------------------------------------------------------------------------
-- The usage relation is closed under weakening.
------------------------------------------------------------------------

open import Graded.Modality using (Modality)
open import Graded.Usage.Restrictions

module Graded.Usage.Weakening
  {a} {M : Set a}
  (𝕄 : Modality M)
  (R : Usage-restrictions M)
  where

open Modality 𝕄

open import Graded.Modality M hiding (Modality)
open import Graded.Context 𝕄
open import Graded.Context.Properties 𝕄
open import Graded.Modality.Natrec-star-instances
import Graded.Modality.Properties.Has-well-behaved-zero as WB𝟘
open import Graded.Modality.Properties.PartialOrder
  semiring-with-meet
open import Graded.Modality.Properties.Star
  semiring-with-meet
open import Graded.Usage 𝕄 R
open import Graded.Usage.Properties 𝕄 R
open import Graded.Mode 𝕄
open import Definition.Untyped M
open import Definition.Untyped.Inversion M

open import Tools.Bool using (T)
open import Tools.Fin
open import Tools.Function
open import Tools.Nat using (Nat) renaming (_+_ to _+ⁿ_)
open import Tools.Product
open import Tools.PropositionalEquality as PE
import Tools.Reasoning.PartialOrder
import Tools.Reasoning.PropositionalEquality
open import Tools.Sum

private
  variable
     n m : Nat
    x : Fin n
    ρ : Wk m n
    p r : M
    γ γ′ δ η θ χ : Conₘ n
    t t′ : Term n
    m′ : Mode

-- Weakenings of modality contexts

wkConₘ : Wk m n  Conₘ n  Conₘ m
wkConₘ id γ = γ
wkConₘ (step ρ) γ = (wkConₘ ρ γ)  𝟘
wkConₘ (lift ρ) (γ  p) = wkConₘ ρ γ  p

-- Weakening the zero context is the zero context
-- wkConₘ ρ 𝟘ᶜ ≡ 𝟘ᶜ

wk-𝟘ᶜ : (ρ : Wk m n)  wkConₘ ρ 𝟘ᶜ  𝟘ᶜ
wk-𝟘ᶜ id = PE.refl
wk-𝟘ᶜ (step ρ) = cong  γ  γ  𝟘) (wk-𝟘ᶜ ρ)
wk-𝟘ᶜ (lift ρ) = cong  γ  γ  𝟘) (wk-𝟘ᶜ ρ)

-- Weakening of modality contexts distribute over addition
-- wkConₘ ρ (γ +ᶜ δ) ≈ᶜ wkConₘ ρ γ +ᶜ wkConₘ ρ δ

wk-+ᶜ : (ρ : Wk m n)  wkConₘ ρ (γ +ᶜ δ) ≈ᶜ wkConₘ ρ γ +ᶜ wkConₘ ρ δ
wk-+ᶜ id = ≈ᶜ-refl
wk-+ᶜ (step ρ) = wk-+ᶜ ρ  PE.sym (+-identityˡ 𝟘)
wk-+ᶜ {γ = γ  p} {δ  q} (lift ρ) = wk-+ᶜ ρ  refl

-- Weakening of modality contexts distribute over multiplication
-- wkConₘ ρ (p ·ᶜ γ) ≈ᶜ p ·ᶜ wkConₘ ρ γ

wk-·ᶜ : (ρ : Wk m n)  wkConₘ ρ (p ·ᶜ γ) ≈ᶜ p ·ᶜ wkConₘ ρ γ
wk-·ᶜ id = ≈ᶜ-refl
wk-·ᶜ (step ρ) = wk-·ᶜ ρ  PE.sym (·-zeroʳ _)
wk-·ᶜ {γ = γ  p} (lift ρ) = wk-·ᶜ ρ  refl

-- Weakening of modality contexts distribute over meet
-- wkConₘ ρ (γ ∧ᶜ δ) ≈ᶜ wkConₘ ρ γ ∧ᶜ wkConₘ ρ δ

wk-∧ᶜ : (ρ : Wk m n)  wkConₘ ρ (γ ∧ᶜ δ) ≈ᶜ wkConₘ ρ γ ∧ᶜ wkConₘ ρ δ
wk-∧ᶜ id = ≈ᶜ-refl
wk-∧ᶜ (step ρ) = wk-∧ᶜ ρ  PE.sym (∧-idem 𝟘)
wk-∧ᶜ {γ = γ  p} {δ  q} (lift ρ) = wk-∧ᶜ ρ  refl

-- Weakening of modality contexts distribute over the reccurence operator
-- wkConₘ ρ (γ ⊛ᵣ δ) ≈ᶜ (wkConₘ ρ γ) ⊛ᵣ (wkConₘ ρ δ)

wk-⊛ᶜ :
   has-star : Has-star semiring-with-meet  
  (ρ : Wk m n)  wkConₘ ρ (γ ⊛ᶜ δ  r) ≈ᶜ (wkConₘ ρ γ) ⊛ᶜ (wkConₘ ρ δ)  r
wk-⊛ᶜ id = ≈ᶜ-refl
wk-⊛ᶜ (step ρ) = wk-⊛ᶜ ρ  PE.sym (⊛-idem-𝟘 _)
wk-⊛ᶜ {γ = γ  p} {δ  q} (lift ρ) = wk-⊛ᶜ ρ  refl

-- Weakening of modality contexts is monotone
-- If γ ≤ᶜ δ then wkConₘ ρ γ ≤ᶜ wkConₘ ρ δ

wk-≤ᶜ : (ρ : Wk m n)  γ ≤ᶜ δ  wkConₘ ρ γ ≤ᶜ wkConₘ ρ δ
wk-≤ᶜ id γ≤δ = γ≤δ
wk-≤ᶜ (step ρ) γ≤δ = (wk-≤ᶜ ρ γ≤δ)  ≤-refl
wk-≤ᶜ {γ = γ  p} {δ  q} (lift ρ) (γ≤δ  p≤q) = wk-≤ᶜ ρ γ≤δ  p≤q

