{-# OPTIONS --cubical --safe #-}
import Equality.Path as P
module Erased.Cubical
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
open import Prelude
open import Bijection equality-with-J using (_↔_)
import Bijection P.equality-with-J as PB
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq
using (_≃_; Is-equivalence)
import Equivalence P.equality-with-J as PEq
open import Equivalence-relation equality-with-J
import Erased.Basics equality-with-J as EB
import Erased.Level-1 equality-with-J as E₁
open import Function-universe equality-with-J as F
open import H-level.Closure equality-with-J
open import H-level.Truncation.Propositional eq as Trunc using (∥_∥)
open import Quotient eq as Quotient hiding ([_])
open import Surjection equality-with-J as Surjection using (_↠_)
private
variable
a p r : Level
A B : Type a
R : A → A → Type r
x y : A
A↠B : A ↠ B
[]-cong-Path :
{@0 A : Type a} {@0 x y : A} →
EB.Erased (x P.≡ y) → EB.[ x ] P.≡ EB.[ y ]
[]-cong-Path EB.[ eq ] = λ i → EB.[ eq i ]
[]-cong-Path-equivalence :
{@0 A : Type a} {@0 x y : A} →
Is-equivalence ([]-cong-Path {x = x} {y = y})
[]-cong-Path-equivalence =
_≃_.is-equivalence $ Eq.↔⇒≃ (record
{ surjection = record
{ logical-equivalence = record
{ from = λ eq → EB.[ P.cong EB.erased eq ]
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
})
[]-cong-Path-[refl] :
{@0 A : Type a} {@0 x : A} →
[]-cong-Path EB.[ P.refl {x = x} ] P.≡ P.refl {x = EB.[ x ]}
[]-cong-Path-[refl] = P.refl
[]-cong : {@0 A : Type a} {@0 x y : A} →
EB.Erased (x ≡ y) → EB.[ x ] ≡ EB.[ y ]
[]-cong {x = x} {y = y} =
EB.Erased (x ≡ y) ↝⟨ (λ (EB.[ eq ]) → EB.[ _↔_.to ≡↔≡ eq ]) ⟩
EB.Erased (x P.≡ y) ↝⟨ []-cong-Path ⟩
EB.[ x ] P.≡ EB.[ y ] ↔⟨ inverse ≡↔≡ ⟩□
EB.[ x ] ≡ EB.[ y ] □
[]-cong-equivalence :
{@0 A : Type a} {@0 x y : A} →
Is-equivalence ([]-cong {x = x} {y = y})
[]-cong-equivalence {x = x} {y = y} = _≃_.is-equivalence (
EB.Erased (x ≡ y) ↔⟨ E₁.[]-cong₁.Erased-cong-↔ []-cong ≡↔≡ ⟩
EB.Erased (x P.≡ y) ↔⟨ Eq.⟨ _ , []-cong-Path-equivalence ⟩ ⟩
EB.[ x ] P.≡ EB.[ y ] ↔⟨ inverse ≡↔≡ ⟩□
EB.[ x ] ≡ EB.[ y ] □)
[]-cong-[refl] :
{@0 A : Type a} {@0 x : A} →
[]-cong EB.[ refl x ] ≡ refl EB.[ x ]
[]-cong-[refl] {x = x} =
sym $ _↔_.to (from≡↔≡to Eq.⟨ _ , []-cong-equivalence ⟩) (
EB.[ _↔_.from ≡↔≡ (P.cong EB.erased (_↔_.to ≡↔≡ (refl EB.[ x ]))) ] ≡⟨ []-cong EB.[ sym cong≡cong ] ⟩
