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Abstract
Functional generic programming extends functional programming with the ability to

parameterize functions on the structure of a datatype. This allows a programmer to im-
plement certain algorithms once and for all, instead of re-implementing them for each
datatype they apply to. Examples of such algorithms include simple traversals and pretty
printing as well as more complex XML processing tools.

The topic of this dissertation is the implementation of functional generic programming.
More precisely we address two particular questions: how can we reduce the amount of work
required to implement generic programming languages, and how can we embed generic
programming in an existing functional language.

To answer the �rst question we show how meta-programming can be used to quickly
prototype generic programming languages. In particular we describe prototype implemen-
tations of two generic programming languages: PolyP [15] and Generic Haskell [4]. The
prototypes are extremely light-weight while still retaining most of the functionality of the
original languages. One thing that is missing, though, is a way of adding type systems to
the prototypes.

In answer to the second question we show how generic programming can be embedded
in Haskell by exploiting the class system. We describe a new version of PolyP (version
2) together with a compiler that compiles PolyP 2 code into Haskell. By compiling the
polytypic library, PolyLib [16], with our compiler we get a library of generic functions for
Haskell.
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Chapter 1

Introduction

1.1 Generic Programming

Depending on who you ask, generic programming can mean very di�erent things. For a
Java programmer, generic programming means parametric polymorphism [3], for a C++
programmer, generic programming is done with concepts, a disciplined form of overloading
that places requirements on the running time of the operations. The most widely used
library for generic programming in C++ is the Standard Template Library (STL) [33].
For a Haskell programmer, and thus in this dissertation, generic programming means pa-
rameterizing over the structure of types.

Common for all these di�erent views is that generic programming is done by abstracting
over types. The Java and C++ versions of generic programming use two forms of type
abstraction: parametric polymorphism, where type parameters are treated as black boxes,
and overloading, where there is a separate de�nition for each type an overloaded function
can be applied at. A generic function in these settings is a parametrically polymorphic
function that might require some overloaded functions to be de�ned for its type parameters,
and in the case of C++, it also speci�es the running time of these functions.

There is a trade-o� between the number of types a function applies to and the amount
of information it has about its type parameters. A parametrically polymorphic function
can be applied at any type, but it cannot do anything interesting with its type parameters
since they cannot be inspected. On the other hand, an overloaded function knows precisely
at which type it is applied and can do completely di�erent things for di�erent types, but
it can only be applied at the types for which it has been de�ned. Combining the two,
unfortunately, does not give us the best of the two worlds. A generic function in the Java
and C++ sense can only be applied at types for which the overloaded functions are de�ned
and the only information they have about their type parameters is that the overloaded
functions indeed are de�ned for them.

Instead functional generic programming introduces a di�erent form of type abstraction,
namely abstraction over type structures. In this setting a generic function gets access to the
structure of its type parameters and can thus do a lot more with them than a parametrically
polymorphic function. It can also be applied at a large�and most importantly, open�set
of types, since it does not need a separate de�nition for each type. This is made possible
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2 1. Introduction

by the uniformity of algebraic datatypes�every datatype is a sum of products, a number
of constructors with zero or more arguments.

The most obvious application for generic programming is the implementation of algo-
rithms that applies to many di�erent datatypes, such as simple traversal and data collection
functions. Another case is when the datatype an algorithm works on changes during de-
velopment, for example, the abstract syntax is likely to evolve during the implementation
of a domain speci�c language. But even if a function is only ever applied to a single never-
changing type, there can be bene�ts from implementing it generically. In many cases the
generic implementation is shorter, since it abstracts away from unnecessary details, and
because of this there are fewer places where bugs can occur.

Di�erent systems for functional generic programming provide varying levels of access to
the datatype structure. In systems like PolyP [15], Generic Haskell [4] and Generic Clean [1]
generic functions are de�ned by pattern matching on the type structure directly, whereas
systems like Strafunski [23] and GHC's Data.Generics library [21, 22] provide generic com-
binators and facilities for overriding their behavior at particular types. In this dissertation
we focus on the former systems and describe how they can be implemented.

1.2 Haskell
The topic of this dissertation is the implementation of functional generic programming,
but before we can implement functional generic programming we need ordinary functional
programming. To this end we use the functional language Haskell [30]. We assume a basic
knowledge of Haskell and the rest of this section gives an introduction only to the more
advanced language concepts that are used in the dissertation.

1.2.1 Laziness
Haskell is a non-strict or lazy language. This means that things are not evaluated until
they are actually needed. This makes it possible to create in�nite structures like the in�nite
list of ones de�ned by

ones :: [Int]
ones = 1 : ones

We do not make use of laziness in any essential ways in the dissertation but it can be
helpful to keep in mind that Haskell is a lazy language when reading some of the code.

1.2.2 Kinds
Kinds are the types of types and a kind can be either ? (pronounced star) or κ→ ν (kappa
to nu), for two kinds κ and ν. Haskell expressions always have types of kind ?, for instance

Int :: ?
Bool :: ?



1.2. Haskell 3

[Int] :: ?
Either Bool Int :: ?

Type constructors have higher kinds:
[] :: ?→ ?
Either :: ?→ ?→ ?
Fix :: (?→ ?)→ ?

data Fix f = In (f (Fix f ))

When we get to generic programming kinds will play an important rôle. In some cases
we want to limit generic programming to datatypes of a single kind, and in other cases we
want functions that are generic over datatypes of any kind.

1.2.3 Newtypes
In Haskell you can use the keyword newtype in place of data to introduce datatypes
with a single constructor of only one argument. The advantage of using newtype is that
an element of a newtype has the same representation as the underlying type, i.e. the
constructor does not have a physical representation in memory. For instance:

newtype A = A Int
data B = B Int

In this example A 5 have the same representation in memory as 5, whereas the repre-
sentation of B 5 would include a representation of the constructor B. As a consequence the
constructor A is strict and the B constructor is lazy.

