------------------------------------------------------------------------
-- Some results related to CCS, implemented without using a fixed form
-- of bisimilarity
------------------------------------------------------------------------

{-# OPTIONS --sized-types #-}

open import Prelude

module Bisimilarity.CCS.General {} {Name : Type } where

open import Equality.Propositional
open import List equality-with-J
open import Prelude.Size

open import Labelled-transition-system
open import Labelled-transition-system.CCS Name

------------------------------------------------------------------------
-- Exercise 6.1.3 (1) from "Enhancements of the bisimulation proof
-- method" by Pous and Sangiorgi

6-1-3-1-proc : Proc   Proc     Proc 
6-1-3-1-proc P P′ zero    = ! P  P′
6-1-3-1-proc P P′ (suc n) = 6-1-3-1-proc P P′ n  P

-- Note that the form of the expression is a bit more restrictive
-- than in the exercise formulation: (((! P | P′) | P)…) ∣ P.

6-1-3-1-without-τ :
   {a P P₀}  let μ = name a in
  ! P [ μ ]⟶ P₀ 
   λ P′   λ n 
    P [ μ ]⟶ P′ × P₀  6-1-3-1-proc P P′ n
6-1-3-1-without-τ {a} {P} (replication (par-right {Q′ = P′} tr)) =
    P′ , 0
  , (P   [ name a ]⟶⟨ tr 
     P′)
  , (! P  P′             ≡⟨ refl ⟩∎
     6-1-3-1-proc P P′ 0  )
6-1-3-1-without-τ {a} {P} (replication (par-left {P′ = P′} tr)) =
  let P″ , n , tr′ , eq = 6-1-3-1-without-τ tr in

    P″ , suc n
  , (P   [ name a ]⟶⟨ tr′ 
     P″)
  , (P′                   P    ≡⟨ cong (_∣ _) eq 
     6-1-3-1-proc P P″ n  P    ≡⟨ refl ⟩∎
     6-1-3-1-proc P P″ (suc n)  )

One-step-away : {A : Type }  (A  Action)  Proc   Type 
One-step-away f P =  λ a   λ P′  P [ f a ]⟶ P′

cons : {A B : Type }  A  List A × B  List A × B
cons x (xs , y) = x  xs , y

6-1-3-1-proc′ :
  (P : Proc ) 
  List (Maybe (One-step-away name P)) × One-step-away id P 
  Proc 
6-1-3-1-proc′ P ([] , (_ , P′ , _))          = ! P  P′
6-1-3-1-proc′ P (just (_ , P′ , _)  Ps , o) = 6-1-3-1-proc′ P (Ps , o)  P′
6-1-3-1-proc′ P (nothing            Ps , o) = 6-1-3-1-proc′ P (Ps , o)  P

6-1-3-1-with-τ :
   {μ P P₀} 
  ! P [ μ ]⟶ P₀ 
   λ Ps  P₀  6-1-3-1-proc′ P Ps
6-1-3-1-with-τ {μ} {P} (replication (par-right {Q′ = P′} tr)) =
    Ps
  , (! P  P′            ≡⟨ refl ⟩∎
     6-1-3-1-proc′ P Ps  )
  where
  Ps = [] , (μ , P′ , tr)

6-1-3-1-with-τ {μ} {P} (replication (par-left {P′ = P′} tr)) =
  let Ps , eq = 6-1-3-1-with-τ tr
      Ps′     = cons nothing Ps
  in
    Ps′
  , (P′  P                  ≡⟨ cong (_∣ _) eq 
     6-1-3-1-proc′ P Ps  P  ≡⟨ refl ⟩∎
     6-1-3-1-proc′ P Ps′     )

6-1-3-1-with-τ .{τ} {P}
               (replication (par-τ {P′ = P′} {Q′ = Q′} {a = a}
                                   tr₁ tr₂)) =
  let Ps , eq = 6-1-3-1-with-τ tr₁
      Ps′     = cons (just (co a , Q′ , tr₂)) Ps
  in
    Ps′
  , (P′  Q′                  ≡⟨ cong (_∣ _) eq 
     6-1-3-1-proc′ P Ps  Q′  ≡⟨ refl ⟩∎
     6-1-3-1-proc′ P Ps′      )

------------------------------------------------------------------------
-- Exercise 6.1.3 (2) from "Enhancements of the bisimulation proof
-- method" by Pous and Sangiorgi

-- Assumptions used to state and solve the exercise.

