{-# OPTIONS --without-K --safe #-}
module Delay-monad where
open import Equality.Propositional
open import Prelude
open import Bijection equality-with-J using (_↔_)
mutual
data Delay {a} (A : Set a) (i : Size) : Set a where
now : A → Delay A i
later : Delay′ A i → Delay A i
record Delay′ {a} (A : Set a) (i : Size) : Set a where
coinductive
field
force : {j : Size< i} → Delay A j
open Delay′ public
module _ {a} {A : Set a} where
mutual
never : Delay A ∞
never = later never′
never′ : Delay′ A ∞
force never′ = never
drop-later : ∀ {i} {j : Size< i} → Delay A i → Delay A j
drop-later (now x) = now x
drop-later (later x) = force x
Delay↔ : ∀ {i} → Delay A i ↔ A ⊎ Delay′ A i
Delay↔ = record
{ surjection = record
{ logical-equivalence = record
{ to = λ { (now x) → inj₁ x; (later x) → inj₂ x }
; from = [ now , later ]
}
; right-inverse-of = [ (λ _ → refl) , (λ _ → refl) ]
}
; left-inverse-of = λ { (now _) → refl; (later _) → refl }
}