1.2.4 Records
Haskell provides a syntax for de�ning records with named �elds. For instance we can de�ne

data Person = P { name :: String , age :: Int , male :: Bool }

A record datatype can be treated in the same way as a normal datatype�the type of
the constructor is P :: String→ Int→ Bool→ Person and we can ignore the records when
pattern matching on a Person�but we get a few extra features: record projection functions,
a facility for updating a record and special syntax for pattern matching on a record. In
this dissertation we will use records just to get the projection functions and otherwise treat
record datatypes as if they were normal datatypes. In the example above we would get
the projection functions

name :: Person→ String
age :: Person→ Int
male :: Person→ Bool
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1.2.5 Higher-rank polymorphism
A polymorphic type is a type that contains universally quanti�ed type variables. Examples
of functions with polymorphic types are

id :: ∀a. a → a
length :: ∀a. [a]→ Int
map :: ∀a b. (a → b)→ [a]→ [b]

Haskell 98 supports rank-1 polymorphism, that is, universal quanti�ers are only allowed
on the top level of a type, as in the examples above. In these cases the quanti�ers are not
given explicitly, instead all free type variables are implicitly universally quanti�ed at the
top level1. Some Haskell implementations, most notably GHC, supports arbitrary rank
polymorphism, where quanti�ers are allowed anywhere. An example where this can be
useful involves generalized rose trees:

data GRose f a = Branch a (f (GRose f a))

mapGRose :: ∀ f a b. (∀s t . (s → t)→ f s → f t)→
(a → b)→ GRose f a → GRose f b

mapGRose h f (Branch x t) = Branch (f x ) (h (mapGRose h f ) t)

The map function for a generalized rose tree takes two arguments; a map function for its
type argument f and the function that should be mapped over the rose tree. For f = []
we have

mapGRose map :: ∀ a b. (a → b)→ GRose [] a → GRose [] b

We need higher rank polymorphism when de�ning generic functions for datatypes of
higher kinds.

1.2.6 Sums and products
When writing generic programs we often view a datatype as a sum of products. One
natural way of representing sums and products is to use the sum and product types from
the Haskell Prelude.

data Either a b = Left a | Right b
data (a, b) = (a, b)

Note that the pair type is a built-in type and the de�nition above is not legal Haskell. To
manipulate elements of these types we extend what the Prelude de�nes with two mapping
functions:

(−+−) :: (a → c)→ (b → d)→ Either a b → Either c d
(f −+− g) (Left x ) = Left (f x )
(f −+− g) (Right y) = Right (g y)

(−∗−) :: (a → c)→ (b → d)→ (a, b)→ (c, d)
(f −∗− g) (x , y) = (f x , g y)

1This is sometimes referred to as let-polymorphism.
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1.2.7 In�x type constructors
In Haskell you can de�ne your own in�x operators and data constructors as we did in
Section 1.2.6. What you cannot do in Haskell 98 is de�ne in�x type constructors. GHC,
however, allows this. We can, for instance, de�ne an in�x product type constructor as
follows:

data a :∗: b = a :∗: b

Here the type constructor and the data constructor have the same name ( :∗: ). As with
in�x data constructors, in�x type constructors have to start with a colon.

1.2.8 Multi-parameter type classes
Haskell's type classes allows for a powerful and structured form of overloading. A simple
example is the monoid class de�ned in the Data.Monoid module of the standard Haskell
libraries.

class Monoid m where
mempty :: m
mappend :: m → m → m

instance Monoid [a] where
mempty = []
mappend = (++)

The class declaration states that a type m is a Monoid if there are two functions mempty
and mappend of the appropriate types. Note that there exist no facility for stating the
laws that we expect these operations to satisfy. In the instance declaration we provide
these functions for the list datatype declaring it to be a Monoid. In Haskell 98 type classes
can only have a single type argument, so we can only describe predicates over types, not
relations between two or more types. Most Haskell implementations, however, allows type
classes with multiple arguments. For instance we can de�ne a class for collections as follows.

class Collection c e | c → e where
empty :: c
add :: e → c → c
member :: e → c → Bool

instance Eq a ⇒ Collection [a] a where
empty = []
add = (:)
member = elem

This states that c is a collection of es if there are functions empty , add and member of
the above types. The �| c → e� is a functional dependency [20] which declares that e is
uniquely determined by c. In other words, a type c cannot be a collection for more than
one element type. Functional dependencies provide important, and sometimes necessary,
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information for resolving type ambiguities. An example of this is the empty function. The
element type e does not occur in the type of empty , so if there could be several instances
for the same collection type but di�erent element types, we would have no way of choosing
between them.

1.3 Overview
This dissertation consists of two papers outlined below. Both papers are co-authored by
Patrik Jansson who has written some of the less technical parts and been very helpful in
giving comments and suggestions for the rest. The technical contributions of the papers,
however, are my own.

1.3.1 Prototyping Generic Programming
The �rst papers is a revised version of Prototyping Generic Programming using Template
Haskell [29]. This paper identi�es the need for a light-weight approach to implementing
generic programming languages and proposes Template Haskell [32] as a means of meeting
this need. Template Haskell is an extension to Haskell that makes it possible to write
functions that generate Haskell code. These functions are evaluated at compile-time and
the result becomes part of the program. Using this mechanism a generic function can
be modeled as a function that given the structure of a datatype produces the specialized
Haskell code for that particular datatype. To demonstrate these ideas we develop pro-
totype implementations of PolyP [15] and Generic Haskell [4]�two generic programming
extensions to Haskell.

1.3.2 Polytypic Programming in Haskell
The second paper is a revised and extended version of Polytypic Programming in Haskell [28].
This paper describes how Haskell's class system can be used to achieve generic programming
in Haskell. We show how to express the generic functions from the polytypic library [16]
as well as a few new generic functions not previously de�nable. A new version of PolyP
(version 2) is described together with a compiler that produces Haskell code using the class
system to implement genericity.



Chapter 2

Prototyping Generic Programming

Generic Programming deals with the construction of programs that can be applied to
many di�erent datatypes. This is achieved by parameterizing the generic programs by
the structure of the datatypes on which they are to be applied. Programs that can be
de�ned generically range from simple map functions through pretty printers to complex
XML tools.

The design space of generic programming languages is largely unexplored, partly due to
the time and e�ort required to implement such a language. In this paper we show how to
write �exible prototype implementations of two existing generic programming languages,
PolyP and Generic Haskell, using Template Haskell, an extension to Haskell that enables
compile-time meta-programming. In doing this we also gain a better understanding of the
di�erences and similarities between the two languages.

2.1 Introduction
Generic functional programming [13] aims to ease the burden of the programmer by allow-
ing common functions to be de�ned once and for all, instead of once for each datatype.
Classic examples are small functions like maps and folds [12], but also more complex func-
tions, like parsers and pretty printers [18] and tools for editing and compressing XML
documents [9], can be de�ned generically. There are a number of languages for writing
generic functional programs [1, 5, 10, 11, 15, 19, 21], each of which has its strengths and
weaknesses, and researchers in generic programming are still searching for The Right Way.
Implementing a generic programming language is no small task, which makes it cumber-
some to experiment with new designs.