-- Lemma for usage of weakened variables

wkUsageVar : (ρ : Wk m n)  (x : Fin n)
            wkConₘ ρ (𝟘ᶜ , x  p)  𝟘ᶜ , wkVar ρ x  p
wkUsageVar id x = PE.refl
wkUsageVar (step ρ) x = cong  γ  γ  𝟘) (wkUsageVar ρ x)
wkUsageVar (lift ρ) x0 = cong  γ  γ  _) (wk-𝟘ᶜ ρ)
wkUsageVar (lift ρ) (x +1) = cong  γ  γ  𝟘) (wkUsageVar ρ x)

-- Usage of weakened terms: if γ ▸[ m ] t then
-- wkConₘ ρ γ ▸[ m ] wk ρ t.

wkUsage :
  {γ : Conₘ n}  (ρ : Wk m n)  γ ▸[ m′ ] t  wkConₘ ρ γ ▸[ m′ ] wk ρ t
wkUsage ρ Uₘ = PE.subst  γ  γ ▸[ _ ] U) (PE.sym (wk-𝟘ᶜ ρ)) Uₘ
wkUsage ρ ℕₘ = PE.subst  γ  γ ▸[ _ ] ) (PE.sym (wk-𝟘ᶜ ρ)) ℕₘ
wkUsage ρ Emptyₘ =
  PE.subst  γ  γ ▸[ _ ] Empty) (PE.sym (wk-𝟘ᶜ ρ)) Emptyₘ
wkUsage ρ Unitₘ =
  PE.subst  γ  γ ▸[ _ ] Unit) (PE.sym (wk-𝟘ᶜ ρ)) Unitₘ
wkUsage ρ (ΠΣₘ γ▸F δ▸G) =
  sub (ΠΣₘ (wkUsage ρ γ▸F) (wkUsage (lift ρ) δ▸G))
      (≤ᶜ-reflexive (wk-+ᶜ ρ))
wkUsage ρ var =
  PE.subst  γ  γ ▸[ _ ] wk ρ (var _)) (PE.sym (wkUsageVar ρ _)) var
wkUsage ρ (lamₘ γ▸t) = lamₘ (wkUsage (lift ρ) γ▸t)
wkUsage ρ (γ▸t ∘ₘ δ▸u) =
  sub ((wkUsage ρ γ▸t) ∘ₘ (wkUsage ρ δ▸u))
      (≤ᶜ-reflexive (≈ᶜ-trans (wk-+ᶜ ρ) (+ᶜ-congˡ (wk-·ᶜ ρ))))
wkUsage ρ (prodᵣₘ γ▸t δ▸u) =
  sub (prodᵣₘ (wkUsage ρ γ▸t) (wkUsage ρ δ▸u))
      (≤ᶜ-reflexive (≈ᶜ-trans (wk-+ᶜ ρ) (+ᶜ-congʳ (wk-·ᶜ ρ))))
wkUsage ρ (prodₚₘ γ▸t γ▸u) = sub
  (prodₚₘ (wkUsage ρ γ▸t) (wkUsage ρ γ▸u))
  (≤ᶜ-reflexive (≈ᶜ-trans (wk-∧ᶜ ρ) (∧ᶜ-congʳ (wk-·ᶜ ρ))))
wkUsage ρ (fstₘ m γ▸t PE.refl ok) = fstₘ m (wkUsage ρ γ▸t) PE.refl ok
wkUsage ρ (sndₘ γ▸t) = sndₘ (wkUsage ρ γ▸t)
wkUsage ρ (prodrecₘ γ▸t δ▸u η▸A ok) =
  sub (prodrecₘ (wkUsage ρ γ▸t) (wkUsage (liftn ρ 2) δ▸u)
         (wkUsage (lift ρ) η▸A) ok)
    (≤ᶜ-reflexive (≈ᶜ-trans (wk-+ᶜ ρ) (+ᶜ-congʳ (wk-·ᶜ ρ))))
wkUsage ρ zeroₘ =
  PE.subst  γ  γ ▸[ _ ] zero) (PE.sym (wk-𝟘ᶜ ρ)) zeroₘ
wkUsage ρ (sucₘ γ▸t) = sucₘ (wkUsage ρ γ▸t)
wkUsage ρ (natrecₘ γ▸z δ▸s η▸n θ▸A) =
  sub (natrecₘ (wkUsage ρ γ▸z) (wkUsage (liftn ρ 2) δ▸s) (wkUsage ρ η▸n) (wkUsage (lift ρ) θ▸A))
      (≤ᶜ-reflexive (≈ᶜ-trans (wk-⊛ᶜ ρ)
                              (⊛ᵣᶜ-cong (wk-∧ᶜ ρ)
                                       (≈ᶜ-trans (wk-+ᶜ ρ) (+ᶜ-congˡ (wk-·ᶜ ρ))))))
  where
  open import Graded.Modality.Dedicated-star.Instance
wkUsage
  ρ
  (natrec-no-starₘ {γ = γ} {δ = δ} {p = p} {r = r} {η = η} {χ = χ}
     ▸z ▸s ▸n ▸A fix) =
  natrec-no-starₘ
    (wkUsage ρ ▸z)
    (wkUsage (liftn ρ 2) ▸s)
    (wkUsage ρ ▸n)
    (wkUsage (lift ρ) ▸A)
    (begin
       wkConₘ ρ χ                                          ≤⟨ wk-≤ᶜ _ fix 

