
Type checking in the presence of meta-variables

Ulf Norell and Catarina Coquand

Department of Computer Science and Engineering
Chalmers University of Technology
{ulfn,catarina}@cs.chalmers.se

Abstract. In this paper we present a type checking algorithm for a de-
pendently typed logical framework extended with meta-variables. It is
common for such frameworks to accept that unification creates substitu-
tions that are not well typed [4, 6, 16], but we give a novel approach to
the treatment of meta-variables where well-typedness of substitutions is
guaranteed. To ensure type correctness the type checker creates an op-
timal well-typed approximation of the term being type checked. We use
a restricted form of pattern unification, but we believe that the results
carry over to other unification algorithms. We prove that the algorithm is
sound and terminating. The proposed algorithm has been implemented
with promising results.

1 Introduction

Systems based on proposition-as-types provide an elegant approach to
interactive proof assistants: the problem of proof checking is reduced to
type checking and these systems combine in a natural way deduction and
computation. A well understood formulation relies on lambda calculus
with dependent types, [14, 1, 3]. The main problem is then checking the
judgement M : A expressing that a given term (proof), M , is of type (is
a correct proof of the proposition) A.

A type checking algorithm can be naturally divided in two stages[3].
In the first stage we go through the terms and whenever we type check
a term M of type A against a type B we collect the equality constraint
A = B. In the second phase we check these constraints by verifying
that the terms are convertible with each other. With dependent types it
is important to check the constraints in the right order, and to fail as
soon as an equality is invalid, since well typedness of a constraint may
dependend on previous constraints being satisfied.

For representing proof search in these frameworks it is convenient
to extend the notion of terms with meta-variables that stands for yet
undetermined terms (proofs). Meta variables are also useful for structure
editing, as placeholders for information to be filled in by the user. In this

paper we will however focus on type reconstruction where meta-variables
are used for representing omitted information that can be recovered from
typing constraints through unification.

When adding meta-variables equality checking gets more complicated,
since we cannot always decide the validity of an equality, and we may
be forced to keep it as a constraint. This is well-known in higher order
unification[7]: the constraint ? 0 = 0 has two solutions ? = λx.x and
? = λx.0. This appears also in type theory with constraints of the form
F ? = Bool where F is defined by computation rules. The fact that we
type check modulo yet unsolved constraints can lead to ill-typed terms.
For instance, consider the type-checking problem λg . g 0 : ((x : F ?) →
F (¬ x)) → Nat1 where the term ? is a meta-variable of type Bool , 0:Nat ,
and F : Bool → Set where F false = Nat and F true = Bool . First we
check that ((x : F ?) → F (¬ x)) → Nat is a well-formed type, which
generates the constraint F ? = Bool , since the term ¬ x forces x to be of
type Bool . Checking λg . g 0 against the type ((x :F ?) → F (¬ x)) → Nat
generate then the constraints F ? = Nat and then F (¬ 0) = Nat , which
contains an ill-typed term2.

This problem has some negative consequence for the typechecking
algorithm. With dependent types, verifying convertibility between two
terms relies on normalising these terms, which is only safe if these terms
are well typed. But, as we have seen, in presence of meta-variables, we
may not be sure that these terms are well typed, and the typechecker
may loop. Furthermore, producing ill-typed terms is not very elegant. It
is still the case however that if all constraints can be solved, then we have a
correct solution; so we have some form of “partial correctness” and this is
indeed the approach taken in [8, 2]. In [6], a similar problem of generating
ill-typed terms occur. This is however less problematic in his context,
since these terms can still be shown to be normalisable in the logical
framework he uses, which is more restricted than the one we consider.
Another problem is that when we get a constraint of the form ? = M , we
cannot be sure that M is a solution for ?, since we are not sure that M
is well-typed. In [8, 2, 10] this difficulty is avoided by retypechecking M
at this point, which is costly.

The main contribution of this paper is to present a type checking
algorithm which produces only well-typed constraints for a logical frame-
work extended with meta-variables. The main idea is, for a type-checking

1 The notation (x : A) → B x should be read as ∀x : A.B x.
2 In fact we will also get the constraint Bool = Bool which is trivially valid and

therefore left out.

problem N : C, to produce an optimal well-typed approximation N ′ of
N . Whenever we need to verify M : B, for a subterm M : A of N , where
we cannot yet solve A = B, we replace the subterm M by a guarded
constant p of type B. This constant p will compute to M only when the
constraint A = B has been solved. The approximated term N ′ is in a
trivial way well-typed the logical framework without meta-variables. In
the example above the type (x : F ?) → F (not x) will be replaced by
(x : F ?) → F (p x) where p x : Bool will compute to not x when the
meta-variable is replaced with the term true.