In this paper we show how to use Template Haskell [32] to implement two generic
programming extensions to Haskell: PolyP [15] and Generic Haskell [4, 10]. With this
approach, generic functions are written in Haskell (with the Template Haskell extension),
so there is no need for an external tool. Furthermore the support for code generation and
manipulation in Template Haskell greatly simpli�es the compilation of generic functions,
thus making the implementations very lightweight and easy to experiment with. A disad-
vantage of this approach is that we do not get the nice syntax we can get with a custom
made parser. Another problem is that it is not at all clear how to implement a generic
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8 2. Prototyping Generic Programming

type system in this setting, so type checking is deferred to instantiation time.
The rest of this section gives brief introductions to Template Haskell, PolyP and Generic

Haskell (GH). Section 2.2 compares PolyP and GH. Section 2.3 introduces the concepts
involved in implementing generic programming using Template Haskell. Sections 2.4 and
2.5 outline our prototype implementations of PolyP and GH and Section 2.6 points to
possible future work.

2.1.1 Template Haskell
Template Haskell [32] is a language extension implemented in the Glasgow Haskell Com-
piler that enables compile-time meta-programming. This means that we can de�ne code
generating functions that are run at compile-time. In short you can splice abstract syntax
into your program using the $(...) notation and lift an expression to the abstract syntax
level using the quasi-quotes [| ... |]. Splices and quasi-quotes can be nested arbitrarily deep.
For example, it is possible to de�ne the printf function with the following type:

printf :: String→ Q Exp

Here printf takes the format string as an argument and produces the abstract syntax for
the printf function specialized to that particular format string. To use this function we
can write, for instance

Main〉 $(printf “x%d=%s”) 3 “foo”
“x3=foo”

Template Haskell comes with libraries for manipulating the abstract syntax of Haskell.
The result type Q Exp of the printf function models the abstract syntax of an expression.
The type constructor Q is the quotation monad, that takes care of, for instance, fresh name
generation and the Exp type is a normal Haskell datatype modeling Haskell expressions.
Similar types exist for declarations (Dec) and types (Type).

It is interesting to note that lifting is done on type correct Haskell expressions, whereas
splicing might produce ill-typed code. In other words [| e |] :: Q Exp if and only if e :: τ
for some τ , and $(e) is well-de�ned (but not necessarily well-typed) whenever e :: Q Exp.
So for any expression e :: τ , we have $([| e |]) = e, but [| $(t) |] = t , for t :: Q Exp, only
when $(t) is well-typed. Since lifting creates fresh names for all bound variables the above
equalities are modulo alpha-renaming.

The de�nition of printf might look a bit complicated with all the lifts and splices, but
ignoring those we have precisely what we would have written in an untyped language.

printf :: String→ Q Exp
printf fmt = prAcc fmt [| “” |]

where
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prAcc :: String→ Q Exp→ Q Exp
prAcc fmt r =

case fmt of
′%′ : ′d ′ : f → [|λ n → $(prAcc f [| $r ++ show n |]) |]
′%′ : ′s ′ : f → [|λ s → $(prAcc f [| $r ++ s |]) |]
c : f → prAcc f [| $r ++ [c] |]
“” → r

The prAcc function uses an accumulating parameter r containing (the abstract syntax of)
an expression representing the string created so far. Every time we see a % code we add a
lambda at the top level and update the parameter with the argument.

We can step through the example from the beginning of the section to get a better
understanding of what is going on.

printf “x%d=%s”
= prAcc “x%d=%s” [| “” |]
= prAcc “%d=%s” [| $([| “” |]) ++ “x” |]
= prAcc “%d=%s” [| “x” |]
= [|λ n → $(prAcc “=%s” [| “x” ++ show n |]) |]
= [|λ n → $(prAcc “%s” [| “x” ++ show n ++ “=” |]) |]
= [|λ n → $([|λ s → $(prAcc “” [| “x” ++ show n ++ “=” ++ s |]) |]) |]
= [|λ n → λ s → $(prAcc “” [| “x” ++ show n ++ “=” ++ s |]) |]
= [|λ n → λ s → $([| “x” ++ show n ++ “=” ++ s |]) |]
= [|λ n → λ s → “x” ++ show n ++ “=” ++ s |]

The keen observer will note that this de�nition of printf is quadratic in the length of
the format string. This is easy to �x but for the sake of brevity we chose the ine�cient
version, which is slightly shorter.

Template Haskell supports program re�ection or rei�cation, which means that it is
possible to get hold of the type of a named function or the declaration that de�nes a
particular entity. For example:

reifyType id :: Q Type
reifyDecl Maybe :: Q Dec

We can use this feature to �nd the de�nitions of the datatypes that a generic function is
applied to.

2.1.2 PolyP
PolyP [15, 28] is a language extension to Haskell for generic programming, that allows
generic functions over unary regular datatypes. A regular datatype is a datatype with no
function spaces, no mutual recursion and no nested recursion1. Examples of unary regular
datatypes are [], Maybe and Rose:

1The recursive calls must have the same form as the left hand side of the de�nition.
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type (g :+: h) p r = Either (g p r) (h p r)
type (g :∗: h) p r = (g p r , h p r)
type Unit p r = ()
type Par p r = p
type Rec p r = r
type (d :@: g) p r = d (g p r)
type Const t p r = t

Figure 2.1: Pattern functors

data Rose a = Fork a [Rose a]

Note that in this chapter we implement a prototype version of PolyP version 1 [15]
and not of PolyP version 2 described in Chapter 3 and in [28]. A reason for this is that
PolyP 2 relies on a generic type system to infer the appropriate class constraints for the
generic functions (see Section 3.3.5) and it is not clear how to implement type systems for
our generic languages in this setting.

Generic programming in PolyP is based on the notion of pattern functors. Each
datatype is associated with a pattern functor that describes the structure of the datatype.
The di�erent pattern functor combinators are shown in Figure 2.1. The g :+: h pattern
functor is used to model multiple constructors, g :∗: h and Unit model the list of arguments
to the constructors, Par is a reference to the parameter type, Rec represents a recursive call,
d :@: g models an application of a regular datatype d and Const t is used for a constant
type t . The pattern functors of the datatypes mentioned above are (the comments show
the expanded de�nitions applied to two type variables p and r):

type ListF = Unit :+: (Par :∗: Rec) � Either () (p, r)
type MaybeF = Unit :+: Par � Either () p
type RoseF = Par :∗: ([] :@: Rec) � (p, [r ])

PolyP provides two functions inn and out to fold and unfold the top-level structure of
a datatype. Informally, for any regular datatype D with pattern functor F , inn and out
have the following types:

inn :: F a (D a)→ D a
out :: D a → F a (D a)

