
DEPENDENTLY TYPED 
PROGRAMMING IN AGDA 
Ulf Norell 
TLDI’09 
Savannah, Georgia 
January 24, 2009 



DEPENDENTLY TYPED PROGRAMMING 

 Dependently typed programs 
  as opposed to simply typed programs with 

dependently typed proofs 
  dependent types = more precise types 

 Trade-off: precision vs. extra work 
  Often, more precise types does not mean more 

complicated programs 
  The type checker can do a lot of work for us 

 Key tools 
  Indexed inductive definitions 
  Pattern matching 



Nice 
syntax 

Emacs 
IDE 

Compiler 
to Haskell 

Module 
system 

Inductive 
families 

Mutual 
induction-
recursion 

Coinductive 
types 

Total 
language 

Libraries 
(~25kloc) 

No automation / 
proof tactics 

Not super fast 

AGDA 

Agda 

http://www.cs.chalmers.se/~ulfn/Agda 

Powerful 
termination 

checker 

Implicit 
arguments 

Mixfix 
operators 

Good pattern 
matching 
support 

Separate 
compilation/type 

checking 

Support for 
calling Haskell 

functions 



EXAMPLE - LIST LOOKUP 

 We could proceed to prove this function correct, 
but… 
  Proving properties of programs is tedious 
  Anytime you need to know that lookup does the right 

thing you have to invoke the correctness lemmas 
  Better: write the correct function to start with! 

 Here’s a familiar function 



LIST LOOKUP - SPECIFICATION 

 What does it mean to be an element in a list? 

 We can recover the index of x in xs from a proof of 
x ∈ xs. 



CORRECT LIST LOOKUP 

 A precise type for the result of lookup 

 The correct by construction lookup function 



WHAT’S THE PATTERN HERE? 

 Define the result type of a function so that it tells 
you something about the arguments 
  If lookup xs n = outside we learn that n ≥ length xs 
  If lookup xs n = inside x p we learn that n is the index 

encoded by a proof p that x ∈ xs 

  In the terminology of McBride and McKinna 
  Lookup xs n is a view on natural numbers n 

describing how n can be seen as an index into xs. 



EXAMPLE – TYPE CHECKING λ-CALCULUS 

 Let’s start with the punch line 



RAW AND TYPED TERMS 



COMPARING TYPES 



ERASURE 



THE TYPE CHECKER 



EXAMPLE – COMPILING EXPRESSIONS 

 A minimal expression language 



TAKE 1 – NO GUARANTEES 



TAKE 2 – STACK SAFETY 



TAKE 3 – CORRECT BY CONSTRUCTION 



TAKE 3 – CORRECT BY CONSTRUCTION 



CONCLUSIONS 

 Dependently Typed Programming 
  Write programs that don’t need any proofs 
  Using views capturing the relation between inputs 

and output 
  Encode program invariants in the types 

 To make this work: 
  Inductive families 
  Pattern matching 