       wkConₘ ρ (γ ∧ᶜ η ∧ᶜ (δ +ᶜ p ·ᶜ η +ᶜ r ·ᶜ χ))        ≈⟨ ≈ᶜ-trans (wk-∧ᶜ ρ) $
                                                              ∧ᶜ-congˡ $
                                                              ≈ᶜ-trans (wk-∧ᶜ ρ) $
                                                              ∧ᶜ-congˡ $
                                                              ≈ᶜ-trans (wk-+ᶜ ρ) $
                                                              +ᶜ-congˡ $
                                                              ≈ᶜ-trans (wk-+ᶜ ρ) $
                                                              +ᶜ-cong (wk-·ᶜ ρ) (wk-·ᶜ ρ) 

       wkConₘ ρ γ ∧ᶜ wkConₘ ρ η ∧ᶜ
       (wkConₘ ρ δ +ᶜ p ·ᶜ wkConₘ ρ η +ᶜ r ·ᶜ wkConₘ ρ χ)  )
  where
  open Tools.Reasoning.PartialOrder ≤ᶜ-poset
wkUsage ρ (emptyrecₘ γ▸t δ▸A) =
  sub (emptyrecₘ (wkUsage ρ γ▸t) (wkUsage ρ δ▸A)) (≤ᶜ-reflexive (wk-·ᶜ ρ))
wkUsage ρ starₘ = subst  γ  γ ▸[ _ ] star) (PE.sym (wk-𝟘ᶜ ρ)) starₘ
wkUsage ρ (sub γ▸t x) = sub (wkUsage ρ γ▸t) (wk-≤ᶜ ρ x)

------------------------------------------------------------------------
-- The function wkConₘ⁻¹

-- A left inverse of wkConₘ ρ.

wkConₘ⁻¹ : Wk m n  Conₘ m  Conₘ n
wkConₘ⁻¹ id       γ       = γ
wkConₘ⁻¹ (step ρ) (γ  _) = wkConₘ⁻¹ ρ γ
wkConₘ⁻¹ (lift ρ) (γ  p) = wkConₘ⁻¹ ρ γ  p

-- The function wkConₘ⁻¹ ρ is a left inverse of wkConₘ ρ.

wkConₘ⁻¹-wkConₘ : (ρ : Wk m n)  wkConₘ⁻¹ ρ (wkConₘ ρ γ)  γ
wkConₘ⁻¹-wkConₘ             id       = refl
wkConₘ⁻¹-wkConₘ             (step ρ) = wkConₘ⁻¹-wkConₘ ρ
wkConₘ⁻¹-wkConₘ {γ = _  _} (lift ρ) = cong (_∙ _) (wkConₘ⁻¹-wkConₘ ρ)

-- The function wkConₘ⁻¹ ρ is monotone.

wkConₘ⁻¹-monotone : (ρ : Wk m n)  γ ≤ᶜ δ  wkConₘ⁻¹ ρ γ ≤ᶜ wkConₘ⁻¹ ρ δ
wkConₘ⁻¹-monotone id leq =
  leq
wkConₘ⁻¹-monotone {γ = _  _} {δ = _  _} (step ρ) (leq  _) =
  wkConₘ⁻¹-monotone ρ leq
wkConₘ⁻¹-monotone {γ = _  _} {δ = _  _} (lift ρ) (leq₁  leq₂) =
  wkConₘ⁻¹-monotone ρ leq₁  leq₂

-- The function wkConₘ⁻¹ ρ maps 𝟘ᶜ to 𝟘ᶜ.

wkConₘ⁻¹-𝟘ᶜ : (ρ : Wk m n)  wkConₘ⁻¹ ρ 𝟘ᶜ ≈ᶜ 𝟘ᶜ
wkConₘ⁻¹-𝟘ᶜ id       = ≈ᶜ-refl
wkConₘ⁻¹-𝟘ᶜ (step ρ) = wkConₘ⁻¹-𝟘ᶜ ρ
wkConₘ⁻¹-𝟘ᶜ (lift ρ) = wkConₘ⁻¹-𝟘ᶜ ρ  refl

-- The function wkConₘ⁻¹ ρ commutes with _+ᶜ_.

wkConₘ⁻¹-+ᶜ :
  (ρ : Wk m n)  wkConₘ⁻¹ ρ (γ +ᶜ δ) ≈ᶜ wkConₘ⁻¹ ρ γ +ᶜ wkConₘ⁻¹ ρ δ
wkConₘ⁻¹-+ᶜ                         id       = ≈ᶜ-refl
wkConₘ⁻¹-+ᶜ {γ = _  _} {δ = _  _} (step ρ) = wkConₘ⁻¹-+ᶜ ρ
wkConₘ⁻¹-+ᶜ {γ = _  _} {δ = _  _} (lift ρ) = wkConₘ⁻¹-+ᶜ ρ  refl

-- The function wkConₘ⁻¹ ρ commutes with _∧ᶜ_.

wkConₘ⁻¹-∧ᶜ :
  (ρ : Wk m n)  wkConₘ⁻¹ ρ (γ ∧ᶜ δ) ≈ᶜ wkConₘ⁻¹ ρ γ ∧ᶜ wkConₘ⁻¹ ρ δ
wkConₘ⁻¹-∧ᶜ                         id       = ≈ᶜ-refl
wkConₘ⁻¹-∧ᶜ {γ = _  _} {δ = _  _} (step ρ) = wkConₘ⁻¹-∧ᶜ ρ
wkConₘ⁻¹-∧ᶜ {γ = _  _} {δ = _  _} (lift ρ) = wkConₘ⁻¹-∧ᶜ ρ  refl

-- The function wkConₘ⁻¹ ρ commutes with p ·ᶜ_.

wkConₘ⁻¹-·ᶜ :
  (ρ : Wk m n)  wkConₘ⁻¹ ρ (p ·ᶜ γ) ≈ᶜ p ·ᶜ wkConₘ⁻¹ ρ γ
wkConₘ⁻¹-·ᶜ             id       = ≈ᶜ-refl
wkConₘ⁻¹-·ᶜ {γ = _  _} (step ρ) = wkConₘ⁻¹-·ᶜ ρ
wkConₘ⁻¹-·ᶜ {γ = _  _} (lift ρ) = wkConₘ⁻¹-·ᶜ ρ  refl