Note that only the top-level structure is folded/unfolded.
A special construct, polytypic, is used to de�ne generic functions over pattern functors

by pattern matching on the functor structure. As an example, the de�nition of fmap2, a
generic map function over pattern functors, is shown in Figure 2.2. Together with inn
and out these polytypic functions can be used to de�ne generic functions over regular
datatypes. For instance:

pmap :: (a → b)→ D a → D b
pmap f = inn ◦ fmap2 f (pmap f ) ◦ out



2.1. Introduction 11

polytypic fmap2 :: (a → c)→ (b → d)→ f a b → f c d
= λ p r → case f of

g :+: h → fmap2 p r −+− fmap2 p r
g :∗: h → fmap2 p r −∗− fmap2 p r
Unit → const ()
Par → p
Rec → r
d :@: g → pmap (fmap2 p r)
Const t → id

Figure 2.2: The de�nition of fmap2 in PolyP version 1

The same polytypic function can be used to create several di�erent generic functions.
We can, for instance, use fmap2 to de�ne generic cata- and anamorphisms (generalized
folds and unfolds):

cata :: (F a b → b)→ D a → b
cata φ = φ ◦ fmap2 id (cata φ) ◦ out

ana :: (b → F a b)→ b → D a
ana ψ = inn ◦ fmap2 id (ana ψ) ◦ ψ

2.1.3 Generic Haskell
Generic Haskell [4, 10]. is an extension to Haskell that allows generic functions over
datatypes of arbitrary kinds. Hinze [7] observed that the type of a generic function de-
pends on the kind of the datatype it is applied to, hence each generic function in Generic
Haskell comes with a generic (kind indexed) type. The kind indexed type associated with
the generic map function is de�ned as follows:

type Map {[?]} s t = s → t
type Map {[κ→ ν]} s t = ∀ a b.Map {[κ]} a b → Map {[ν]} (s a) (t b)

For a kind κ, the kind of Map {[κ]} is κ→ κ→ ?. Generic Haskell uses the {[kind brackets ]}
to enclose kind arguments. The type of the generic map function gmap applied to a type
t of kind κ can be expressed as

gmap {|t :: κ|} :: Map {[κ]} t t

The {|type brackets|} encloses type arguments. The kind argument κ is often omitted,
since it can be inferred from the type t . Following are the types of gmap for some standard
datatypes.
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gmap {|t :: κ|} :: Map {[κ]} t t
gmap {| :+: |} gmapA gmapB (Inl a) = Inl (gmapA a)
gmap {| :+: |} gmapA gmapB (Inr b) = Inr (gmapB b)
gmap {| :∗: |} gmapA gmapB (a :∗: b) = gmapA a :∗: gmapB b
gmap {|Unit|} Unit = Unit
gmap {|Con c|} gmapA (Con a) = Con (gmapA a)
gmap {|Label l |} gmapA (Label a) = Label (gmapA a)
gmap {|Int|} n = n

Figure 2.3: A generic map function in Generic Haskell

data a :+: b = Inl a | Inr b
data a :∗: b = a :∗: b
data Unit = Unit
data Con a = Con a
data Label a = Label a

Figure 2.4: Structure types in Generic Haskell

gmap {| Int |} :: Int→ Int
gmap {| [] |} :: ∀ a b. (a → b)→ ([a]→ [b])
gmap {| Either |} :: ∀ a b. (a → b)→

∀ c d . (c → d)→ (Either a c → Either b d)

The kind indexed types follow the same pattern for all generic functions. A generic function
applied to a type of kind κ→ ν is a function that takes a generic function for types of kind
κ and produces a generic function for the target type of kind ν.

The generic functions in Generic Haskell are de�ned by pattern matching on the top-
level structure of the type argument. Figure 2.3 shows the de�nition of the generic map
function gmap, generalizing Haskell's fmap and PolyP's fmap2. The structure combinators
are similar to those in PolyP. Sums and products are encoded by :+: and :∗: and the empty
product is called Unit. A di�erence from PolyP is that constructors and record labels are
represented by the structure combinators Con c and Label l . The arguments (c and l)
contain information such as the name and �xity of the constructor or label. A generic
function must also contain cases for primitive types such as Int. The type of each clause
is the type of the generic function instantiated with the structure type on the left. The
de�nitions of the structure types are shown in Figure 2.4. Note that the arguments to Con
and Label containing the name and �xity information are only visible in pattern matching
and not in the actual types.

Generic Haskell contains many features that we do not cover here, such as type indexed
types, generic abstraction and constructor cases.
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2.2 Comparing PolyP and Generic Haskell
The most notable di�erence between PolyP and Generic Haskell is the set of datatypes
available for generic programmers. In PolyP generic functions can only be de�ned over
unary regular datatypes, while Generic Haskell allows generic functions over (potentially
non-regular) datatypes of arbitrary kinds.

Examples of datatypes that are supported by Generic Haskell but not by PolyP are
� Kind ?→ ?→ ?

data Tree′ a b = Leaf a | Node b (Tree′ a b) (Tree′ a b)

� Mutually recursive
data Exp a = Var a |

App (Exp a) (Exp a) |
Let (Dec a) (Exp a)

data Dec a = Fun a (Exp a)

� Nested
data Bin a = One a | Fork (Bin (a, a))

There is a trade-o� here, in that more datatypes means fewer generic functions. In
PolyP it is possible to de�ne generic folds and unfolds such as cata and ana (see Sec-
tion 2.1.2) that cannot be de�ned in Generic Haskell.

Even if PolyP and Generic Haskell may seem very di�erent, their approaches to generic
programming are very similar. In both languages generic functions are de�ned, not over
the datatypes themselves, but over a structure type acquired by unfolding the top-level
structure of the datatype. The structure types in PolyP and Generic Haskell are very
similar. The di�erences are that in PolyP constructors and labels are not recorded explicitly
in the structure type and the structure type is parameterized over recursive occurrences
of the datatype. This is made possible by only allowing regular datatypes. For instance,
the structure of the list datatype in the two languages is (with Generic Haskell's sums and
products translated into Either, (, ) and ()):

type ListF a r = Either () (a, r) � PolyP
type ListS a = Either (Con ()) (Con(a, [a])) � Generic Haskell

To transform a generic function over a structure type into a generic function over the actual
datatype, conversion functions between the datatype and the structure type are needed.
In PolyP they are called inn and out (described in Section 2.1.2) and they are primitives in
the language. In Generic Haskell this conversion is done by the compiler and the conversion
functions are not available to the programmer.

As mentioned above, generic functions in both languages are primarily de�ned over
the structure types. This is done by pattern matching on a type code, representing the
structure of the datatype. The type codes di�er between the languages, because they
model di�erent sets of datatypes, but the generic functions are de�ned in very much the
same way. The most signi�cant di�erence is that in Generic Haskell the translations of
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Figure 2.5: The implementation of a generic function.

type abstraction, type application and type variables are �xed and cannot be changed by
the programmer, whereas in PolyP on the other hand the pattern functors Par and Rec
gives the programmer access to the two abstracted type variables and the pattern functor
d :@: g models type application.