record 6-1-3-2-assumptions ℓ′ : Type (  lsuc ℓ′) where
  infix 4 _∼_
  infix  -1 finally-∼
  infixr -2 step-∼
  syntax finally-∼ p q p∼q = p ∼⟨ p∼q ⟩∎ q 
  syntax step-∼ p q∼r p∼q  = p ∼⟨ p∼q  q∼r

  field
    _∼_       : Proc   Proc   Type ℓ′
    step-∼    :  P {Q R}  Q  R  P  Q  P  R
    finally-∼ :  P Q  P  Q  P  Q
    reflexive :  {P}  P  P
    symmetric :  {P Q}  P  Q  Q  P
    ∣-comm    :  {P Q}  P  Q  Q  P
    ∣-assoc   :  {P Q R}  P  (Q  R)  (P  Q)  R
    _∣-cong_  :  {P P′ Q Q′}  P  P′  Q  Q′  P  Q  P′  Q′
    6-1-2     :  {P}  ! P  P  ! P

module 6-1-3-2 {ℓ′} (assumptions : 6-1-3-2-assumptions ℓ′) where

  open 6-1-3-2-assumptions assumptions

  swap-rightmost :  {P Q R}  (P  Q)  R  (P  R)  Q
  swap-rightmost {P} {Q} {R} =
    (P  Q)  R  ∼⟨ symmetric ∣-assoc 
    P  (Q  R)  ∼⟨ reflexive ∣-cong ∣-comm 
    P  (R  Q)  ∼⟨ ∣-assoc ⟩∎
    (P  R)  Q  

  6-1-3-2 :
     {μ P P₀} 
    ! P [ μ ]⟶ P₀ 
    ( λ P′  P [ μ ]⟶ P′ × P₀  ! P  P′)
      
    (μ  τ ×  λ P′   λ P″   λ a 
     P [ name a ]⟶ P′ × P [ name (co a) ]⟶ P″ × P₀  (! P  P′)  P″)
  6-1-3-2 {μ} {P} (replication (par-right {Q′ = P′} P⟶P′)) =
    inj₁ ( _
         , (P   [ μ ]⟶⟨ P⟶P′ 
            P′)
         , (! P  P′  ∼⟨ reflexive ⟩∎
            ! P  P′  ))
  6-1-3-2 {μ} {P} (replication (par-left {P′ = P′} tr)) with 6-1-3-2 tr
  ... | inj₁ (P″ , P⟶P″ , P′∼!P∣P″) =
    inj₁ ( _
         , (P   [ μ ]⟶⟨ P⟶P″ 
            P″)
         , (P′   P         ∼⟨ P′∼!P∣P″ ∣-cong reflexive 
            (! P  P″)  P  ∼⟨ swap-rightmost 
            (! P  P)  P″  ∼⟨ 6-1-2 ∣-cong reflexive ⟩∎
            ! P  P″        ))
  ... | inj₂ (μ≡τ , P″ , P‴ , a , P⟶P″ , P⟶P‴ , P′∼!P∣P″∣P‴) =
    inj₂ ( μ≡τ , _ , _ , _
         , (P   [ name a ]⟶⟨ P⟶P″ 
            P″)
         , (P   [ name (co a) ]⟶⟨ P⟶P‴ 
            P‴)
         , (P′  P                 ∼⟨ P′∼!P∣P″∣P‴ ∣-cong reflexive 
            ((! P  P″)  P‴)  P  ∼⟨ swap-rightmost 
            ((! P  P″)  P)  P‴  ∼⟨ swap-rightmost ∣-cong reflexive 
            ((! P  P)  P″)  P‴  ∼⟨ (6-1-2 ∣-cong reflexive) ∣-cong reflexive ⟩∎
            (! P  P″)  P‴        ))
  6-1-3-2 {P = P} (replication (par-τ {P′ = P′} {Q′ = Q′} {a = a}
                                      tr P⟶Q′)) with 6-1-3-2 tr
  ... | inj₁ (P″ , P⟶P″ , P′∼!P∣P″) =
    inj₂ ( refl , _ , _ , _
         , (P   [ name a ]⟶⟨ P⟶P″ 
            P″)
         , (P   [ name (co a) ]⟶⟨ P⟶Q′ 
            Q′)
         , (P′  Q′          ∼⟨ P′∼!P∣P″ ∣-cong reflexive ⟩∎
            (! P  P″)  Q′  ))
  ... | inj₂ (() , _)