------------------------------------------------------------------------
-- The Agda standard library
--
-- Integer division
------------------------------------------------------------------------

module Data.Nat.DivMod where

open import Data.Nat as Nat
open import Data.Nat.Properties
open SemiringSolver
open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ)
import Data.Fin.Props as Fin
open import Induction.Nat
open import Relation.Nullary.Decidable
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Function

------------------------------------------------------------------------
-- Some boring lemmas

private

  lem₁ : (m k : ) 
         Nat.suc m  suc (toℕ (Fin.inject+ k (fromℕ m)) + 0)
  lem₁ m k = cong suc $ begin
    m
      ≡⟨ sym $ Fin.to-from m 
    toℕ (fromℕ m)
      ≡⟨ Fin.inject+-lemma k (fromℕ m) 
    toℕ (Fin.inject+ k (fromℕ m))
      ≡⟨ solve 1  x  x := x :+ con 0) refl _ 
    toℕ (Fin.inject+ k (fromℕ m)) + 0
      

  lem₂ :  n  _
  lem₂ = solve 1  n  con 1 :+ n  :=  con 1 :+ (n :+ con 0)) refl

  lem₃ :  n k q (r : Fin n) eq  suc n + k  toℕ r + suc q * n
  lem₃ n k q r eq = begin
      suc n + k
        ≡⟨ solve 2  n k  con 1 :+ n :+ k  :=  n :+ (con 1 :+ k))
                   refl n k 
      n + suc k
        ≡⟨ cong (_+_ n) eq 
      n + (toℕ r + q * n)
        ≡⟨ solve 3  n r q  n :+ (r :+ q :* n)  :=
                              r :+ (con 1 :+ q) :* n)
                   refl n (toℕ r) q 
      toℕ r + suc q * n
        

------------------------------------------------------------------------
-- Division

-- A specification of integer division.

record DivMod (dividend divisor : ) : Set where
  constructor result
  field
    quotient  : 
    remainder : Fin divisor
    property  : dividend  toℕ remainder + quotient * divisor

-- Integer division with remainder.

-- Note that Induction.Nat.<-rec is used to establish termination of
-- division. The run-time complexity of this implementation of integer
-- division should be linear in the size of the dividend, assuming
-- that well-founded recursion and the equality type are optimised
-- properly (see "Inductive Families Need Not Store Their Indices"
-- (Brady, McBride, McKinna, TYPES 2003)).

_divMod_ : (dividend divisor : ) {≢0 : False (divisor  0)} 
           DivMod dividend divisor
_divMod_ m n {≢0} = <-rec Pred dm m n {≢0}
  where
  Pred :   Set
  Pred dividend = (divisor : ) {≢0 : False (divisor  0)} 
                  DivMod dividend divisor

  1+_ :  {k n}  DivMod (suc k) n  DivMod (suc n + k) n
  1+_ {k} {n} (result q r eq) = result (1 + q) r (lem₃ n k q r eq)

  dm : (dividend : )  <-Rec Pred dividend  Pred dividend
  dm m       rec zero    {≢0 = ()}
  dm zero    rec (suc n)            = result 0 zero refl
  dm (suc m) rec (suc n)            with compare m n
  dm (suc m) rec (suc .(suc m + k)) | less .m k    = result 0 r (lem₁ m k)
                                        where r = suc (Fin.inject+ k (fromℕ m))
  dm (suc m) rec (suc .m)           | equal .m     = result 1 zero (lem₂ m)
  dm (suc .(suc n + k)) rec (suc n) | greater .n k =
    1+ rec (suc k) le (suc n)
    where le = s≤′s (s≤′s (n≤′m+n n k))

-- Integer division.

_div_ : (dividend divisor : ) {≢0 : False (divisor  0)}  
_div_ m n {≢0} = DivMod.quotient $ _divMod_ m n {≢0}

-- The remainder after integer division.

_mod_ : (dividend divisor : ) {≢0 : False (divisor  0)}  Fin divisor
_mod_ m n {≢0} = DivMod.remainder $ _divMod_ m n {≢0}