          ↝⟨ id ⟩□
  Fin (0 + n)    
Fin⊎Fin↔Fin+ (suc m) n =
  Fin (suc m)  Fin n  ↝⟨ id 
  (  Fin m)  Fin n  ↝⟨ inverse ⊎-assoc 
    (Fin m  Fin n)  ↝⟨ id ⊎-cong Fin⊎Fin↔Fin+ m n 
    Fin (m + n)      ↝⟨ id 
  Fin (suc (m + n))    ↝⟨ id ⟩□
  Fin (suc m + n)      

-- Taking the product of two finite sets amounts to the same thing as
-- multiplying the sizes.

Fin×Fin↔Fin* :  m n  Fin m × Fin n  Fin (m * n)
Fin×Fin↔Fin* zero n =
  Fin 0 × Fin n  ↝⟨ id 
   × Fin n      ↝⟨ ×-left-zero 
                ↝⟨ id ⟩□
  Fin 0          
Fin×Fin↔Fin* (suc m) n =
  Fin (suc m) × Fin n        ↝⟨ id 
  (  Fin m) × Fin n        ↝⟨ ∃-⊎-distrib-right 
   × Fin n  Fin m × Fin n  ↝⟨ ×-left-identity ⊎-cong Fin×Fin↔Fin* m n 
  Fin n  Fin (m * n)        ↝⟨ Fin⊎Fin↔Fin+ _ _ 
  Fin (n + m * n)            ↝⟨ id ⟩□
  Fin (suc m * n)            

-- Forming the function space between two finite sets amounts to the
-- same thing as raising one size to the power of the other (assuming
-- extensionality).

[Fin→Fin]↔Fin^ :
  Extensionality (# 0) (# 0) 
   m n  (Fin m  Fin n)  Fin (n ^ m)
[Fin→Fin]↔Fin^ ext zero n =
  (Fin 0  Fin n)  ↝⟨ id 
  (  Fin n)      ↝⟨ Π⊥↔⊤ ext 
                  ↝⟨ inverse ⊎-right-identity ⟩□
  Fin 1            
[Fin→Fin]↔Fin^ ext (suc m) n =
  (Fin (suc m)  Fin n)          ↝⟨ id 
  (  Fin m  Fin n)            ↝⟨ Π⊎↔Π×Π ext 
  (  Fin n) × (Fin m  Fin n)  ↝⟨ Π-left-identity ×-cong [Fin→Fin]↔Fin^ ext m n 
  Fin n × Fin (n ^ m)            ↝⟨ Fin×Fin↔Fin* _ _ 
  Fin (n * n ^ m)                ↝⟨ id ⟩□
  Fin (n ^ suc m)                

-- Automorphisms on Fin n are isomorphic to Fin (n !) (assuming
-- extensionality).

[Fin↔Fin]↔Fin! :
  Extensionality (# 0) (# 0) 
   n  (Fin n  Fin n)  Fin (n !)
[Fin↔Fin]↔Fin! ext zero =
  Fin 0  Fin 0  ↝⟨ Eq.↔↔≃ ext (Fin-set 0) 
  Fin 0  Fin 0  ↝⟨ id 
              ↔⟨ ≃⊥≃¬ ext 
  ¬             ↝⟨ ¬⊥↔⊤ ext 
                ↝⟨ inverse ⊎-right-identity 
              ↝⟨ id ⟩□
  Fin 1          
[Fin↔Fin]↔Fin! ext (suc n) =
  Fin (suc n)  Fin (suc n)      ↝⟨ [⊤⊎↔⊤⊎]↔[⊤⊎×↔] ext Fin._≟_ 
  Fin (suc n) × (Fin n  Fin n)  ↝⟨ id ×-cong [Fin↔Fin]↔Fin! ext n 
  Fin (suc n) × Fin (n !)        ↝⟨ Fin×Fin↔Fin* _ _ ⟩□
  Fin (suc n !)                  

-- A variant of the previous property.

[Fin≡Fin]↔Fin! :
  Extensionality (# 0) (# 0) 
  Univalence (# 0) 
   n  (Fin n  Fin n)  Fin (n !)
[Fin≡Fin]↔Fin! ext univ n =
  Fin n  Fin n  ↔⟨ ≡≃≃ univ 
  Fin n  Fin n  ↝⟨ inverse $ Eq.↔↔≃ ext (Fin-set n) 
  Fin n  Fin n  ↝⟨ [Fin↔Fin]↔Fin! ext n ⟩□
  Fin (n !)