Given a generic function over a structure type it should be possible to construct a
generic function over the corresponding datatype. In Generic Haskell this process is fully
automated and hidden from the programmer. In PolyP, however, it is the programmer's
responsibility to take care of this. One reason for this is that the structure types are
more �exible in PolyP, since they are parameterized over the recursive occurrences of
the datatype. This means that there is not a unique datatype generic function for each
structure type generic function. For instance the structure type generic function fmap2
from Figure 2.2 can be used not only to de�ne the generic map function, pmap, but also
the generic cata- and anamorphisms, cata and ana.

2.3 Guidelines for Implementing Generic Programming
Generic functions in both PolyP and Generic Haskell are de�ned by pattern matching
over the code for a datatype. Such a generic function can be viewed as an algorithm
for constructing a Haskell function given a datatype code. For instance, given the type
code for the list datatype a generic map function can generate the de�nition of a map
function over lists. Program constructing algorithms like this can be implemented nicely
in Template Haskell; a generic function is simply a function from a type code to the abstract
syntax for the function specialized to the corresponding type. When embedding a generic
programming language like PolyP or Generic Haskell in Template Haskell there are a few
things to consider:

• Datatypes

The �rst thing to decide on is the set of datatypes over which we want to de�ne
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generic functions. For Generic Haskell this would be the full set of Haskell datatypes,
whereas in PolyP the set is restricted to unary regular datatypes.
A large set of datatypes means more generically applicable functions, but often a
more restricted set of de�nable generic functions.
• Structure types

To be able to de�ne functions generically over a set of datatypes it is necessary to
have a uniform view of these datatypes. In PolyP and Generic Haskell this is achieved
by assigning to each datatype a structure type capturing the top-level structure of
that datatype. Now all generic manipulation of data can be done at the structure
type level by translating back and forth between datatypes and structure types.
• Type Codes

Regardless of how the generic programming languages is implemented the set of
datatypes (and structure types) to be used has to be decided upon. The choice of
datatype codes, on the other hand, is particular to the Template Haskell implementa-
tion of generic programming. As mentioned before, a generic function is implemented
as a function from a type code (for a datatype) to abstract syntax (for the function
specialized to that datatype). Thus the choice of codes can greatly in�uence how
generic functions are de�ned.
To be able to design the type codes we have to take a closer look at how they are
used. Figure 2.5 sketches how generic functions are implemented in our framework.
First of all we need two set of codes, one for datatypes and one for structure types.
The structure type codes are used when de�ning generic functions over the structure
types. For example, the Generic Haskell function gmap from Figure 2.3 and the
PolyP function fmap2 from Figure 2.2 are de�ned in this way. The structure type
codes are also used to generate the actual structure types when they need to be
explicit 2.
The structure type codes should be derivable from the datatype codes (just as struc-
ture types are derived from datatypes), so the datatype codes must contain at least
the same information as the structure type codes. The datatype codes are also used
when lifting functions from the structure type level to the datatype level.
From this brief analysis we can conclude a few things about the type codes. Since
structure type generic functions are de�ned by pattern matching on structure type
codes we want to keep these codes as simple as possible. When we implement an
existing generic programming language it is also desirable to make generic function
de�nitions in the Template Haskell implementation resemble the de�nitions from the
original language. When it comes to the datatype codes, they should contain the
corresponding structure type code, but also enough information to generate conver-
sion functions between datatype and structure type levels. The minimal information
we need to do this is the names and arities of the datatype constructors.

2For instance, if explicit type signatures are required in the generated code.
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• Structure type generic function de�nitions

The structure type generic functions are where the real work is happening. Provided
with a structure type code a structure type generic function generates the specialized
version of the function to the corresponding structure type. Things to consider here
include how to handle calls to other generic functions (or the same function on a
di�erent type). Consider, for example, the de�nition of the PolyP function fmap2
in Figure 2.2. What should be generated for the call to the generic function pmap
in the d :@: g case? One choice is to inline the call, i.e. generate the body of pmap
specialized to d and use that directly in the generated code. The other choice is to
generate a call to a named function, pmapd say, that is de�ned as the specialization
of pmap to d .
In our PolyP implementation we choose the former and in the Generic Haskell im-
plementation the latter.
• Lifting functions on structure types to functions on datatypes

As can be seen in Figure 2.5 we want to transform the structure type specialization
generated by the structure type generic function into a datatype specialization. This
can be done in various ways and, as described in Section 2.2, PolyP and Generic
Haskell take two di�erent approaches to constructing these specializations. In PolyP
it is the responsibility of the user whereas in Generic Haskell, it is done by the
compiler. In any case we need to convert between an element of a datatype and an
element of the corresponding structure type.
In the approach taken by PolyP, the conversion functions (inn and out) are all the
compiler needs to de�ne. The programmer of a generic function will then use these
to lift her function from the structure type level to the datatype level. Implementing
the Generic Haskell approach on the other hand requires some more machinery. For
each generic function, the compiler must convert the specialization for a structure
type into a function that operates on the corresponding datatype (see Section 2.5).
• Instantiation

Both the PolyP and Generic Haskell compilers do selective specialization, that is,
generic functions are only specialized to the datatypes on which they are actually
used in the program. This requires traversing the entire program to look for uses of
generic functions. When embedding generic programming in Template Haskell we
cannot analyze the entire program to �nd out which specializations to construct. One
solution is to inline the body of the specialized generic function every time it is used.
This makes the use of the generic functions easy, but special care has to be taken to
avoid that recursive generic functions give rise to in�nite specializations. This is the
approach we use when embedding PolyP in Template Haskell (Section 2.4). Another
approach is to require the user to decide which functions to specialize on which
datatypes. This makes it harder on the user, but a little easier for the implementor
of the generic programming language. Since our focus is on fast prototyping of generic
languages, we use this approach when implementing Generic Haskell (Section 2.5).
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2.4 PolyP in Template Haskell
Following the guidelines described in Section 2.3 we can start to implement our �rst generic
programming language, PolyP.

2.4.1 Datatypes and Structure Types
Since we are implementing an existing language the choices of datatypes and structure
types have already been made for us. PolyP allows generic functions over unary regular
datatypes and the structure types are built up by the pattern functors (see Section 2.1.2).
Worth noting here is that the datatypes and the structure types have di�erent kinds (?→ ?
and ?→ ?→ ? respectively).

2.4.2 Type Codes
What we do have to decide on is how to design the codes for datatypes and structure
types. Starting with the structure type codes we choose a representation matching PolyP's
pattern functors as closely as possible.

data Code = Code :+: Code | Code :∗: Code | Unit |
Par | Rec | Regular :@: Code | Const Type

This coding corresponds perfectly to the de�nition of the pattern functors in Figure 2.1,
we just have to decide what Type and Regular mean. The Template Haskell libraries de�ne
the abstract syntax for Haskell types in a datatype called Type so this is a natural choice
to model types. The type Regular is nothing less than the type of datatype codes.

