{-# OPTIONS --without-K --safe #-}
open import Equality
module Injection
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open Derived-definitions-and-properties eq
open import Prelude as P hiding (id) renaming (_∘_ to _⊚_)
Injective : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → Set (a ⊔ b)
Injective f = ∀ {x y} → f x ≡ f y → x ≡ y
infix 0 _↣_
record _↣_ {f t} (From : Set f) (To : Set t) : Set (f ⊔ t) where
field
to : From → To
injective : Injective to
id : ∀ {a} {A : Set a} → A ↣ A
id = record
{ to = P.id
; injective = P.id
}
infixr 9 _∘_
_∘_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
B ↣ C → A ↣ B → A ↣ C
f ∘ g = record
{ to = to′
; injective = injective′
}
where
open _↣_
to′ = to f ⊚ to g
injective′ : Injective to′
injective′ = injective g ⊚ injective f
infix -1 finally-↣
infixr -2 step-↣
step-↣ : ∀ {a b c} (A : Set a) {B : Set b} {C : Set c} →
B ↣ C → A ↣ B → A ↣ C
step-↣ _ = _∘_
syntax step-↣ A B↣C A↣B = A ↣⟨ A↣B ⟩ B↣C
finally-↣ : ∀ {a b} (A : Set a) (B : Set b) → A ↣ B → A ↣ B
finally-↣ _ _ A↣B = A↣B
syntax finally-↣ A B A↣B = A ↣⟨ A↣B ⟩□ B □