One interesting application of our work is implicit syntax which al-
lows for a more compact and readable representation of terms. In [11]
they show that terms where type information is omitted is more efficient
to validate than type checking the complete proof term. This is only pos-
sible if constraints are known to be well typed. Their work differs from
ours in that they consider a weaker framework where the constraint solv-
ing is guaranteed to succeed. The algorithm that we present has been
implemented and we have made experiments with examples with several
hundreds of meta-variables, which shows that our algorithm scales up to
at least medium sized problems.

2 The underlying logic MLF

We use Martin-Löf’s logical framework [13] as the underlying logic. The
choice of underlying logic is not crucial–the type checking algorithm pre-
sented in this paper can be extended to more feature-rich logics with, for
instance, recursive definitions, pattern matching, and universe hierachies.
See Section 3.3 for a note on how to extend it to pattern matching.

Syntax The syntax of MLF is given by the following grammar.

A, B ::= Set | M | (x : A) → A types
M, N ::= x | c | M M | λx.M terms
Γ, ∆ ::= () | Γ, x : A contexts
Σ ::= () | Σ, c : A | Σ, c : A = M signatures

We assume countable sets of variables and constants and we identify
terms up to α-conversion. We adopt the convention that variables in con-
texts are distinct. Similarly a constant may not be declared in a signature
more than once.

Repeated application M N1 . . . Nk is abbreviated M N̄ . Given a con-
text Γ = x1 : A1, . . . , xn : An we sometimes write λΓ.M for λx1. . . . λxn.M

and M Γ for M x̄. Capture avoiding substitution of N for x in M is writ-
ten M [N/x], or M [N] when x is clear from the context. For dependent
function types (x : A) → B, we write A → B when x is not free in B.
The signature contains axioms and non-recursive definitions.

Judgements The type system of MLF is presented in six mutually de-
pendent judgement forms.

`Σ Σ is a valid signature
Γ `Σ Γ is a valid context
Γ `Σ A type A is a valid type in Γ
Γ `Σ M : A M has type A in Γ
Γ `Σ A = B A and B are convertible types in Γ
Γ `Σ M = N : A M and N are convertible terms of type A in Γ

The typing rules follows standard presentations of type theory [13].

3 The type checking algorithm

In this section we present the type checking algorithm for MLF with
meta-variables.

First we extend the syntax of signatures to include guarded constants
and add a new syntactic category for user expressions:

C ::= Γ ` A = B | Γ ` M = N : A | Γ ` M̄ = N̄ : ∆
Σ ::= . . . | Σ, p : A = M when C
e ::= λx.e | x ē | c ē | Set | (x : e) → e | ?

The input to the type checking algorithm is a user expression which
could represent either a type or a term. Apart from the usual construc-
tions user expressions can also contain ? representing a meta-variable.
During type checking user expressions are translated into MLF terms
where meta-variables are represented as fresh constants. Note that since
we have domain free lambda abstractions we cannot type check β-redexes.
Hence the syntax of user expressions disallows them.

A constraint C is an equality constraint that has been postponed
because not enough information was available about the meta-variables.
Since our conversion checking algorithm is typed the constraints must
also be typed. The constraints show up in the signature as guards to
guarded constants. We write p : A = M when C for a guarded constant
p of type A and value M guarded by the set of constraints C. We have
the computation rule that p computes to M when C is the empty set.

We use the naming convention that lowercase greek letters α, β, . . .
stand for constants representing meta-variables and p and q for guarded
constants.

3.1 Operations on the signature

All rules work on a signature Σ, containing previously defined constants,
meta-variables, and guarded constants. In other words we can write all
judgements on the form 〈Σ〉 J =⇒ 〈Σ′〉. To make the rules easier to read
we first define a set of operations reading and modifying the signature and
when presenting the algorithm simply write J for the judgement above.
In rules with multiple premisses the signature is threaded top-down, left-
to-right.