-- The function wkConₘ⁻¹ ρ commutes with _⊛ᶜ_▷ r.

wkConₘ⁻¹-⊛ᶜ :
   has-star : Has-star semiring-with-meet 
  (ρ : Wk m n) 
  wkConₘ⁻¹ ρ (γ ⊛ᶜ δ  r) ≈ᶜ wkConₘ⁻¹ ρ γ ⊛ᶜ wkConₘ⁻¹ ρ δ  r
wkConₘ⁻¹-⊛ᶜ                         id       = ≈ᶜ-refl
wkConₘ⁻¹-⊛ᶜ {γ = _  _} {δ = _  _} (step ρ) = wkConₘ⁻¹-⊛ᶜ ρ
wkConₘ⁻¹-⊛ᶜ {γ = _  _} {δ = _  _} (lift ρ) = wkConₘ⁻¹-⊛ᶜ ρ  refl

-- The function wkConₘ⁻¹ ρ "commutes" in a certain sense with _,_≔_.

wkConₘ⁻¹-,≔ :
  (ρ : Wk m n)  wkConₘ⁻¹ ρ (γ , wkVar ρ x  p) ≈ᶜ wkConₘ⁻¹ ρ γ , x  p
wkConₘ⁻¹-,≔                        id       = ≈ᶜ-refl
wkConₘ⁻¹-,≔ {γ = _  _}            (step ρ) = wkConₘ⁻¹-,≔ ρ
wkConₘ⁻¹-,≔ {γ = _  _} {x = x0}   (lift ρ) = ≈ᶜ-refl
wkConₘ⁻¹-,≔ {γ = _  _} {x = _ +1} (lift ρ) = wkConₘ⁻¹-,≔ ρ  refl

------------------------------------------------------------------------
-- Inversion lemmas

-- A kind of inversion lemma for the usage relation and weakening.

wkUsage⁻¹ : γ ▸[ m′ ] wk ρ t  wkConₘ⁻¹ ρ γ ▸[ m′ ] t
wkUsage⁻¹ ▸t = wkUsage⁻¹′ ▸t refl
  where
  open module R {n} =
    Tools.Reasoning.PartialOrder (≤ᶜ-poset {n = n})

