------------------------------------------------------------------------
-- An implementation of tree sort, formally proved to return a
-- permutation of the input
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Equality
open import Prelude hiding (id)

module Tree-sort.Partial
  {c⁺}
  (eq :  {a p}  Equality-with-J a p c⁺)
  {A : Type}
  (_≤_ : A  A  Bool) -- A comparison function.
  where

open Derived-definitions-and-properties eq

open import Bag-equivalence eq
open import Bijection eq using (_↔_)
open import Function-universe eq hiding (_∘_)
open import List eq
open import Tree eq

------------------------------------------------------------------------
-- Insertion into trees

-- Inserts an element into the tree.

insert : A  Tree A  Tree A
insert x leaf         = singleton x
insert x (node l y r) =
  if x  y then node (insert x l) y r
           else node l y (insert x r)

-- The insert function inserts.

Any-insert :  (P : A  Type) x t 
             AnyT P (insert x t)  P x  AnyT P t
Any-insert P x leaf =
  AnyT P (singleton x)  ↔⟨ Any-singleton P 
  P x                   ↔⟨ inverse ⊎-right-identity 
  P x                 ↔⟨⟩
  P x  AnyT P leaf     
Any-insert P x (node l y r) with x  y
... | true  =
  AnyT P (insert x l)  P y  AnyT P r  ↔⟨ Any-insert P x l ⊎-cong id 
  (P x  AnyT P l)     P y  AnyT P r  ↔⟨ inverse ⊎-assoc 
  P x  AnyT P l       P y  AnyT P r  
... | false =
  AnyT P l  P y  AnyT P (insert x r)  ↔⟨ id ⊎-cong id ⊎-cong Any-insert P x r 
  AnyT P l  P y  P x  AnyT P r       ↔⟨ lemma (AnyT P l) (P y) (P x) (AnyT P r) 
  P x  AnyT P l  P y  AnyT P r       
  where
  -- The following lemma is easy to prove automatically (for instance
  -- by using a ring solver).

  lemma : (A B C D : Type)  A  B  C  D  C  A  B  D
  lemma A B C D =
    A  B  C  D      ↔⟨ id ⊎-cong ⊎-assoc 
    A  (B  C)  D    ↔⟨ id ⊎-cong ⊎-comm ⊎-cong id 
    A  (C  B)  D    ↔⟨ ⊎-assoc 
    (A  C  B)  D    ↔⟨ ⊎-assoc ⊎-cong id 
    ((A  C)  B)  D  ↔⟨ (⊎-comm ⊎-cong id) ⊎-cong id 
    ((C  A)  B)  D  ↔⟨ inverse ⊎-assoc ⊎-cong id 
    (C  A  B)  D    ↔⟨ inverse ⊎-assoc 
    C  (A  B)  D    ↔⟨ id ⊎-cong inverse ⊎-assoc 
    C  A  B  D      

------------------------------------------------------------------------
-- Turning a list into a search tree

-- Converts the list to a search tree.

to-search-tree : List A  Tree A
to-search-tree = foldr insert leaf

-- No elements are added or removed.

to-search-tree-lemma :  xs z  z ∈T to-search-tree xs  z  xs
to-search-tree-lemma [] = λ z 
  z ∈T leaf  ↔⟨⟩
  z   []    
to-search-tree-lemma (x  xs) = λ z 
  z ∈T insert x (to-search-tree xs)  ↔⟨ Any-insert  x  z  x) _ _ 
  z  x  z ∈T to-search-tree xs     ↔⟨ id ⊎-cong to-search-tree-lemma xs z 
  z  x  xs                         

------------------------------------------------------------------------
-- Sorting

-- Sorts a list.

tree-sort : List A  List A
tree-sort = flatten  to-search-tree

-- The result is a permutation of the input.

tree-sort-permutes :  xs  tree-sort xs ≈-bag xs
tree-sort-permutes xs = λ z 
  z   flatten (to-search-tree xs)  ↔⟨ flatten-lemma (to-search-tree xs) z 
  z ∈T to-search-tree xs            ↔⟨ to-search-tree-lemma xs z 
  z   xs