〈Σ〉 AddMeta(α : A) =⇒ 〈Σ, α : A〉 if α /∈ Σ
〈Σ〉 α := M =⇒ 〈Σ1, α : A = M, Σ2〉 if Σ = Σ1, α : A, Σ2

〈Σ〉 AddConst(p : A = M when C) =⇒ 〈Σ, p : A = M when C〉
if p /∈ Σ

〈Σ〉 InScopeα(M) =⇒ 〈Σ〉 if Σ = Σ1, α : A, Σ2 and
c ∈ M implies c ∈ Σ1

Fig. 1. Operations on the signature

We introduce two operations to manipulate meta-variables:
AddMeta(α : A) adds a new meta-variable α of type A to the signature,
and α := M instantiates α to M . For guarded constants we just add
the operation AddConst(p : A = M when C) to add a new guarded con-
stant to the signature. In Section 3.2 we explain the rules for solving
the constraints of a guarded constant. We also introduce an operation
InScopeα(M) to check that M is in scope at the definition site of α (to
ensure that α can be instantiated to M). Detailed definitions of the op-
erations can be found in Figure 1.

3.2 The algorithm

Next we present the type checking algorithm. We use a bidirectional al-
gorithm, consisting of the following main judgement forms.

Γ ` e type ; A well-formed types
Γ ` e ↑ A ; M type checking
Γ ` e ↓ A ; M type inference
Γ ` A = B ; C type conversion
Γ ` M = N : A ; C term conversion

The rules for well-formed types and type checking and inference take a
user expression and produce a type or term in MLF which is a well-typed
approximation of the user expression. Conversion checking produces a set
of unsolved constraints which needs to be solved for the judgement to be
true in MLF.

We use typed conversion for two reasons: it is a nice way to implement
η-equality, and perhaps more importantly to prove the correctness of the
algorithm we need the invariant that when checking Γ ` M = N : A ; C
we have Γ ` M : A and Γ ` N : A, so we need to record the type to
make sure the invariant is preserved.

When checking conversion we also need the following judgement forms.

Γ ` M
.
= N : A ; C conversion of weak head normal forms

Γ ` M̄ = N̄ : ∆ ; C conversion of sequences of terms

Type checking with dependent types involves normalising arbitrary
(type correct) terms, so we need to know how to normalise terms in a
signature containing meta-variables and guarded constants. We do this
by translating the signature to MLF and performing the normalisation
in MLF.

Definition 1. Given a signature Σ containing meta-variables and guarded
constants we define its MLF restriction |Σ| by replacing guarded con-
stants with normal constants, replacing p : A = M when C by p : A = M
if C is empty, and p : A otherwise.

The correctness of the type checking algorithm relies on the invariant
that when 〈Σ〉 Γ ` e ↑ A ; M =⇒ 〈Σ′〉, we have Γ `|Σ′| M : A (see
Theorem 1).

We write 〈Σ〉 M →whnf M ′ =⇒ 〈Σ〉 if M ′ is the weak head normal
form of M in |Σ|. Similarly M →nf M ′ means that M ′ is the normal
form of M .

Type checking rules To save some space we omit the rules for checking
well-formed types and most of the rules for type checking and inference.
The rules are simple extensions of standard type checking algorithms to

produce well-typed terms. The interesting type checking rules are the rule
for type checking meta-variables and the conversion rules.

AddMeta(α : Γ → A)

Γ ` ? ↑ A ; α Γ

Γ ` e ↓ B ; M
Γ ` A = B ; ∅
Γ ` e ↑ A ; M

Γ ` e ↓ B ; M
Γ ` A = B ; C 6= ∅
AddConst(p : Γ → A = λΓ.M when C)

Γ ` e ↑ A ; p Γ

When type checking a user meta-variable we create a fresh meta-
variable, add it to the signature and return it. Since meta-variables are
part of the signature they have to be lifted to the top-level.

We have two versions of the conversion rule. The first corresponds to
the normal conversion rule and applies when no constraints are generated.
The interesting case is when we cannot safely conclude that A = B, in
which case we introduce a fresh guarded constant. As meta-variables,
guarded constants are lifted to the top-level.

