------------------------------------------------------------------------ -- Some definitions related to the binary sum type former ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Sum {c⁺} (eq : ∀ {a p} → Equality-with-J a p c⁺) where open Derived-definitions-and-properties eq open import Prelude private variable a : Level A B : Set a x : A f₁ f₂ g₁ g₂ : A → B -- Functor laws. ⊎-map-id : ⊎-map id id x ≡ x ⊎-map-id {x = inj₁ _} = refl _ ⊎-map-id {x = inj₂ _} = refl _ ⊎-map-∘ : ∀ x → ⊎-map (f₁ ∘ g₁) (f₂ ∘ g₂) x ≡ ⊎-map f₁ f₂ (⊎-map g₁ g₂ x) ⊎-map-∘ = [ (λ _ → refl _) , (λ _ → refl _) ]