```------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise lifting of relations to lists
------------------------------------------------------------------------

module Relation.Binary.List.Pointwise where

open import Function
open import Data.Product hiding (map)
open import Data.List hiding (map)
open import Level
open import Relation.Nullary
open import Relation.Binary renaming (Rel to Rel₂)
open import Relation.Binary.PropositionalEquality as PropEq using (_≡_)

infixr 5 _∷_

data Rel {a b ℓ} {A : Set a} {B : Set b}
(_∼_ : REL A B ℓ) : List A → List B → Set (a ⊔ b ⊔ ℓ) where
[]  : Rel _∼_ [] []
_∷_ : ∀ {x xs y ys} (x∼y : x ∼ y) (xs∼ys : Rel _∼_ xs ys) →
Rel _∼_ (x ∷ xs) (y ∷ ys)

head : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} {x y xs ys} →
Rel _∼_ (x ∷ xs) (y ∷ ys) → x ∼ y
head (x∼y ∷ xs∼ys) = x∼y

tail : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} {x y xs ys} →
Rel _∼_ (x ∷ xs) (y ∷ ys) → Rel _∼_ xs ys
tail (x∼y ∷ xs∼ys) = xs∼ys

rec : ∀ {a b c ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ}
(P : ∀ {xs ys} → Rel _∼_ xs ys → Set c) →
(∀ {x y xs ys} {xs∼ys : Rel _∼_ xs ys} →
(x∼y : x ∼ y) → P xs∼ys → P (x∼y ∷ xs∼ys)) →
P [] →
∀ {xs ys} (xs∼ys : Rel _∼_ xs ys) → P xs∼ys
rec P c n []            = n
rec P c n (x∼y ∷ xs∼ys) = c x∼y (rec P c n xs∼ys)

map : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
{_≈_ : REL A B ℓ₁} {_∼_ : REL A B ℓ₂} →
_≈_ ⇒ _∼_ → Rel _≈_ ⇒ Rel _∼_
map ≈⇒∼ []            = []
map ≈⇒∼ (x≈y ∷ xs≈ys) = ≈⇒∼ x≈y ∷ map ≈⇒∼ xs≈ys

reflexive : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
{_≈_ : REL A B ℓ₁} {_∼_ : REL A B ℓ₂} →
_≈_ ⇒ _∼_ → Rel _≈_ ⇒ Rel _∼_
reflexive ≈⇒∼ []            = []
reflexive ≈⇒∼ (x≈y ∷ xs≈ys) = ≈⇒∼ x≈y ∷ reflexive ≈⇒∼ xs≈ys

refl : ∀ {a ℓ} {A : Set a} {_∼_ : Rel₂ A ℓ} →
Reflexive _∼_ → Reflexive (Rel _∼_)
refl rfl {[]}     = []
refl rfl {x ∷ xs} = rfl ∷ refl rfl

symmetric : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
{_≈_ : REL A B ℓ₁} {_∼_ : REL B A ℓ₂} →
Sym _≈_ _∼_ → Sym (Rel _≈_) (Rel _∼_)
symmetric sym []            = []
symmetric sym (x∼y ∷ xs∼ys) = sym x∼y ∷ symmetric sym xs∼ys

transitive :
∀ {a b c ℓ₁ ℓ₂ ℓ₃} {A : Set a} {B : Set b} {C : Set c}
{_≋_ : REL A B ℓ₁} {_≈_ : REL B C ℓ₂} {_∼_ : REL A C ℓ₃} →
Trans _≋_ _≈_ _∼_ → Trans (Rel _≋_) (Rel _≈_) (Rel _∼_)
transitive trans []            []            = []
transitive trans (x∼y ∷ xs∼ys) (y∼z ∷ ys∼zs) =
trans x∼y y∼z ∷ transitive trans xs∼ys ys∼zs

antisymmetric : ∀ {a ℓ₁ ℓ₂} {A : Set a}
{_≈_ : Rel₂ A ℓ₁} {_≤_ : Rel₂ A ℓ₂} →
Antisymmetric _≈_ _≤_ →
Antisymmetric (Rel _≈_) (Rel _≤_)
antisymmetric antisym []            []            = []
antisymmetric antisym (x∼y ∷ xs∼ys) (y∼x ∷ ys∼xs) =
antisym x∼y y∼x ∷ antisymmetric antisym xs∼ys ys∼xs

respects₂ : ∀ {a ℓ₁ ℓ₂} {A : Set a}
{_≈_ : Rel₂ A ℓ₁} {_∼_ : Rel₂ A ℓ₂} →
_∼_ Respects₂ _≈_ → (Rel _∼_) Respects₂ (Rel _≈_)