Conversion rules When checking conversion of two function types, an
interesting question is what to do when comparing the domains gives rise
to constraints. The rule in question is

Γ ` A1 = A2 ; C, C 6= ∅
AddConst(p : Γ → A1 → A2 = λΓ x.x when C)
Γ, x : A1 ` B1 = B2[p Γ x] ; C′

Γ ` (x : A1) → B1 = (x : A2) → B2 ; C ∪ C′

To ensure the correctness of the algorithm we need to maintain the
invariant that when we check ` A = B ; C we have ` A type and
` B type. Thus if we do not know whether A1 = A2 it is not correct to
check x : A1 ` B1 = B2 ; C′ since B2 is not well-formed in the context
x : A1. To solve the problem we substitute a guarded constant p x for x
in B2, where p x reduces to x when A1 and A2 are convertible.

Term conversion rules Checking conversion of terms is done on weak
head normal forms. The only rule that is applied before weak head nor-
malisation is the η-rule.

Γ, x : A ` M x = N x : B ; C
Γ ` M = N : (x : A) → B ; C

M →whnf M ′

N →whnf N ′ Γ ` M ′ .
= N ′ : A ; C

Γ ` M = N : A ; C

In MLF function types are not terms so a meta-variable can never
be instantiated to a function type. If this was the case we would have to
check if the type was a meta-variable, and if so postpone the constraint,
since we would not know whether or not the η-rule should be applied.

The weak head normal forms we compare will be of atomic type and
so they are of the form h M̄ where the head h is a variable, constant,
meta-variable, or guarded constant. If both terms have the same variable
or constant head h : ∆ → A we compare the arguments in ∆.

h : ∆ → B Γ ` M̄ = N̄ : ∆ ; C
Γ ` h M̄

.
= h N̄ : A ; C

If the heads are different constants or variables conversion checking
fails. If one of the heads is a guarded constant we give up and return the
problem as a constraint.

Γ ` p M̄
.
= N : A ;

˘
Γ ` p M̄ = N : A

¯
If one of the heads is a meta variable we use a restricted form of pat-

tern unification, but we believe that our correctness proof can be extended
to more powerful unification algorithms, for example [4, 5, 9, 12, 15]. The
crucial step is to prove that meta-variable instantiations are well-typed.
In the examples we have studied, using meta-variables for implicit argu-
ments, this simpler form of unification seems to be sufficient. The rule for
meta-variable instantiation is

x̄ distinct
M →nf M ′

FV(M ′) ⊆ x̄
InScopeα(λx̄.M ′)
α := λx̄.M ′

Γ ` α x̄
.
= M : A ; ∅

Given the problem α x̄ = M we would like to instantiate α to λx̄.M .
This is only correct if x̄ are distinct variables, M does not contain any
variables other than x̄, and any constants refered to by M are in scope
at the declaration site of α3. Now M might refer to meta-variables in-
troduced after α but which have been instantiated. For this reason we
normalise M to M ′ and try to instantiate α to λx̄.M ′. A possible opti-
misation might be to only normalise if M contains out-of-scope constants
or variables. If any of the premisses in this rule fail or α is not applied
only to variables, we return the constraint as it is.

3 Note that scope checking subsumes the usual occurs check, since constants are non-
recursive.

When checking conversion of argument lists, the interesting case is
when comparing the first arguments results in some unsolved constraints.

Γ ` M = N : A ; C 6= ∅ x ∈ FV(∆)

Γ ` M, M̄ = N, N̄ : (x : A)∆ ;˘
Γ ` M, M̄ = N, N̄ : (x : A)∆

¯
Γ ` M = N : A ; C1 6= ∅
Γ ` M̄ = N̄ : ∆ ; C2 x /∈ FV(∆)

Γ ` M, M̄ = N, N̄ : (x : A)∆ ; C1 ∪ C2

If the value of the first argument is used in the types of later arguments
(x ∈ FV(∆)) we have to stop and produce a constraint since the types of
M̄ and N̄ differ. If on the other hand the types of later arguments are in-
dependent of the value of the first argument, we can proceed and compare
them without knowing whether the first arguments are convertible.

Constraint Solving So far, we have not looked at when or how the
guards of a constant are simplified or solved. In principle this can be
done at any time, for instance as a separate phase after type checking.
In practise, however, it might be a better idea to interleave constraint
solving and type checking. In Section 5 we prove that this can be done
safely. Constraint solving amounts to rechecking the guard of a constant
and replacing it by the resulting constraints.

