{-# OPTIONS --cubical --safe #-}
import Equality.Path as P
module Equality.Path.Isomorphisms.Univalence
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq
import Equality.Path.Univalence as PU
open import Prelude
open import Equivalence equality-with-J
open import Univalence-axiom equality-with-J
open import Equality.Path.Isomorphisms eq
private
variable
ℓ : Level
opaque
univ : Univalence ℓ
univ = _≃_.from Univalence≃Univalence PU.univ
prop-ext : Propositional-extensionality ℓ
prop-ext =
_≃_.from
(Propositional-extensionality-is-univalence-for-propositions ext)
(λ _ _ → univ)