The datatype codes should contain enough information to generate the inn and out
functions as discussed in Section 2.3, as well as the corresponding structure type code. So
we simply choose to implement Regular as a pair of the constructor names and arities and
a structure type code.

type Regular = ([(ConName, Int)] ,Code)

functorOf :: Regular→ Code
functorOf = snd

To make it easy to get hold of the code for a datatype, we want to de�ne a function
that converts from the (abstract syntax of a) datatype de�nition to Regular. A problem
with this is that one regular datatype might depend on another regular datatype, in which
case we have to look at the de�nition of the second datatype as well. So instead of just
taking the de�nition of the datatype in question our conversion function takes a list of all
de�nitions that might be needed together with the name of the type to be coded.

regular :: [Q Dec]→ TypeName→ Regular

If a required datatype de�nition is missing, or the datatype is not regular, the call to regular
will fail. But because the function is by the Template Haskell system at compile time, this
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fmap2 :: Code→ Q Exp
fmap2 f =

[|λ p r → $(
case f of

g :+: h → [| $(fmap2 g) p r −+− $(fmap2 h) p r |]
g :∗: h → [| $(fmap2 g) p r −∗− $(fmap2 h) p r |]
Unit → [| const () |]
Par → [| p |]
Rec → [| r |]
d :@: g → [| $(pmap d) ($(fmap2 g) p r) |]
Const t → [| id |]

)
|]

Figure 2.6: fmap2 in Template Haskell

will result in a compile-time error rather than a run-time error. Note that regular has to
escape from the quotation monad somehow and since the quotation monad is built on top
of the IO monad there is only one way of doing that: unsafePerformIO . This is perfectly
safe here because the only IO computation performed is fresh name generation and we do
not rely on names being fresh.

As an example, combining the function regular with Template Haskell's rei�cation
mechanism we obtain the code for the Rose datatype de�ned in Section 2.1.2.

roseD = regular [reifyDecl Rose, reifyDecl []] “Rose”

2.4.3 Structure Type Generic Functions
Generic functions over pattern functors are implemented as functions from structure type
codes to (abstract) Haskell code. For example, the function fmap2 from Figure 2.2 in
Section 2.1.2 is implemented as shown in Figure 2.6. The two de�nitions are strikingly
similar, but there are a few important di�erences, the most obvious one being the splices
and quasi-quote brackets introduced in the Template Haskell de�nition. Another di�erence
is in the type signature. PolyP has its own type system capable of expressing the types of
generic functions, but in Template Haskell everything inside quasi-quotes has type Q Exp,
and thus the type of fmap2 is lost. The third di�erence is that in Template Haskell we
have to pass the type codes explicitly to the recursive calls of fmap2.

The (:@:)-case in the de�nition of fmap2 calls the datatype level function pmap de-
scribed in Section 2.4.4 to map over the regular datatype d . As mentioned in Section 2.3,
there is a choice here of how to handle the call to pmap. One way of doing it would be
to call it by name, i.e. assume that the specialization of pmap to the datatype d is avail-
able as a function of a particular name and just call that function. The other way, which
we choose here, is to inline the specialization of pmap. This has the advantage of being
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simpler�we do not need to bother with names of specializations�but it might lead to a
code blowup. In PolyP mutually recursive datatypes are not allowed so the code blowup
is not a big problem.

2.4.4 Datatype Generic Functions
In the previous subsection we saw how to de�ne the structure type generic functions in
the Template Haskell implementation of PolyP. Now we have to turn these into datatype
generic functions. In PolyP datatype generic functions are de�ned in terms of the structure
type generic functions and the functions inn and out , that convert between a datatype and
its structure type. To generate these functions we need to know the constructor names
and arities of the datatype as well as the corresponding structure type. This is precisely
what (for good reason) the datatype codes Regular contain. We de�ne

inn, out :: Regular→ Q Exp

Applied to the code for the list datatype inn and out produce the following:
listD = regular [reifyDecl []] “[]”

$(inn listD) :: Either () (a, [a])→ [a]
$(inn listD) = λ xs → case xs of

Left () → []
Right (x , xs)→ x : xs

$(out listD) :: [a]→ Either () (a, [a])
$(out listD) = λ xs → case xs of

[] → Left ()
x : xs → Right (x , xs)

Basically we have to generate a case expression with one branch for each constructor. In
the case of out we match on the constructor and construct a value of the structure type
whereas inn matches on the structure type and creates a value of the datatype. Note that
the arguments to the constructors (here x and xs) are left untouched, in particular the tail
of the list is not unfolded.

With inn and out at our disposal we de�ne the generic map function over a regular
datatype, pmap. The de�nition is shown in Figure 2.7 together with the same de�nition in
PolyP. In PolyP, pmap is a recursive function and following our decision to inline calls to
generic functions we might be tempted to de�ne it recursively in Template Haskell as well.
This is not what we want, because it would make the generated code in�nite. Instead we
have to adopt the second approach and name the specialization of pmap to d , e�ectively
generating a recursive function.

2.4.5 Instantiation
The generic functions de�ned in this style are very easy to use. To map a function f over
a rose tree tree we simply write
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� PolyP definition
pmap :: Regular d ⇒ (a → b)→ d a → d b
pmap f = inn ◦ fmap2 f (pmap f ) ◦ out

� Template Haskell definition
pmap :: Regular→ Q Exp
pmap d = [| let pmapd f = $(inn d)

◦ $(fmap2 (functorOf d)) f (pmapd f )
◦ $(out d)

in pmapd

|]

Figure 2.7: The pmap function in PolyP and Template Haskell

$(pmap roseD) f tree

where roseD is the representation of the rose tree datatype de�ned in Section 2.4.2.
In summary, the prototype implementation of PolyP consists of the following
• De�nitions of the type codes Code and Regular.
• A function regular that computes the code of a particular datatype, and the function

functorOf extracting the structure type code from a datatype code.
• The generic functions inn and out , taking a Regular and generating conversion func-
tions between the corresponding datatype and structure type.

Using this machinery generic functions can be de�ned almost as smoothly as in the full-
blown implementation. And here we can easily experiment with extensions, such as opti-
mizations of the generated code.

2.5 Generic Haskell in Template Haskell
In Section 2.4 we outlined an embedding of PolyP into Template Haskell. In this section
we do the same for the core part of Generic Haskell. Features of Generic Haskell that we do
not consider include constructor cases, type indexed types and generic abstraction. Type
indexed types and generic abstraction should be possible to add without much di�culty;
constructor cases might require some more work, though.