3.3 Adding pattern matching

If we have definitions by pattern matching reduction to weak head normal
form might be blocked by an uninstantiated meta variable. For instance
¬ α cannot be reduced to weak head normal form if ¬ is defined by
¬ true = false and ¬ false = true. Since conversion checking is done on
weak head normal forms we generate a constraint when encountering a
blocked term.

4 Examples

In this section we look at a few examples that illustrates the workings of
the type checker.

A simple example First let us look at a very simple example. Consider
the signature Σ = Nat :Set, 0:Nat , id :(A:Set) → A → A = λA x . x , α:Set
containing a set Nat with an element 0, a polymorphic identity function
id , and a meta-variable α of type Set. Now we want to compute M such

that ` id ? 0 ↑ α ; M . To do this one of the conversion rules have to be
applied, so the type checker first infers the type of id ? 0.

` id ↓ (A : Set) → A → A ; id ` ? ↑ Set ; β

` 0 ↓ Nat ; 0 β := Nat

` 0 ↑ β ; 0

` id ? 0 ↓ β ; id β 0

The inferred type β is then compared against the expected type α, re-
sulting in the instantiation α := Nat . The final signature is Nat : Set,
0 : Nat , id : (A : Set) → A → A = λA x . x , α : Set = Nat , β : Set = Nat
and M = id β 0. Note that it is important to look up the values of in-
stantiated meta-variables–it would not be correct to instantiate α to β,
since β is not in scope at the point where α is declared.

An example with guarded constants In the previous example all
constraints could be solved immediately so no guarded constants had to
be introduced. Now let us look at an example with guarded constants.
Consider the signature of natural numbers with a case principle:

Nat : Set, 0 : Nat , suc : Nat → Nat ,
caseNat : (P : Nat → Set) → P 0 →

((n : Nat) → P (suc n)) →
(n : Nat) → P n

In this signature we want to check that caseNat ? 0 (λn. n) has type
Nat → Nat . The first thing that happens is that the arguments to caseNat
are checked against their expected types. Checking ? against Nat → Set
introduces a fresh meta-variable

α : Nat → Set

Next the inferred type of 0 is checked against the expected type α 0. This
produces an unsolved constraint α 0 = Nat , so a guarded constant is
introduced:

p : α 0 = 0 when α 0 = Nat
Similarly, the third argument introduces a guarded constant.

q : (n : Nat) → α (suc n) = λn. n when (n : Nat) ` α (suc n) = Nat
The resulting type correct approximation is caseNat α p (λn. q n) of
type (n : Nat) → α n. This type is compared against the expected
type Nat → Nat giving rise to the constraint α n = Nat which is
solvable with α = λn. Nat . Once α is instantiated we can perform a
SolveConstraints step to solve the guards on p and q and subsequently re-
duce caseNat α p (λn. q n) to caseNat (λn. Nat) 0 (λn. n) : Nat → Nat .

What could go wrong? So far we have only looked at type correct
examples, where nothing bad would have happened if we had not intro-
duced guarded constants when we did. The following example shows how
things can go wrong. Take the signature Nat : Set, 0 : Nat . Now add the
perfectly well-typed identity function coerce:

coerce : (F : Nat → Set) → F 0 → F 0 = λF x . x
For any well-typed term t :B and type A, coerce ? t will successfully check
against A, resulting in the constraints α 0 = B and A = α 0, none of
which can be solved. If we did not introduce guarded constants coerce ? t
would reduce to t and hence we could use coerce to give an arbitrary type
to a term. For instance we can type4

ω : (N → N) → N = λx . x (coerce ? x)
Ω : N = ω (coerce ? ω)

where without guarded constants Ω would reduce to the non-normalising
λ-term (λx . x x) (λx . x x). With our, algorithm new guarded constants
are introduced for for the argument to coerce and for the application of
coerce. So the type correct appoximation of Ω would be ω p where p =
coerce α q when α 0 = N → N and q = ω when (N → N) → N = α 0.

5 Proof of correctness

The correctness of the algorithm relies on the fact that we only compute
with well-typed terms. This guarantees the existence of normal forms,
and hence, ensures the termination of the type checking algorithm.

The proof will be done in two stages: first we prove soundness in the
absence of constraint solving, and then we prove that constraint solving
is sound.

