-- Simply-typed lambda definability and normalization by evaluation
-- formalized in Agda
--
-- Author: Andreas Abel, May/June 2018

-- 3. Adapting reflection/reification to obtain normalization

-- The proof of reflection and reification does not introduce β-redexes,
-- thus, we can strengthen it to work on β-normal forms.

{-# OPTIONS --postfix-projections #-}
{-# OPTIONS --rewriting #-}

open import Library
import SimpleTypes

module NBE
  (Base : Set)  (B⦅_⦆ : Base  Set) (open SimpleTypes Base B⦅_⦆)
  (Const : Set) (ty : Const  Ty) (c⦅_⦆ : (c : Const)  T⦅ ty c )
  where

open import STLCDefinable Base B⦅_⦆ Const ty c⦅_⦆

-- β-normal forms obtained as a restriction of terms.
-- Uses the auxiliary concept of "neutral" which characterizes
-- normal eliminations from a variable or constant.

mutual

  -- Neutral are constants and variables and their application to normal forms.

  data Neutral :  {Γ T} (t : Tm Γ T)  Set where
    neCon :  {Γ} (c : Const)  Neutral {Γ} (con c)
    neVar :  {Γ T} (x : Var T Γ)  Neutral (var x)
    neApp :  {Γ T U} {t : Tm Γ (U  T)} {u : Tm Γ U}
      (ne : Neutral t) (nf : Normal u)  Neutral (app t u)

  -- A normal form is a neutral unter a prefix of λ-abstractions.

  data Normal {Γ} :  {T} (t : Tm Γ T)  Set where
    nfNe  : ∀{T} {t : Tm Γ T} (ne : Neutral t)  Normal t
    nfAbs : ∀{T U} {t : Tm (Γ  U) T} (nf : Normal t)  Normal (abs t)

-- Weakening normal forms

mutual
  wkNe : ∀{Γ Δ T} {t : Tm Γ T} (ne : Neutral t) (τ : Δ  Γ)  Neutral (t w[ τ ]ᵉ)
  wkNe (neCon c)     τ = neCon c
  wkNe (neVar x)     τ = neVar _
  wkNe (neApp ne nf) τ = neApp (wkNe ne τ) (wkNf nf τ)

  wkNf : ∀{Γ Δ T} {t : Tm Γ T} (nf : Normal t) (τ : Δ  Γ)  Normal (t w[ τ ]ᵉ)
  wkNf (nfNe  ne) τ = nfNe (wkNe ne τ)
  wkNf (nfAbs nf) τ = nfAbs (wkNf nf _)

-- A syntactical KLP: being the image of a normal form.

record NeImg Γ T (f : Fun Γ T) : Set where
  constructor neImg; field
    {t} : Tm Γ T
    ne  : Neutral t
    eq  : E⦅ t   f

record NfImg Γ T (f : Fun Γ T) : Set where
  constructor nfImg; field
    {t} : Tm Γ T
    nf  : Normal t
    eq  : E⦅ t   f

-- Derived constructors of NfImg.

neImgToNf : ∀{Γ T f}  NeImg Γ T f  NfImg Γ T f
neImgToNf (neImg ne eq) = nfImg (nfNe ne) eq

nfImgAbs : ∀{Γ T U f}  NfImg (Γ  U) T f  NfImg Γ (U  T) (curry f)
nfImgAbs (nfImg nf ⦅nf⦆≡f) = nfImg (nfAbs nf) (cong curry ⦅nf⦆≡f)

-- A Kripke model of images of normal forms.
-- At base type, a normal form is necessarily neutral.

NfKLP-Base : STLC-KLP-Base
NfKLP-Base .STLC-KLP-Base.B⟦_⟧ b Γ f                    =  NeImg Γ (base b) f
NfKLP-Base .STLC-KLP-Base.monB b τ (neImg {t} ne refl)  =  neImg (wkNe ne τ) (wk-eval t τ)

-- Reflection / reification

-- This time, the proof also maintains witnesses of neutrality / normality.

module _ (open STLC-KLP-Ext NfKLP-Base) where
  mutual

    reflectNe : ∀{Γ} T {t : Tm Γ T} (ne : Neutral t)  T⟦ T  Γ E⦅ t 
    reflectNe (base b) ne = neImg ne refl
    reflectNe (U  T) ne τ ⟦d⟧ with reifyNf U ⟦d⟧
    ... | nfImg nf refl = reflectNe T (neApp (wkNe ne τ) nf) -- REWRITE wk-eval

    reifyNf : ∀{Γ} T {f : Fun Γ T} (⟦f⟧ : T⟦ T  Γ f)  NfImg Γ T f
    reifyNf (base b) ⟦f⟧ = neImgToNf ⟦f⟧
    reifyNf (U  T) ⟦f⟧ = nfImgAbs (reifyNf T (⟦f⟧ (weak id≤) (reflectNe U (neVar vz))))

NfKLP : STLC-KLP
NfKLP .STLC-KLP.klp-base = NfKLP-Base
NfKLP .STLC-KLP.satC c = reflectNe (ty c) (neCon c)

open Fund NfKLP

-- Identity environment

idEnv :  Γ  C⟦ Γ  Γ id
idEnv ε = _
idEnv (Γ  U) = monC Γ (weak id≤) (idEnv Γ) , reflectNe U (neVar vz)

-- Normalization by evaluation

-- For every well-typed term, we obtain a normal form with the same denotation.

nbe : ∀{Γ T} (t : Tm Γ T)  NfImg Γ T E⦅ t 
nbe t = reifyNf _ (fund t (idEnv _))