```------------------------------------------------------------------------
-- The delay monad, defined coinductively
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Equality.Propositional
open import Prelude

open import Bijection equality-with-J using (_↔_)

mutual

data Delay {a} (A : Set a) (i : Size) : Set a where
now   : A          → Delay A i
later : Delay′ A i → Delay A i

record Delay′ {a} (A : Set a) (i : Size) : Set a where
coinductive
field
force : {j : Size< i} → Delay A j

open Delay′ public

module _ {a} {A : Set a} where

mutual

-- A non-terminating computation.

never : ∀ {i} → Delay A i
never = later never′

never′ : ∀ {i} → Delay′ A i
force never′ = never

-- Removes a later constructor, if possible.

drop-later : ∀ {i} {j : Size< i} → Delay A i → Delay A j
drop-later (now   x) = now x
drop-later (later x) = force x

-- An unfolding lemma for Delay.

Delay↔ : ∀ {i} → Delay A i ↔ A ⊎ Delay′ A i
Delay↔ = record
{ surjection = record
{ logical-equivalence = record
{ to   = λ { (now x) → inj₁ x; (later x) → inj₂ x }
; from = [ now , later ]
}
; right-inverse-of = [ (λ _ → refl) , (λ _ → refl) ]
}
; left-inverse-of = λ { (now _) → refl; (later _) → refl }
}
```