5.1 Soundness without constraint solving

There are a number of things we need to prove: that type checking pre-
serves well-formed signatures, that it produces well-typed terms, that
conversion checking is sound, and that new signatures respect the old
signatures. Unfortunately these properties are all interdependent, so we
cannot prove them separately.

Definition 2 (Signature extension). We say that Σ′ extends Σ if for
any MLF judgement J , `Σ J implies `Σ′ J .
4 This only type checks if we allow meta-variables to be instantiated to function types,

which is not the case in MLF. However, the type checking algorithm can be extended
to handle this, something we have done in the implementation.

Note that this definition admits both simple extensions–adding a new
constant–and refinement, where we give a definition to a constant.

Now we are ready to state the soundness of the type checking algo-
rithm in the absence of constraint solving.

Theorem 1 (Soundness of type checking). Type checking produces
well-typed terms, conversion checking produces well-formed constraints
and if no constraints are produced, the conversion is valid in MLF. Also,
all rules produce well-formed extensions of the signature.

Proof. By induction on the derivation. The most interesting case is the
meta-variable instantiation case where we have to prove that the instan-
tiation constructs a valid extension of the signature. This is proven by
showing that the instantiation is well-typed.

Since well-typed terms in MLF have normal forms we get the exis-
tence of normal forms for type checked terms and hence the type checking
algorithm is terminating.

Corollary 1. The type checking algorithm is terminating.

Note that type checking terminates with one of three answers: yes it
is type correct, no it is not correct, or it might be correct if the meta-
variables are instantiated properly. The algorithm is not complete, since
finding correct instantiations to the meta-variables is undecidable in the
general case.

5.2 Soundness of constraint solving

In the previous section we proved type checking sound and decidable in
the absence of constraint solving. We also mostly ignored the constraints,
only requiring them to be well-formed. In this section we prove that the
terms produced by the type checker stay well-typed under constraint solv-
ing. This is done by showing that constraint solving is a signature exten-
sion operator in the sense of Definition 2.

Previously we only ensured that the MLF restriction of the signature
was well-formed. Now, since we are going to update and remove the con-
straints of guarded constants we have to strengthen the requirements and
demand consistent signatures. A signature is consistent if the solution of
a guard is a sufficient condition for the well-typedness of the definition it
is guarding.

In order to prove that type checking preserves consistency, we first
need to know that the constraints we produce are sound.

Lemma 1 (Soundness of generated constraints). The constraints
generated during conversion checking ensures that the checked terms are
convertible. For instance, if Γ ` A = B ; C, then solving C guarantees
that Γ ` A = B in MLF.

Lemma 2 (Type checking preserves consistency). Type checking
and conversion checking preserves consistent signatures.

Proof. We have to prove that when we introduce a guarded constant the
guard ensures the well-typedness of the value. This follows from Lemma 1.

Lemma 3 (Constraint solving is sound). If Σ is consistent and the
solving the constraints yields a signature Σ′, then Σ′ is consistent and
Σ′ extends Σ.

Proof. Follows from Theorem 1, Lemma 1, and Lemma 2.

From this follows that we can mix type checking and constraint solv-
ing freely, so we can add a constraint solving rule to the type checking
algorithm. In order to obtain optimal approximations we have to solve
constraints eagerly, i.e as soon as a meta-variable has been instantiated.

5.3 Relating user expressions and checked terms

An important property of the type checking algorithm is that the type
correct terms produced correspond to the expressions being type checked.
The correspondance is expressed by stating that the only operations the
type checker is allowed when constructing a term is replacing a ? by a term
(refinement) and replacing a term by a guarded constant (approximation).

Lemma 4. If Γ ` e ↑ A ; M then M approximates a refinement of
e. This property is preserved when unfolding instantiated meta-variables
and guarded constants in M .

Lemma 5. If Γ ` e ↑ A ; M then M is an optimal approximation of a
refinement M ′ of e.

Proof. The proof relies on the fact that we only introduce guarded con-
stants when absolutely necessary and solve the constraints eagerly. This is
proven by showing that the constraints produced by conversion checking
are not only sufficient but also necessary for the validity of the judgement.

5.4 Main result

We now prove the main soundness theorem stating that if all meta-
variables are instantiated and all guards solved, then the term produced
by the type checker (extended with constraint solving) is valid in the
original signature after unfolding the definitions of the meta-variables
and guarded constants introduced during type checking.