  wkUsage⁻¹′ :
    γ ▸[ m′ ] t′  wk ρ t  t′  wkConₘ⁻¹ ρ γ ▸[ m′ ] t
  wkUsage⁻¹′ {ρ = ρ} = λ where
      Uₘ eq 
        case wk-U eq of λ {
          refl 
        sub Uₘ (≤ᶜ-reflexive (wkConₘ⁻¹-𝟘ᶜ ρ)) }
      ℕₘ eq 
        case wk-ℕ eq of λ {
          refl 
        sub ℕₘ (≤ᶜ-reflexive (wkConₘ⁻¹-𝟘ᶜ ρ)) }
      Emptyₘ eq 
        case wk-Empty eq of λ {
          refl 
        sub Emptyₘ (≤ᶜ-reflexive (wkConₘ⁻¹-𝟘ᶜ ρ)) }
      Unitₘ eq 
        case wk-Unit eq of λ {
          refl 
        sub Unitₘ (≤ᶜ-reflexive (wkConₘ⁻¹-𝟘ᶜ ρ)) }
      (ΠΣₘ ▸A ▸B) eq 
        case wk-ΠΣ eq of λ {
          (_ , _ , refl , refl , refl) 
        case wkUsage⁻¹ ▸A of λ {
          ▸A 
        case wkUsage⁻¹ ▸B of λ {
          ▸B 
        sub (ΠΣₘ ▸A ▸B) (≤ᶜ-reflexive (wkConₘ⁻¹-+ᶜ ρ)) }}}
      (var {m = m}) eq 
        case wk-var eq of λ {
          (x , refl , refl) 
        sub var (begin
          wkConₘ⁻¹ ρ (𝟘ᶜ , wkVar ρ x   m )  ≈⟨ wkConₘ⁻¹-,≔ ρ 
          wkConₘ⁻¹ ρ 𝟘ᶜ , x   m             ≈⟨ update-congˡ (wkConₘ⁻¹-𝟘ᶜ ρ) 
          𝟘ᶜ , x   m                        ) }
      (lamₘ ▸t) eq 
        case wk-lam eq of λ {
          (_ , refl , refl) 
        lamₘ (wkUsage⁻¹ ▸t) }
      (_∘ₘ_ {γ = γ} {δ = δ} {p = p} ▸t ▸u) eq 
        case wk-∘ eq of λ {
          (_ , _ , refl , refl , refl) 
        sub (wkUsage⁻¹ ▸t ∘ₘ wkUsage⁻¹ ▸u) (begin
          wkConₘ⁻¹ ρ (γ +ᶜ p ·ᶜ δ)             ≈⟨ wkConₘ⁻¹-+ᶜ ρ 
          wkConₘ⁻¹ ρ γ +ᶜ wkConₘ⁻¹ ρ (p ·ᶜ δ)  ≈⟨ +ᶜ-congˡ (wkConₘ⁻¹-·ᶜ ρ) 
          wkConₘ⁻¹ ρ γ +ᶜ p ·ᶜ wkConₘ⁻¹ ρ δ    ) }
      (prodᵣₘ {γ = γ} {p = p} {δ = δ} ▸t ▸u) eq 
        case wk-prod eq of λ {
          (_ , _ , refl , refl , refl) 
        sub (prodᵣₘ (wkUsage⁻¹ ▸t) (wkUsage⁻¹ ▸u)) (begin
          wkConₘ⁻¹ ρ (p ·ᶜ γ +ᶜ δ)             ≈⟨ wkConₘ⁻¹-+ᶜ ρ 
          wkConₘ⁻¹ ρ (p ·ᶜ γ) +ᶜ wkConₘ⁻¹ ρ δ  ≈⟨ +ᶜ-congʳ (wkConₘ⁻¹-·ᶜ ρ) 
          p ·ᶜ wkConₘ⁻¹ ρ γ +ᶜ wkConₘ⁻¹ ρ δ    ) }
      (prodₚₘ {γ = γ} {p = p} {δ = δ} ▸t ▸u) eq 
        case wk-prod eq of λ {
          (_ , _ , refl , refl , refl) 
        sub (prodₚₘ (wkUsage⁻¹ ▸t) (wkUsage⁻¹ ▸u)) (begin
          wkConₘ⁻¹ ρ (p ·ᶜ γ ∧ᶜ δ)             ≈⟨ wkConₘ⁻¹-∧ᶜ ρ 
          wkConₘ⁻¹ ρ (p ·ᶜ γ) ∧ᶜ wkConₘ⁻¹ ρ δ  ≈⟨ ∧ᶜ-congʳ (wkConₘ⁻¹-·ᶜ ρ) 
          p ·ᶜ wkConₘ⁻¹ ρ γ ∧ᶜ wkConₘ⁻¹ ρ δ    ) }
      (fstₘ m ▸t refl ok) eq 
        case wk-fst eq of λ {
          (_ , refl , refl) 
        fstₘ m (wkUsage⁻¹ ▸t) refl ok }
      (sndₘ ▸t) eq 
        case wk-snd eq of λ {
          (_ , refl , refl) 
        sndₘ (wkUsage⁻¹ ▸t) }
      (prodrecₘ {γ = γ} {r = r} {δ = δ} ▸t ▸u ▸A ok) eq 
        case wk-prodrec eq of λ {
          (_ , _ , _ , refl , refl , refl , refl) 
        sub
          (prodrecₘ (wkUsage⁻¹ ▸t) (wkUsage⁻¹ ▸u)
             (wkUsage⁻¹ ▸A) ok)
          (begin
             wkConₘ⁻¹ ρ (r ·ᶜ γ +ᶜ δ)             ≈⟨ wkConₘ⁻¹-+ᶜ ρ 
             wkConₘ⁻¹ ρ (r ·ᶜ γ) +ᶜ wkConₘ⁻¹ ρ δ  ≈⟨ +ᶜ-congʳ (wkConₘ⁻¹-·ᶜ ρ) 
             r ·ᶜ wkConₘ⁻¹ ρ γ +ᶜ wkConₘ⁻¹ ρ δ    ) }
      zeroₘ eq 
        case wk-zero eq of λ {
          refl 
        sub zeroₘ (≤ᶜ-reflexive (wkConₘ⁻¹-𝟘ᶜ ρ)) }
      (sucₘ ▸t) eq 
        case wk-suc eq of λ {
          (_ , refl , refl) 
        sucₘ (wkUsage⁻¹ ▸t) }
      (natrecₘ {γ = γ} {δ = δ} {p = p} {r = r} {η = η} ▸t ▸u ▸v ▸A) eq 
        case wk-natrec eq of λ {
          (_ , _ , _ , _ , refl , refl , refl , refl , refl) 
        sub
          (natrecₘ (wkUsage⁻¹ ▸t) (wkUsage⁻¹ ▸u)
             (wkUsage⁻¹ ▸v) (wkUsage⁻¹ ▸A))
          (begin
             wkConₘ⁻¹ ρ ((γ ∧ᶜ η) ⊛ᶜ δ +ᶜ p ·ᶜ η  r)             ≈⟨ wkConₘ⁻¹-⊛ᶜ ρ 

             wkConₘ⁻¹ ρ (γ ∧ᶜ η) ⊛ᶜ wkConₘ⁻¹ ρ (δ +ᶜ p ·ᶜ η)  r  ≈⟨ ⊛ᵣᶜ-cong (wkConₘ⁻¹-∧ᶜ ρ) (wkConₘ⁻¹-+ᶜ ρ) 

             (wkConₘ⁻¹ ρ γ ∧ᶜ wkConₘ⁻¹ ρ η) ⊛ᶜ
               wkConₘ⁻¹ ρ δ +ᶜ wkConₘ⁻¹ ρ (p ·ᶜ η)  r            ≈⟨ ⊛ᵣᶜ-congˡ (+ᶜ-congˡ (wkConₘ⁻¹-·ᶜ ρ)) 

             (wkConₘ⁻¹ ρ γ ∧ᶜ wkConₘ⁻¹ ρ η) ⊛ᶜ
               wkConₘ⁻¹ ρ δ +ᶜ p ·ᶜ wkConₘ⁻¹ ρ η  r              ) }
      (natrec-no-starₘ {γ = γ} {δ = δ} {p = p} {r = r} {η = η} {χ = χ} ▸t ▸u ▸v ▸A fix) eq 
        case wk-natrec eq of λ {
          (_ , _ , _ , _ , refl , refl , refl , refl , refl) 
        natrec-no-starₘ
          (wkUsage⁻¹ ▸t)
          (wkUsage⁻¹ ▸u)
          (wkUsage⁻¹ ▸v)
          (wkUsage⁻¹ ▸A)
          (begin
             wkConₘ⁻¹ ρ χ                                              ≤⟨ wkConₘ⁻¹-monotone ρ fix 

