------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for reasoning with a partial setoid
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.PartialSetoid {s₁ s₂} (S : PartialSetoid s₁ s₂) where
open PartialSetoid S
------------------------------------------------------------------------
-- Publicly re-export base contents
open import Relation.Binary.Reasoning.Base.Partial _≈_ trans public
renaming (_∼⟨_⟩_ to _≈⟨_⟩_)
infixr 2 _≈˘⟨_⟩_
_≈˘⟨_⟩_ : ∀ x {y z} → y ≈ x → y IsRelatedTo z → x IsRelatedTo z
x ≈˘⟨ x≈y ⟩ y∼z = x ≈⟨ sym x≈y ⟩ y∼z