EB.[ cong EB.erased (_↔_.from ≡↔≡ (_↔_.to ≡↔≡ (refl EB.[ x ]))) ] ≡⟨ []-cong EB.[ cong (cong EB.erased) (_↔_.left-inverse-of ≡↔≡ _) ] ⟩
EB.[ cong EB.erased (refl EB.[ x ]) ] ≡⟨ []-cong EB.[ cong-refl _ ] ⟩∎
EB.[ refl x ] ∎)
instance-of-[]-cong-axiomatisation : EB.[]-cong-axiomatisation a
instance-of-[]-cong-axiomatisation = λ where
.EB.[]-cong-axiomatisation.[]-cong → []-cong
.EB.[]-cong-axiomatisation.[]-cong-equivalence → []-cong-equivalence
.EB.[]-cong-axiomatisation.[]-cong-[refl] → []-cong-[refl]
open import Erased equality-with-J instance-of-[]-cong-axiomatisation
public
hiding ([]-cong; []-cong-equivalence; []-cong-[refl]; Π-Erased↔Π0[])
private
variable
s : Very-stableᴱ-≡ A
private
push-subst-[]-Path :
{@0 P : A → Type p} {@0 p : P x} {x≡y : x P.≡ y} →
P.subst (λ x → Erased (P x)) x≡y [ p ] ≡ [ P.subst P x≡y p ]
push-subst-[]-Path = refl _
Is-proposition-Erased :
{@0 A : Type a} →
@0 Is-proposition A → Is-proposition (Erased A)
Is-proposition-Erased {A = A} prop =
_↔_.from (H-level↔H-level 1)
(Is-proposition-Erased′
(_↔_.to (H-level↔H-level 1) prop))
where
Is-proposition-Erased′ :
@0 P.Is-proposition A → P.Is-proposition (Erased A)
Is-proposition-Erased′ prop x y = λ i →
[ prop (erased x) (erased y) i ]
Is-set-Erased :
{@0 A : Type a} →
@0 Is-set A → Is-set (Erased A)
Is-set-Erased {A = A} set =
_↔_.from (H-level↔H-level 2)
(Is-set-Erased′
(_↔_.to (H-level↔H-level 2) set))
where
Is-set-Erased′ : @0 P.Is-set A → P.Is-set (Erased A)
Is-set-Erased′ set p q = λ i j →
[ set (P.cong erased p) (P.cong erased q) i j ]
Π-Erased↔Π0[] :
{@0 A : Type a} {@0 P : Erased A → Type p} →
((x : Erased A) → P x) PB.↔ ((@0 x : A) → P [ x ])
Π-Erased↔Π0[] = record
{ surjection = record
{ logical-equivalence = Π-Erased⇔Π0
; right-inverse-of = λ f _ → f
}
; left-inverse-of = λ f _ → f
}
Π-Erased≃Π0[] :
{@0 A : Type a} {@0 P : Erased A → Type p} →
((x : Erased A) → P x) PEq.≃ ((@0 x : A) → P [ x ])
Π-Erased≃Π0[] = record
{ to = λ f x → f [ x ]
; is-equivalence =
(λ f ([ x ]) → f x)
, (λ f _ → f)
, (λ f _ → f)
, (λ f _ _ x → f [ x ])
}
Π-Erased↔Π0 :
{@0 A : Type a} {@0 P : A → Type p} →
((x : Erased A) → P (erased x)) PB.↔ ((@0 x : A) → P x)
Π-Erased↔Π0 = Π-Erased↔Π0[]
Π-Erased≃Π0 :
{@0 A : Type a} {@0 P : A → Type p} →