2.5.1 Datatypes and Structure Types
The set of datatypes over which we can de�ne generic functions in Generic Haskell is the
full set of arbitrarily kinded Haskell datatypes. Similarly to PolyP, Generic Haskell uses
binary sums and products to model datatype structures (see Figure 2.4). We diverge from
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Generic Haskell in this implementation in that we use the Haskell Prelude types Either and
(, ) for sums and products instead of using the (isomorphic) versions from Generic Haskell.
Another di�erence between our Template Haskell implementation and standard Generic
Haskell is that constructors and labels are not modeled in the structure type. Compare,
for example, the structure types of the list datatype in standard Generic Haskell (�rst) to
our implementation (second):

type ListS a = Con Unit :+: Con(a :∗: [a]) � standard Generic Haskell
type ListS a = Either () (a, [a]) � prototype

Since we are not implementing all features of Generic Haskell, we can allow ourselves this
simpli�cation.

2.5.2 Type Codes
To be consistent with how generic functions are de�ned in Generic Haskell we choose the
following datatype for structure type codes:

data Code = Sum | Prod | Unit |
Con ConDescr | Label LabelDescr |
Fun | TypeCon TypeName |
App Code Code | Lam VarName Code | Var VarName

The �rst seven constructors should be familiar to users of Generic Haskell, although you do
not see the TypeCon constructor when matching on a speci�c datatype in Generic Haskell.
The last three constructors App, Lam and Var you never see in Generic Haskell. The reason
why they are not visible is that the interpretation of these type codes is hard-wired into
Generic Haskell and cannot be changed by the programmer. By making them explicit we
get the opportunity to experiment with this default interpretation.

The types ConDescr and LabelDescr describe the properties of constructors and labels.
In our implementation this is just the name, but it could also include information such as
�xity and strictness.

In our implementation of PolyP the datatype codes extended the structure type codes
with constructor names and arities. Now this information is encoded already in the struc-
ture type codes, so the question is do the datatype codes need anything else. As it turns
out, the answer to this question is yes. We need to know the name and kind of the datatype
when generating the datatype specializations. The name, since we want to name the spe-
cialization, and the kind, because the type of the specialization depends on the kind of the
datatype. Hence we de�ne

data Kind = ? | Kind :�: Kind
type Datatype = (TypeName,Kind,Code)

If we de�ne the in�x application of App to be left associative, we can write the type
code for the list datatype as follows:
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listD :: Datatype
listD = ( “[]”

, ? :�: ?
, Lam “a” $

Sum ‘App‘ (Con “[]” ‘App‘ Unit)
‘App‘ (Con “ : ” ‘App‘ (Prod ‘App‘ Var “a”

‘App‘ (TypeCon “[]” ‘App‘ Var “a”)
)

)
)

This is not something we want to write by hand for every new datatype, even though it
can be made much nicer by some suitable helper functions. Instead we de�ne a function
that produces a datatype code given the abstract syntax of a datatype declaration.

datatype :: Kind→ Q Dec→ Datatype
structureCode :: Datatype→ Code
structureCode (_,_, c) = c

Thus, to get the above code for the list datatype we just write
listD = datatype (? :�: ?) (reifyDecl [])

Unfortunately Template Haskell cannot tell us the kind of a datatype. In principle we
could infer it, but for simplicity we choose to have the user provide it explicitly.

2.5.3 Generic Function Types
The type of a generic function in Generic Haskell depends on the kind of the datatype the
function is applied to, a fact �rst observed by Hinze [7]. At a glance it would seem like we
could ignore the types of generic functions, because Template Haskell does not have any
support for typing anyway. It turns out, however, that we need the type when generating
the datatype specializations. The reason for this is that the types of the specializations
use higher rank polymorphism and thus we need to generate explicit type signatures.

In the previous section we borrowed the representation of types from Template Haskell.
In this case, however, we want to have explicit type abstractions, something that is missing
from the Template Haskell representation3. Our datatype for types is shown in Figure 2.8.
Now we can de�ne the kind indexed type, Map from Section 2.1.3 as

typeMap ? = LamT [“s”, “t”] (VarT “s” −→ VarT “t”)
typeMap (κ :�: ν) = LamT [“s”, “t”] (ForallT [“a”, “b”]

( typeMap κ @ a @ b −→
typeMap ν @ (s @ a) @ (t @ b)

)
)

3Explicit type abstractions are not strictly necessary, but they make things much easier.



2.5. Generic Haskell in Template Haskell 23

data Type = ForallT [VarName] Context Type |
VarT VarName | ConT ConName |
TupleT Int | ListT | ArrowT |
AppT Type Type |
LamT [VarName] Type

infixl 9 @
a @ b = AppT a b
a −→ b = ArrowT @ a @ b

Figure 2.8: A datatype for types

where [s , t , a, b] = map VarT [“s”, “t”, “a”, “b”]

This is slightly more clumsy than the Generic Haskell syntax, but we can make things a
lot easier by observing that all type indexed types follow the same pattern. The only thing
we need to know is the number of generic and non-generic arguments and the type for kind
?. With this information we de�ne the function kindIndexedType:

kindIndexedType :: Int � number of generic arguments
→ Int � number of non−generic arguments
→ Type � type for kind ?
→ Kind→ Type

Using this function we can de�ne the kind indexed type typeMap as
typeMap = kindIndexedType 2 0 (LamT [“s”, “t”] (VarT “s” −→ VarT “t”))

Recall from Section 2.1.3 that the type of a generic function applied to a datatype t of
kind κ is given on the form T {[κ]} t . . . t , where T is a kind indexed type. Inspired by
this we de�ne a GenericType to be a function from a kind and a type to a type.

type GenericType = Kind→ Type→ Type

Now, the type of the generic map function from gmap can be de�ned as
gmapType :: GenericType
gmapType κ t = typeMap κ @ t @ t

2.5.4 Structure Type Generic Functions
A structure type generic function should take a structure type code and produce abstract
Haskell syntax, so we de�ne

type GenericFun = Code→ Q Exp



24 2. Prototyping Generic Programming

defaults :: VarName→ GenericFun′ → GenericFun′

defaults name gfun env t =
case t of

Con _ → [| id |]
Label _ → [| id |]
TypeCon c → varE (gName name c)
App s t → [| $(gfun env s) $(gfun env t) |]
Lam x t → [| λ gx → $(gfun (addToEnv x [| gx |] env) t) |]
Var x → lookupEnv x env

varE :: String→ Q Exp

Figure 2.9: Default generic translations

However, our structure type codes contain abstractions, which means that we have to deal
with free variables. The standard way of doing this is to pass around an environment in
which we can store what to do with variables.

type GEnv = Env VarName (Q Exp)
type GenericFun′ = GEnv→ GenericFun

emptyEnv :: Env k v
addToEnv :: Ord k ⇒ k → v → Env k v → Env k v
lookupEnv :: Ord k ⇒ k → Env k v → v

With these types at our disposal we de�ne a function defaults , that handles default cases
that will be the same for most generic functions. The function, de�ned in Figure 2.9, takes
the name of the generic function that is being constructed and a GenericFun′ that handles
the non-standard cases and produces a new GenericFun′. The idea is that a generic function
should call defaults on all type codes that it does not handle (see the generic map function
in Figure 2.10 for an example).

