------------------------------------------------------------------------
-- The Agda standard library
--
-- Results concerning uniqueness of identity proofs
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Axiom.UniquenessOfIdentityProofs where
open import Data.Empty
open import Relation.Nullary hiding (Irrelevant)
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality.Core
------------------------------------------------------------------------
-- Definition
--
-- Uniqueness of Identity Proofs (UIP) states that all proofs of
-- equality are themselves equal. In other words, the equality relation
-- is irrelevant. Here we define UIP relative to a given type.
UIP : ∀ {a} (A : Set a) → Set a
UIP A = Irrelevant {A = A} _≡_
------------------------------------------------------------------------
-- Properties
-- UIP always holds when using axiom K
-- (see `Axiom.UniquenessOfIdentityProofs.WithK`).
-- The existence of a constant function over proofs of equality for
-- elements in A is enough to prove UIP for A. Indeed, we can relate any
-- proof to its image via this function which we then know is equal to
-- the image of any other proof.
module Constant⇒UIP
{a} {A : Set a} (f : _≡_ {A = A} ⇒ _≡_)
(f-constant : ∀ {a b} (p q : a ≡ b) → f p ≡ f q)
where
≡-canonical : ∀ {a b} (p : a ≡ b) → trans (sym (f refl)) (f p) ≡ p
≡-canonical refl = trans-symˡ (f refl)
≡-irrelevant : UIP A
≡-irrelevant p q = begin
p ≡⟨ sym (≡-canonical p) ⟩
trans (sym (f refl)) (f p) ≡⟨ cong (trans _) (f-constant p q) ⟩
trans (sym (f refl)) (f q) ≡⟨ ≡-canonical q ⟩
q ∎
where open ≡-Reasoning
-- If equality is decidable for a given type, then we can prove UIP for
-- that type. Indeed, the decision procedure allows us to define a
-- function over proofs of equality which is constant: it returns the
-- proof produced by the decision procedure.
module Decidable⇒UIP
{a} {A : Set a} (_≟_ : Decidable {A = A} _≡_)
where
≡-normalise : _≡_ {A = A} ⇒ _≡_
≡-normalise {a} {b} a≡b with a ≟ b
... | yes p = p
... | no ¬p = ⊥-elim (¬p a≡b)
≡-normalise-constant : ∀ {a b} (p q : a ≡ b) → ≡-normalise p ≡ ≡-normalise q
≡-normalise-constant {a} {b} p q with a ≟ b
... | yes _ = refl
... | no ¬p = ⊥-elim (¬p p)
≡-irrelevant : UIP A
≡-irrelevant = Constant⇒UIP.≡-irrelevant ≡-normalise ≡-normalise-constant