respects₂ {_≈_ = _≈_} {_∼_} resp =
(λ {xs} {ys} {zs} → resp¹ {xs} {ys} {zs}) ,
(λ {xs} {ys} {zs} → resp² {xs} {ys} {zs})
where
resp¹ : ∀ {xs} → (Rel _∼_ xs) Respects (Rel _≈_)
resp¹ []            []            = []
resp¹ (x≈y ∷ xs≈ys) (z∼x ∷ zs∼xs) =
proj₁ resp x≈y z∼x ∷ resp¹ xs≈ys zs∼xs

resp² : ∀ {ys} → (flip (Rel _∼_) ys) Respects (Rel _≈_)
resp² []            []            = []
resp² (x≈y ∷ xs≈ys) (x∼z ∷ xs∼zs) =
proj₂ resp x≈y x∼z ∷ resp² xs≈ys xs∼zs

decidable : ∀ {a b ℓ} {A : Set a} {B : Set b} {_∼_ : REL A B ℓ} →
Decidable _∼_ → Decidable (Rel _∼_)
decidable dec []       []       = yes []
decidable dec []       (y ∷ ys) = no (λ ())
decidable dec (x ∷ xs) []       = no (λ ())
decidable dec (x ∷ xs) (y ∷ ys) with dec x y
... | no ¬x∼y = no (¬x∼y ∘ head)
... | yes x∼y with decidable dec xs ys
...           | no ¬xs∼ys = no (¬xs∼ys ∘ tail)
...           | yes xs∼ys = yes (x∼y ∷ xs∼ys)

isEquivalence : ∀ {a ℓ} {A : Set a} {_≈_ : Rel₂ A ℓ} →
IsEquivalence _≈_ → IsEquivalence (Rel _≈_)
isEquivalence eq = record
{ refl  = refl       Eq.refl
; sym   = symmetric  Eq.sym
; trans = transitive Eq.trans
} where module Eq = IsEquivalence eq

isPreorder : ∀ {a ℓ₁ ℓ₂} {A : Set a}
{_≈_ : Rel₂ A ℓ₁} {_∼_ : Rel₂ A ℓ₂} →
IsPreorder _≈_ _∼_ → IsPreorder (Rel _≈_) (Rel _∼_)
isPreorder pre = record
{ isEquivalence = isEquivalence Pre.isEquivalence
; reflexive     = reflexive     Pre.reflexive
; trans         = transitive    Pre.trans
} where module Pre = IsPreorder pre

isDecEquivalence : ∀ {a ℓ} {A : Set a}
{_≈_ : Rel₂ A ℓ} → IsDecEquivalence _≈_ →
IsDecEquivalence (Rel _≈_)
isDecEquivalence eq = record
{ isEquivalence = isEquivalence Dec.isEquivalence
; _≟_           = decidable     Dec._≟_
} where module Dec = IsDecEquivalence eq

isPartialOrder : ∀ {a ℓ₁ ℓ₂} {A : Set a}
{_≈_ : Rel₂ A ℓ₁} {_≤_ : Rel₂ A ℓ₂} →
IsPartialOrder _≈_ _≤_ →
IsPartialOrder (Rel _≈_) (Rel _≤_)
isPartialOrder po = record
{ isPreorder = isPreorder    PO.isPreorder
; antisym    = antisymmetric PO.antisym
} where module PO = IsPartialOrder po

-- Rel _≡_ coincides with _≡_.

Rel≡⇒≡ : ∀ {a} {A : Set a} → Rel {A = A} _≡_ ⇒ _≡_
Rel≡⇒≡ []                    = PropEq.refl
Rel≡⇒≡ (PropEq.refl ∷ xs∼ys) with Rel≡⇒≡ xs∼ys
Rel≡⇒≡ (PropEq.refl ∷ xs∼ys) | PropEq.refl = PropEq.refl

≡⇒Rel≡ : ∀ {a} {A : Set a} → _≡_ ⇒ Rel {A = A} _≡_
≡⇒Rel≡ PropEq.refl = refl PropEq.refl

preorder : ∀ {p₁ p₂ p₃} → Preorder p₁ p₂ p₃ → Preorder _ _ _
preorder p = record
{ isPreorder = isPreorder (Preorder.isPreorder p)
}

setoid : ∀ {c ℓ} → Setoid c ℓ → Setoid _ _
setoid s = record
{ isEquivalence = isEquivalence (Setoid.isEquivalence s)
}

decSetoid : ∀ {c ℓ} → DecSetoid c ℓ → DecSetoid _ _
decSetoid d = record
{ isDecEquivalence = isDecEquivalence (DecSetoid.isDecEquivalence d)
}

poset : ∀ {c ℓ₁ ℓ₂} → Poset c ℓ₁ ℓ₂ → Poset _ _ _
poset p = record
{ isPartialOrder = isPartialOrder (Poset.isPartialOrder p)
}
```