             wkConₘ⁻¹ ρ (γ ∧ᶜ η ∧ᶜ δ +ᶜ p ·ᶜ η +ᶜ r ·ᶜ χ)              ≈⟨ ≈ᶜ-trans (wkConₘ⁻¹-∧ᶜ ρ) $
                                                                          ∧ᶜ-congˡ $
                                                                          ≈ᶜ-trans (wkConₘ⁻¹-∧ᶜ ρ) $
                                                                          ∧ᶜ-congˡ $
                                                                          ≈ᶜ-trans (wkConₘ⁻¹-+ᶜ ρ) $
                                                                          +ᶜ-congˡ $
                                                                          ≈ᶜ-trans (wkConₘ⁻¹-+ᶜ ρ) $
                                                                          +ᶜ-cong (wkConₘ⁻¹-·ᶜ ρ) (wkConₘ⁻¹-·ᶜ ρ) 
             wkConₘ⁻¹ ρ γ ∧ᶜ wkConₘ⁻¹ ρ η ∧ᶜ
             (wkConₘ⁻¹ ρ δ +ᶜ p ·ᶜ wkConₘ⁻¹ ρ η +ᶜ r ·ᶜ wkConₘ⁻¹ ρ χ)  ) }
      (emptyrecₘ ▸t ▸A) eq 
        case wk-emptyrec eq of λ {
          (_ , _ , refl , refl , refl) 
        sub (emptyrecₘ (wkUsage⁻¹ ▸t) (wkUsage⁻¹ ▸A))
          (≤ᶜ-reflexive (wkConₘ⁻¹-·ᶜ ρ)) }
      starₘ eq 
        case wk-star eq of λ {
          refl 
        sub starₘ (≤ᶜ-reflexive (wkConₘ⁻¹-𝟘ᶜ ρ)) }
      (sub ▸t leq) refl 
        sub (wkUsage⁻¹ ▸t) (wkConₘ⁻¹-monotone ρ leq)
    where
    open import Graded.Modality.Dedicated-star.Instance

-- An inversion lemma for the usage relation and weakening.

wkUsage⁻¹′ : wkConₘ ρ γ ▸[ m′ ] wk ρ t  γ ▸[ m′ ] t
wkUsage⁻¹′ {ρ = ρ} {γ = γ} {m′ = m′} {t = t} =
  wkConₘ ρ γ ▸[ m′ ] wk ρ t          →⟨ wkUsage⁻¹ 
  wkConₘ⁻¹ ρ (wkConₘ ρ γ) ▸[ m′ ] t  →⟨ subst (_▸[ _ ] _) (wkConₘ⁻¹-wkConₘ ρ) 
  γ ▸[ m′ ] t                        

-- An inversion lemma for wkConₘ and 𝟘ᶜ.

wkConₘ-𝟘 : wkConₘ ρ γ ≤ᶜ 𝟘ᶜ  γ ≤ᶜ 𝟘ᶜ
wkConₘ-𝟘 {ρ = ρ} {γ = γ} =
  wkConₘ ρ γ ≤ᶜ 𝟘ᶜ                          →⟨ wkConₘ⁻¹-monotone ρ 
  wkConₘ⁻¹ ρ (wkConₘ ρ γ) ≤ᶜ wkConₘ⁻¹ ρ 𝟘ᶜ  →⟨ subst₂ _≤ᶜ_ (wkConₘ⁻¹-wkConₘ ρ) (≈ᶜ→≡ (wkConₘ⁻¹-𝟘ᶜ ρ)) 
  γ ≤ᶜ 𝟘ᶜ                                   

-- An inversion lemma for wkConₘ, wkVar and _,_≔_.

wkConₘ-,-wkVar-≔ :
  (x : Fin n) 
  wkConₘ ρ γ ≤ᶜ δ , wkVar ρ x  p 
  ∃₂ λ δ′ p′  γ ≤ᶜ δ′ , x  p′ × wkConₘ ρ δ′ ≤ᶜ δ × p′  p
wkConₘ-,-wkVar-≔ {ρ = id} _ leq =
  _ , _ , leq , ≤ᶜ-refl , ≤-refl
wkConₘ-,-wkVar-≔ {ρ = step _} {δ = _  _} _ (leq₁  leq₂) =
  case wkConₘ-,-wkVar-≔ _ leq₁ of λ {
    (_ , _ , leq₁ , leq₃ , leq₄) 
  _ , _ , leq₁ , leq₃  leq₂ , leq₄ }
wkConₘ-,-wkVar-≔ {ρ = lift _} {γ = _  _} {δ = _  _} x0 (leq₁  leq₂) =
  _  _ , _ , ≤ᶜ-refl , leq₁  ≤-refl , leq₂
wkConₘ-,-wkVar-≔
  {ρ = lift ρ} {γ = _  _} {δ = _  _} (x +1) (leq₁  leq₂) =
  case wkConₘ-,-wkVar-≔ x leq₁ of λ {
    (_ , _ , leq₁ , leq₃ , leq₄) 
  _  _ , _ , leq₁  leq₂ , leq₃  ≤-refl , leq₄ }

-- The lemmas in the following anonymous module are defined under the
-- assumption that the zero is well-behaved.

module _
  (𝟘-well-behaved : Has-well-behaved-zero semiring-with-meet)
  where

  open WB𝟘 semiring-with-meet 𝟘-well-behaved

  -- An inversion lemma for wkConₘ and _+ᶜ_.

  wkConₘ-+ᶜ :
     ρ  wkConₘ ρ γ ≤ᶜ δ +ᶜ η 
    ∃₂ λ δ′ η′  γ ≤ᶜ δ′ +ᶜ η′ × wkConₘ ρ δ′ ≤ᶜ δ × wkConₘ ρ η′ ≤ᶜ η
  wkConₘ-+ᶜ id leq =
    _ , _ , leq , ≤ᶜ-refl , ≤ᶜ-refl
  wkConₘ-+ᶜ {δ = _  _} {η = _  _} (step _) (leq₁  leq₂) =
    case wkConₘ-+ᶜ _ leq₁ of λ {
      (_ , _ , leq₁ , leq₃ , leq₄) 
    _ , _ , leq₁ ,
    leq₃  ≤-reflexive (PE.sym (+-positiveˡ (𝟘≮ leq₂))) ,
    leq₄  ≤-reflexive (PE.sym (+-positiveʳ (𝟘≮ leq₂))) }
  wkConₘ-+ᶜ
    {γ = _  _} {δ = _  _} {η = _  _} (lift ρ) (leq₁  leq₂) =
    case wkConₘ-+ᶜ ρ leq₁ of λ {
      (_ , _ , leq₁ , leq₃ , leq₄) 
    _ , _ , leq₁  leq₂ , leq₃  ≤-refl , leq₄  ≤-refl }

