
Dependently Typed Programming in Agda

Ulf Norell
Chalmers University of Technology

ulfn@chalmers.se

Abstract
Dependently typed languages have for a long time been used to
describe proofs about programs. Traditionally, dependent types are
used mostly for stating and proving the properties of the programs
and not in defining the programs themselves. An impressive ex-
ample is the certified compiler by Leroy (2006) implemented and
proved correct in Coq (Bertot and Castéran 2004).

Recently there has been an increased interest in dependently
typed programming, where the aim is to write programs that use the
dependent type system to a much higher degree. In this way a lot of
the properties that were previously proved separately can be inte-
grated in the type of the program, in many cases adding little or no
complexity to the definition of the program. New languages, such
as Epigram (McBride and McKinna 2004), are being designed, and
existing languages are being extended with new features to acco-
modate these ideas, for instance the work on dependently typed
programming in Coq by Sozeau (2007).

This talk gives an overview of the Agda programming lan-
guage (Norell 2007), whose main focus is on dependently typed
programming. Agda provides a rich set of inductive types with a
powerful mechanism for pattern matching, allowing dependently
typed programs to be written with minimal fuss. To read about pro-
gramming in Agda, see the lecture notes from the Advanced Func-
tional Programming summer school (Norell 2008) and the work by
Oury and Swierstra (2008).

In the talk a number of examples of interesting dependently
typed programs chosen from the domain of programming language
implementation are presented as they are implemented in Agda.

Categories and Subject Descriptors D.1.1 [Applicative (func-
tional) programming]

Copyright is held by the author/owner(s).
TLDI’09, January 24, 2009, Savannah, Georgia, USA.
ACM 978-1-60558-420-1/09/01.

General Terms Languages, Verification

Keywords dependent types, programming

References
Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program

Development. Coq’Art: The Calculus of Inductive Constructions. Texts
in Theoretical Computer Science. Springer Verlag, 2004.

Xavier Leroy. Formal certification of a compiler back-end, or: programming
a compiler with a proof assistant. In 33rd symposium Principles of
Programming Languages, pages 42–54. ACM Press, 2006.

C. McBride and J. McKinna. The view from the left. Journal of Functional
Programming, 14(1):69–111, January 2004.

Ulf Norell. Dependently typed programming in Agda. In Lecture notes on
Advanced Functional Programming, 2008. To appear.

Ulf Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-
ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
September 2007.

Nicolas Oury and Wouter Swierstra. The Power of Pi. In ICFP’08: Pro-
ceedings of the 2008 SIGPLAN Internation Conference on Functional
Programming, 2008.

Matthieu Sozeau. Program-ing Finger Trees in Coq. In ICFP’07: Proceed-
ings of the 2007 ACM SIGPLAN International Conference on Functional
Programming, pages 13–24. ACM Press, 2007.


