module Data.Covec where
open import Coinduction
open import Data.Nat using (ℕ; zero; suc)
open import Data.Conat as Coℕ using (Coℕ; zero; suc; _+_)
open import Data.Cofin using (Cofin; zero; suc)
open import Data.Vec using (Vec; []; _∷_)
open import Data.Colist as Colist using (Colist; []; _∷_)
open import Data.Product using (_,_)
open import Relation.Binary
infixr 5 _∷_
data Covec (A : Set) : Coℕ → Set where
[] : Covec A zero
_∷_ : ∀ {n} (x : A) (xs : ∞ (Covec A (♭ n))) → Covec A (suc n)
map : ∀ {A B n} → (A → B) → Covec A n → Covec B n
map f [] = []
map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs)
fromVec : ∀ {A n} → Vec A n → Covec A (Coℕ.fromℕ n)
fromVec [] = []
fromVec (x ∷ xs) = x ∷ ♯ fromVec xs
fromColist : ∀ {A} (xs : Colist A) → Covec A (Colist.length xs)
fromColist [] = []
fromColist (x ∷ xs) = x ∷ ♯ fromColist (♭ xs)
take : ∀ {A} m {n} → Covec A (m + n) → Covec A m
take zero xs = []
take (suc n) (x ∷ xs) = x ∷ ♯ take (♭ n) (♭ xs)
drop : ∀ {A} m {n} → Covec A (Coℕ.fromℕ m + n) → Covec A n
drop zero xs = xs
drop (suc n) (x ∷ xs) = drop n (♭ xs)
replicate : ∀ {A} n → A → Covec A n
replicate zero x = []
replicate (suc n) x = x ∷ ♯ replicate (♭ n) x
lookup : ∀ {A n} → Cofin n → Covec A n → A
lookup zero (x ∷ xs) = x
lookup (suc n) (x ∷ xs) = lookup n (♭ xs)
infixr 5 _++_
_++_ : ∀ {A m n} → Covec A m → Covec A n → Covec A (m + n)
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ ♯ (♭ xs ++ ys)
[_] : ∀ {A} → A → Covec A (suc (♯ zero))
[ x ] = x ∷ ♯ []
infix 4 _≈_
data _≈_ {A} : ∀ {n} (xs ys : Covec A n) → Set where
[] : [] ≈ []
_∷_ : ∀ {n} x {xs ys}
(xs≈ : ∞ (♭ xs ≈ ♭ ys)) → _≈_ {n = suc n} (x ∷ xs) (x ∷ ys)
infix 4 _∈_
data _∈_ {A} : ∀ {n} → A → Covec A n → Set where
here : ∀ {n x } {xs} → _∈_ {n = suc n} x (x ∷ xs)
there : ∀ {n x y} {xs} (x∈xs : x ∈ ♭ xs) → _∈_ {n = suc n} x (y ∷ xs)
infix 4 _⊑_
data _⊑_ {A} : ∀ {m n} → Covec A m → Covec A n → Set where
[] : ∀ {n} {ys : Covec A n} → [] ⊑ ys
_∷_ : ∀ {m n} x {xs ys} (p : ∞ (♭ xs ⊑ ♭ ys)) →
_⊑_ {m = suc m} {suc n} (x ∷ xs) (x ∷ ys)
setoid : Set → Coℕ → Setoid _ _
setoid A n = record
{ Carrier = Covec A n
; _≈_ = _≈_
; isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
}
where
refl : ∀ {A n} → Reflexive (_≈_ {A} {n})
refl {x = []} = []
refl {x = x ∷ xs} = x ∷ ♯ refl
sym : ∀ {A n} → Symmetric (_≈_ {A} {n})
sym [] = []
sym (x ∷ xs≈) = x ∷ ♯ sym (♭ xs≈)
trans : ∀ {A n} → Transitive (_≈_ {A} {n})
trans [] [] = []
trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈)
poset : Set → Coℕ → Poset _ _ _
poset A n = record
{ Carrier = Covec A n
; _≈_ = _≈_
; _≤_ = _⊑_
; isPartialOrder = record
{ isPreorder = record
{ isEquivalence = Setoid.isEquivalence (setoid A n)
; reflexive = reflexive
; trans = trans
; ∼-resp-≈ = ((λ {_} → ⊑-resp-≈ˡ) , λ {_} → ⊑-resp-≈ʳ)
}
; antisym = antisym
}
}
where
reflexive : ∀ {A n} → _≈_ {A} {n} ⇒ _⊑_
reflexive [] = []
reflexive (x ∷ xs≈) = x ∷ ♯ reflexive (♭ xs≈)
trans : ∀ {A n} → Transitive (_⊑_ {A} {n})
trans [] _ = []
trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈)
⊑-resp-≈ˡ : ∀ {A n} {xs : Covec A n} →
(λ ys → xs ⊑ ys) Respects _≈_ {A} {n}
⊑-resp-≈ˡ _ [] = []
⊑-resp-≈ˡ (x ∷ xs≈) (.x ∷ p) = x ∷ ♯ ⊑-resp-≈ˡ (♭ xs≈) (♭ p)
⊑-resp-≈ʳ : ∀ {A n} {ys : Covec A n} →
(λ xs → xs ⊑ ys) Respects _≈_ {A} {n}
⊑-resp-≈ʳ [] _ = []
⊑-resp-≈ʳ (x ∷ xs≈) (.x ∷ p) = x ∷ ♯ ⊑-resp-≈ʳ (♭ xs≈) (♭ p)
antisym : ∀ {A n} → Antisymmetric (_≈_ {A} {n}) _⊑_
antisym [] [] = []
antisym (x ∷ p₁) (.x ∷ p₂) = x ∷ ♯ antisym (♭ p₁) (♭ p₂)
map-cong : ∀ {A B n} (f : A → B) → _≈_ {n = n} =[ map f ]⇒ _≈_
map-cong f [] = []
map-cong f (x ∷ xs≈) = f x ∷ ♯ map-cong f (♭ xs≈)
take-⊑ : ∀ {A} m {n} (xs : Covec A (m + n)) → take m xs ⊑ xs
take-⊑ zero xs = []
take-⊑ (suc n) (x ∷ xs) = x ∷ ♯ take-⊑ (♭ n) (♭ xs)