  -- An inversion lemma for wkConₘ and _∧ᶜ_.

  wkConₘ-∧ᶜ :
     ρ  wkConₘ ρ γ ≤ᶜ δ ∧ᶜ η 
    ∃₂ λ δ′ η′  γ ≤ᶜ δ′ ∧ᶜ η′ × wkConₘ ρ δ′ ≤ᶜ δ × wkConₘ ρ η′ ≤ᶜ η
  wkConₘ-∧ᶜ id leq =
    _ , _ , leq , ≤ᶜ-refl , ≤ᶜ-refl
  wkConₘ-∧ᶜ {δ = _  _} {η = _  _} (step _) (leq₁  leq₂) =
    case wkConₘ-∧ᶜ _ leq₁ of λ {
      (_ , _ , leq₁ , leq₃ , leq₄) 
    _ , _ , leq₁ ,
    leq₃  ≤-reflexive (PE.sym (∧-positiveˡ (𝟘≮ leq₂))) ,
    leq₄  ≤-reflexive (PE.sym (∧-positiveʳ (𝟘≮ leq₂))) }
  wkConₘ-∧ᶜ
    {γ = _  _} {δ = _  _} {η = _  _} (lift ρ) (leq₁  leq₂) =
    case wkConₘ-∧ᶜ ρ leq₁ of λ {
      (_ , _ , leq₁ , leq₃ , leq₄) 
    _ , _ , leq₁  leq₂ , leq₃  ≤-refl , leq₄  ≤-refl }

  -- An inversion lemma for wkConₘ and _·ᶜ_.

  wkConₘ-·ᶜ :
     ρ  wkConₘ ρ γ ≤ᶜ p ·ᶜ δ 
    p  𝟘 × γ ≤ᶜ 𝟘ᶜ 
     λ δ′  γ ≤ᶜ p ·ᶜ δ′ × wkConₘ ρ δ′ ≤ᶜ δ
  wkConₘ-·ᶜ id leq =
    inj₂ (_ , leq , ≤ᶜ-refl)
  wkConₘ-·ᶜ {γ = γ} {δ = _  q} (step ρ) (leq₁  leq₂) =
    case wkConₘ-·ᶜ ρ leq₁ of λ where
      (inj₁ (refl , leq₁))       inj₁ (refl , leq₁)
      (inj₂ (δ′ , leq₁ , leq₃)) 
        case zero-product (𝟘≮ leq₂) of λ where
          (inj₂ refl)  inj₂ (_ , leq₁ , leq₃  ≤-refl)
          (inj₁ refl)  inj₁
            ( refl
            , (begin
                 γ        ≤⟨ leq₁ 
                 𝟘 ·ᶜ δ′  ≈⟨ ·ᶜ-zeroˡ _ 
                 𝟘ᶜ       )
            )
    where
    open Tools.Reasoning.PartialOrder ≤ᶜ-poset
  wkConₘ-·ᶜ {γ = γ  q} {δ = _  r} (lift ρ) (leq₁  leq₂) =
    case wkConₘ-·ᶜ ρ leq₁ of λ where
      (inj₂ (_ , leq₁ , leq₃)) 
        inj₂ (_ , leq₁  leq₂ , leq₃  ≤-refl)
      (inj₁ (refl , leq₁))  inj₁
        ( refl
        , (begin
             γ  q       ≤⟨ leq₁  leq₂ 
             𝟘ᶜ  𝟘 · r  ≈⟨ ≈ᶜ-refl  ·-zeroˡ _ 
             𝟘ᶜ          )
        )
    where
    open Tools.Reasoning.PartialOrder ≤ᶜ-poset

  -- An inversion lemma for wkConₘ and _⊛ᶜ_▷_.

  wkConₘ-⊛ᶜ :
     has-star : Has-star semiring-with-meet  
     ρ  wkConₘ ρ γ ≤ᶜ δ ⊛ᶜ η  r 
    ∃₂ λ δ′ η′  γ ≤ᶜ δ′ ⊛ᶜ η′  r × wkConₘ ρ δ′ ≤ᶜ δ × wkConₘ ρ η′ ≤ᶜ η
  wkConₘ-⊛ᶜ id leq =
    _ , _ , leq , ≤ᶜ-refl , ≤ᶜ-refl
  wkConₘ-⊛ᶜ {δ = _  _} {η = _  _} (step _) (leq₁  leq₂) =
    case wkConₘ-⊛ᶜ _ leq₁ of λ {
      (_ , _ , leq₁ , leq₃ , leq₄) 
    _ , _ , leq₁ ,
    leq₃  ≤-reflexive (PE.sym (⊛≡𝟘ˡ (𝟘≮ leq₂))) ,
    leq₄  ≤-reflexive (PE.sym (⊛≡𝟘ʳ (𝟘≮ leq₂))) }
  wkConₘ-⊛ᶜ
    {γ = _  _} {δ = _  _} {η = _  _} (lift ρ) (leq₁  leq₂) =
    case wkConₘ-⊛ᶜ ρ leq₁ of λ {
      (_ , _ , leq₁ , leq₃ , leq₄) 
    _ , _ , leq₁  leq₂ , leq₃  ≤-refl , leq₄  ≤-refl }

  -- An inversion lemma for wkConₘ and the operation from the conclusion
  -- of the usage rule for natrec.