((x : Erased A) → P (erased x)) PEq.≃ ((@0 x : A) → P x)
Π-Erased≃Π0 = Π-Erased≃Π0[]
Very-stable-≡-/ :
Is-equivalence-relation R →
(∀ x y → Is-proposition (R x y)) →
(∀ x y → Stable (R x y)) →
Very-stable-≡ (A / R)
Very-stable-≡-/ {A = A} {R = R} equiv prop s =
Quotient.elim-prop λ where
.[]ʳ x → Quotient.elim-prop λ where
.[]ʳ y → $⟨ s _ _ ⟩
Stable (R x y) ↝⟨ flip Stable-proposition→Very-stable (prop _ _) ⟩
Very-stable (R x y) ↝⟨ Very-stable-cong _ (related≃[equal] equiv (prop _ _)) ⟩□
Very-stable (Quotient.[ x ] ≡ Quotient.[ y ]) □
.is-propositionʳ _ → Very-stable-propositional ext
.is-propositionʳ _ →
Π-closure ext 1 λ _ →
Very-stable-propositional ext
↠→↔Erased-singleton :
{@0 y : B}
(A↠B : A ↠ B) →
Very-stableᴱ-≡ B →
∥ (∃ λ (x : A) → Erased (_↠_.to A↠B x ≡ y)) ∥ ↔ Erased-singleton y
↠→↔Erased-singleton {A = A} {y = y} A↠B s =
∥ (∃ λ (x : A) → Erased (_↠_.to A↠B x ≡ y)) ∥ ↝⟨ Trunc.∥∥-cong-⇔ (Surjection.Σ-cong-⇔ A↠B λ _ → F.id) ⟩
∥ Erased-singleton y ∥ ↝⟨ Trunc.∥∥↔ (erased-singleton-with-erased-center-propositional s) ⟩□
Erased-singleton y □
mutual
↠→Erased-singleton→ :
{@0 y : B}
(A↠B : A ↠ B) →
Erased-singleton y →
∥ (∃ λ (x : A) → Erased (_↠_.to A↠B x ≡ y)) ∥
↠→Erased-singleton→ = _
_ : _↔_.from (↠→↔Erased-singleton A↠B s) x ≡
↠→Erased-singleton→ A↠B x
_ = refl _
Σ-Erased-∥-Σ-Erased-≡-∥↔ :
(A↠B : A ↠ B) →
Very-stableᴱ-≡ B →
(∃ λ (x : Erased B) →
∥ (∃ λ (y : A) → Erased (_↠_.to A↠B y ≡ erased x)) ∥) ↔
B
Σ-Erased-∥-Σ-Erased-≡-∥↔ {A = A} {B = B} A↠B s =
(∃ λ (x : Erased B) →
∥ (∃ λ (y : A) → Erased (_↠_.to A↠B y ≡ erased x)) ∥) ↝⟨ (∃-cong λ _ → ↠→↔Erased-singleton A↠B s) ⟩
(∃ λ (x : Erased B) → Erased-singleton (erased x)) ↝⟨ Σ-Erased-Erased-singleton↔ ⟩□
B □
mutual
→Σ-Erased-∥-Σ-Erased-≡-∥ :
(A↠B : A ↠ B) →
B →
∃ λ (x : Erased B) →
∥ (∃ λ (y : A) → Erased (_↠_.to A↠B y ≡ erased x)) ∥
→Σ-Erased-∥-Σ-Erased-≡-∥ = _
_ : _↔_.from (Σ-Erased-∥-Σ-Erased-≡-∥↔ A↠B s) x ≡
→Σ-Erased-∥-Σ-Erased-≡-∥ A↠B x
_ = refl _
@0 to-Σ-Erased-∥-Σ-Erased-≡-∥↔≡ :
∀ (A↠B : A ↠ B) (s : Very-stableᴱ-≡ B) x →
_↔_.to (Σ-Erased-∥-Σ-Erased-≡-∥↔ A↠B s) x ≡ erased (proj₁ x)
to-Σ-Erased-∥-Σ-Erased-≡-∥↔≡ A↠B s ([ x ] , y) =
_↔_.to (Σ-Erased-∥-Σ-Erased-≡-∥↔ A↠B s) ([ x ] , y) ≡⟨⟩
proj₁ (_↔_.to (↠→↔Erased-singleton A↠B s) y) ≡⟨ erased (proj₂ (_↔_.to (↠→↔Erased-singleton A↠B s) y)) ⟩∎
x ∎