Theorem 2 (Soundness of type checking). If Σ is a well-formed
MLF signature and 〈Σ〉 Γ ` e ↑ A ; M =⇒ 〈Σ′〉, then if all meta-
variables have been instantiated and all guards are empty in Σ′, then
Γ `Σ Mσ : A where σ is the substitution inlining the meta variables and
constants in Σ′. Moreover, Mσ is a refinement of e.

6 Conclusions and future work

In this paper we have shown how to do type checking for a dependently
typed logic extended with meta-variables. To maintain the important
invariant that terms being evaluated are type correct we work with well-
typed approximations of terms, where potentially ill-typed subterms have
been replaced by constants. We showed that type checking is decidable,
that the algorithm is sound and that the approximated terms are optimal.

We present the type checking algorithm for a simple dependently
typed logical framework MLF, but it can be extended to more advanced
logics. This is evidenced by the fact that we have implemented the al-
gorithm for the Agda language, supporting for instance, definitions by
pattern matching, a hierarchy of universes and constants with variable
arity. The algorithm has proven to work well with examples of several
hundred meta-variables.

There are two main directions of future work. First extending the cor-
rectness proof to a more feature-rich logic. Much of this work has already
been done in the implementation but some work remains in working out
the details of the proofs. The other direction of future work is to build
on top of this algorithm. For instance, a system for implicit arguments or
Alf-style interaction[8].

Acknowledgement We would like to thank Conor McBride who generously
shared with us how meta-variables are treated in Epigram. In particular
we want to thank him for the idea of naming possibly ill-typed terms
which simplifies equality reasoning. The authors would also like to thank
Thierry Coquand for many valuable comments on this work.

References

1. H. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer
Science, Volumes 1 (Background: Mathematical Structures) and 2 (Background:
Computational Structures), Abramsky & Gabbay & Maibaum (Eds.), Clarendon,
volume 2. 1992.

2. C. Coquand and T. Coquand. Structured type theory. In Workshop on Logical
Frameworks and Meta-languages, Paris, France, Sep 1999.

3. N. G. de Bruijn. A plea for weaker frameworks. pages 40–67, 1991.
4. G. Dowek. Higher-order unification and matching. pages 1009–1062, 2001.
5. G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit sub-

stitutions. In D. Kozen, editor, Proceedings of the Tenth Annual IEEE Symp. on
Logic in Computer Science, LICS 1995, pages 366–374. IEEE Computer Society
Press, June 1995.

6. C. M. Elliot. Higher-order unification with dependent function types. In N. De-
rikowitz, editor, Proceedings of the 3rd International Conference on Rewriting
Techniques and Applications, pages 121–136, April 1989.

7. G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer
Science, 1(1):27–57, 1975.

8. L. Magnusson and B. Nordström. The ALF proof editor and its proof engine. In
Types for Proofs and Programs, volume 806 of LNCS, pages 213–237, Nijmegen,
1994. Springer-Verlag.

9. D. Miller. Unification of simply typed lambda-terms as logic programming. In
K. Furukawa, editor, Logic Programming: Proc. of the Eighth International Con-
ference, pages 255–269. MIT Press, Cambridge, MA, 1991.

10. C. Muñoz. Proof-term synthesis on dependent-type systems via explicit substitu-
tions. Theor. Comput. Sci., 266(1-2):407–440, 2001.

11. G. Necula and P. Lee. Efficient representation and validation of proofs. In LICS’98,
pages 93–104. IEEE, June 1998.

12. T. Nipkow. Functional unification of higher-order patterns. In Proc. 8th IEEE
Symp. Logic in Computer Science, pages 64–74, 1993.

13. B. Nordström, K. Petersson, and J. Smith. Martin-Löf’s type theory. In Handbook
of Logic in Computer Science, volume 5. OUP, Oct. 2000.

14. B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf ’s Type
Theory. An Introduction. Oxford University Press, 1990.

15. F. Pfenning. Unification and anti-unification in the Calculus of Constructions.
In Sixth Annual IEEE Symposium on Logic in Computer Science, pages 74–85,
Amsterdam, The Netherlands, 1991.

16. D. Pym. Proof, search and computation in general logic. PhD thesis, Univesity of
Edinburgh, 1990.