  wkConₘ-⊛ᶜ′ :
     has-star : Has-star semiring-with-meet  
     ρ  wkConₘ ρ γ ≤ᶜ (δ ∧ᶜ θ) ⊛ᶜ η +ᶜ p ·ᶜ θ  r 
    p  𝟘 ×
    (∃₃ λ δ′ η′ θ′ 
       γ ≤ᶜ (δ′ ∧ᶜ θ′) ⊛ᶜ η′  r ×
       wkConₘ ρ δ′ ≤ᶜ δ × wkConₘ ρ η′ ≤ᶜ η × wkConₘ ρ θ′ ≤ᶜ θ)
      
    (∃₃ λ δ′ η′ θ′ 
       γ ≤ᶜ (δ′ ∧ᶜ θ′) ⊛ᶜ η′ +ᶜ p ·ᶜ θ′  r ×
       wkConₘ ρ δ′ ≤ᶜ δ × wkConₘ ρ η′ ≤ᶜ η × wkConₘ ρ θ′ ≤ᶜ θ)
  wkConₘ-⊛ᶜ′ id leq =
    inj₂ (_ , _ , _ , leq , ≤ᶜ-refl , ≤ᶜ-refl , ≤ᶜ-refl)
  wkConₘ-⊛ᶜ′ {δ = _  _} {θ = _  _} {η = η  _}
    (step ρ) (leq₁  leq₂) =
    case zero-product (+-positiveʳ (⊛≡𝟘ʳ (𝟘≮ leq₂))) of λ where
      (inj₂ refl) 
        case wkConₘ-⊛ᶜ′ ρ leq₁ of λ where
          (inj₂ (_ , _ , _ , leq₁ , leq₃ , leq₄ , leq₅))  inj₂
            (_ , _ , _ , leq₁ ,
             leq₃
               
             ≤-reflexive (PE.sym (∧-positiveˡ (⊛≡𝟘ˡ (𝟘≮ leq₂)))) ,
             leq₄
               
             ≤-reflexive (PE.sym (+-positiveˡ (⊛≡𝟘ʳ (𝟘≮ leq₂)))) ,
             leq₅  ≤-refl)
          (inj₁ (refl , _ , _ , _ , leq₁ , leq₃ , leq₄ , leq₅))  inj₁
            (refl , _ , _ , _ , leq₁ ,
             leq₃
               
             ≤-reflexive (PE.sym (∧-positiveˡ (⊛≡𝟘ˡ (𝟘≮ leq₂)))) ,
             leq₄
               
             ≤-reflexive (PE.sym (+-positiveˡ (⊛≡𝟘ʳ (𝟘≮ leq₂)))) ,
             leq₅  ≤-refl)
      (inj₁ refl) 
        case wkConₘ-⊛ᶜ′ ρ leq₁ of λ where
          (inj₂ (_ , η′ , θ′ , leq₁ , leq₃ , leq₄ , leq₅))  inj₁
            (refl , _ , _ , _ , leq₁ ,
             leq₃
               
             ≤-reflexive (PE.sym (∧-positiveˡ (⊛≡𝟘ˡ (𝟘≮ leq₂)))) ,
             (begin
                wkConₘ ρ (η′ +ᶜ 𝟘 ·ᶜ θ′)  ≡⟨ cong (wkConₘ ρ) (≈ᶜ→≡ (+ᶜ-congˡ (·ᶜ-zeroˡ _))) 
                wkConₘ ρ (η′ +ᶜ 𝟘ᶜ)       ≡⟨ cong (wkConₘ ρ) (≈ᶜ→≡ (+ᶜ-identityʳ _)) 
                wkConₘ ρ η′               ≤⟨ leq₄ 
                η                         )
               
             ≤-reflexive (PE.sym (+-positiveˡ (⊛≡𝟘ʳ (𝟘≮ leq₂)))) ,
             leq₅
               
             ≤-reflexive (PE.sym (∧-positiveʳ (⊛≡𝟘ˡ (𝟘≮ leq₂)))))
          (inj₁ (_ , _ , _ , _ , leq₁ , leq₃ , leq₄ , leq₅))  inj₁
            (refl , _ , _ , _ , leq₁ ,
             leq₃
               
             ≤-reflexive (PE.sym (∧-positiveˡ (⊛≡𝟘ˡ (𝟘≮ leq₂)))) ,
             leq₄
               
             ≤-reflexive (PE.sym (+-positiveˡ (⊛≡𝟘ʳ (𝟘≮ leq₂)))) ,
             leq₅
               
             ≤-reflexive (PE.sym (∧-positiveʳ (⊛≡𝟘ˡ (𝟘≮ leq₂)))))
    where
    open Tools.Reasoning.PartialOrder ≤ᶜ-poset
  wkConₘ-⊛ᶜ′
    {γ = _  p₁} {δ = _  p₂} {θ = _  p₃} {η = _  p₄} {r = r}
    (lift ρ) (leq₁  leq₂) =
    case wkConₘ-⊛ᶜ′ ρ leq₁ of λ where
          (inj₂ (_ , η′ , θ′ , leq₁ , leq₃ , leq₄ , leq₅))  inj₂
            (_ , _ , _ ,
             leq₁  leq₂ ,
             leq₃  ≤-refl ,
             leq₄  ≤-refl ,
             leq₅  ≤-refl)
          (inj₁ (refl , _ , _ , _ , leq₁ , leq₃ , leq₄ , leq₅))  inj₁
            (refl , _ , _ , _ ,
             leq₁
               
             (begin
                p₁                           ≤⟨ leq₂ 
                (p₂  p₃)  p₄ + 𝟘 · p₃  r  ≡⟨ ⊛ᵣ-congˡ (+-congˡ (·-zeroˡ _)) 
                (p₂  p₃)  p₄ + 𝟘  r       ≡⟨ ⊛ᵣ-congˡ (+-identityʳ _) 
                (p₂  p₃)  p₄  r           ) ,
             leq₃  ≤-refl ,
             leq₄  ≤-refl ,
             leq₅  ≤-refl)
    where
    open Tools.Reasoning.PartialOrder ≤-poset