Computational methods in bioinformatics (2016-2017)
Lecture 2
Pairwise sequence alignment
Aims
-
To introduce the basic principles of pairwise sequence alignment.
-
To describe heuristic methods for finding local alignments.
Objectives
After this lecture you will be able to:
-
describe and compute of simple measures of sequence similarity;
-
describe the relationship between dotplots and sequence alignments;
-
implement and apply a dynamic programming algorithm to find an optimal
pairwise sequence alignment;
-
describe the difference between global and local alignment algorithms;
-
describe how the BLAST and FASTA programs find local alignments when
searching for matches in large databases.
Supplementary Material
Some of the lecture slides are available on-line
(1 per page,
4 per page).
Web-based programs illustrating topics from the lecture:
References
-
Needleman, S.B. and Wunsch, C.D. (1970)
A general method applicable to the search for similarities in the amino acid
sequence of two proteins.
J. Mol. Biol., 48, 443-453.
doi:10.1016/0022-2836(70)90057-4,
-
Smith, T.F. and Waterman, M.S. (1981)
Identification of common molecular subsequences.
J. Mol. Biol., 147, 195-197.
doi:10.1016/0022-2836(81)90087-5
-
Altschul, S.F., Gish, W., Miller, W., Myres, E.W. and Lipman, D.J. (1990)
Basic local alignment search tool.
J. Mol. Biol., 215, 403-410.
doi:10.1016/S0022-2836(05)80360-2
-
Pearson, W.R. and Lipman, D.J. (1988)
Improved tools for biological sequence comparison.
Proceedings of the National Academy of Sciences, 85, 2444-2448.
doi:10.1073/pnas.85.8.2444
Last Modified: 2 November 2016
by Graham Kemp