Let us look at the default cases a bit closer, starting from the bottom. The last three
cases handle type application, abstraction and variables.

App s t → [| $(gfun env s) $(gfun env t) |]
Lam x t → [| λ gx → $(gfun (addToEnv x [| gx |] env) t) |]
Var x → lookupEnv x env

The default case for a type application App s t is to generate a value application. This �ts
well with the notion of kind indexed types: Assume that s is the code for a type of kind
κ→ ν and that t is the code for a type of kind κ, then (ignoring the details) we have

$(gfun env s) :: T {[κ→ ν]} . . .
$(gfun env t) :: T {[κ]} . . .

for some kind indexed type T . Now, remember that a kind indexed type applied to a
higher kind, T {[κ→ ν]} . . ., is basically a function type T {[κ]} . . .→ T {[ν]} . . ..
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Analogously for a type abstraction Lam x t , we generate a value abstraction taking a
function gx of the appropriate type and producing the specialization of the generic function
to the body t where gx is used as the specialization for the variable x .

These three cases cannot be changed by the user in Generic Haskell. In our prototype
implementation, on the other hand, nothing prevents a generic function to handle these
cases di�erently.

For a type constructor, the default case is to call the, presumably generated, special-
ization of the generic function to that type.

TypeCon c → varE (gName name c)

The function varE comes with Template Haskell and turns a string into the abstract syntax
of an identi�er. We de�ne the function gName to return the name of the specialization of
a generic function to a particular type.

When implementing the PolyP prototype we chose to inline calls to generic functions.
This was feasible, because PolyP does not allow mutually recursive datatypes. In Generic
Haskell, on the other hand, mutually recursive datatype are allowed, in which case inlining
would lead to in�nite programs.

The default cases for constructors and labels are de�ned to be the identity function.

Con _ → [| id |]
Label _→ [| id |]

To understand why this is a reasonable choice we have to look at what the Con c and
Label l structure type codes mean. Recall from Section 2.5.1 that constructors and labels
are not modeled in the structure types. This means that the code Con c ‘App‘ t represents
the same structure type as the code t . Now consider what the default cases would produce
for this code:

defaults name gfun env (Con c ‘App‘ t)
== [| $(gfun env (Con c)) $(gfun env t) |]
== . . .
== [| $(defaults name gfun env (Con c)) $(gfun env t) |]
== [| id $(gfun env t) |]
== gfun env t

In other words the default action for constructors and labels is to ignore them, and the
reason why we can do this is that they are not modeled in the structure type.

Provided that it does not need to change the default actions, a generic function only
has to provide actions for Sum, Prod and Unit. The de�nition of the generic map function
from Section 2.1.3 is shown in Figure 2.10. For Sum and Prod the generic map function
returns the map functions for Either and (, ), and mapping over the unit type is just the
identity functions. For all other type codes we call the defaults function to perform the
default actions.
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gmap :: GenericFun
gmap t = gmap ′ emptyEnv t

where gmap ′ :: GenericFun′

gmap ′ env t =
case t of

Sum → [| (−+−) |]
Prod→ [| (−∗−) |]
Unit → [| id |]
t → defaults “gmap” gmap ′ env t

Figure 2.10: Generic map

2.5.5 Datatype Generic Functions
In our prototype implementation of PolyP (Section 2.4) it was the responsibility of the
programmer lift structure type generic functions to datatype generic functions. The reason
for this was that in PolyP, the conversion could be done in several di�erent ways, yielding
di�erent datatype functions. In Generic Haskell, on the other hand, we have a unique
datatype function in mind for every structure type function. For instance, look at the type
of the function generated by applying gmap to the code for the list structure type:

gmapListS :: (a → b)→ Either () (a, [a]) → Either () (b, [b])
gmapListS = $(gmap (structureCode listD))

From this function we want to generate the map function for lists with type

gmap[] :: (a → b)→ [a]→ [b]

The �rst step is to generate the conversion functions between a datatype and its structure
type. For this purpose we de�ne the function structEP .

structEP :: Datatype→ Q Dec

This function generates a declaration of the conversion functions, so for the list datatype
it would generate something like the following:

ep[] :: EP [a] (Either () (a, [a]))
ep[] = EP out inn

where out [] = Left ()
out (x : xs) = Right (x , xs)
inn (Left ()) = []
inn (Right (x , xs)) = x : xs

The EP type, shown in Figure 2.11, models an embedding projection pair.
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data EP a b = EP { from :: a → b, to :: b → a }

epid :: EP a a
epid = EP id id

(
ep−→) :: EP a a ′ → EP b b ′ → EP (a → b) (a ′ → b ′)

eqA
ep−→ epB = EP (λ f → from epB ◦ f ◦ to epA)

(λ g → to epB ◦ g ◦ from epA)

Figure 2.11: Embedding projection pairs

Using ep[] we can de�ne the map function for the list datatype as
gmap[] :: (a → b)→ [a]→ [b]

gmap[] f = to (ep[]
ep−→ ep[]) (gmapListS f )

The embedding projection pair is generated directly from the type of the generic function.
In this case an embedding projection pair of type

EP ([a]→ [b]) (Either () (a, [a])→ Either () (b, [b]))

should be generated. Embedding projection pairs between function types can be con-
structed with (

ep−→), and ep[] can convert between a list and an element of the list structure
type. We de�ne the function typeEP to generate the appropriate embedding projection
pair.

typeEP :: Q Exp→ Kind→ GenericType→ Q Exp

The �rst argument to typeEP is the embedding projection pair converting between the
datatype and its structure type, the second argument is the kind of the datatype and the
third argument is the type of the generic function. So to get the embedding projection
pair used in gmap[] we write

typeEP [| ep[] |] (? :�: ?) gmapType

2.5.6 Instantiation
The focus of this article is on fast prototyping of generic programming languages. This
means that we do not make great e�orts to facilitate the use of the generic functions. In
particular what we do not do is �guring out which specializations to generate. Instead
we provide a function instantiate that generates the de�nition of the specialization of a
generic function to a particular datatype, as well as a function structure, that generates
the embedding projection pair de�nition converting between a datatype and its structure
type using the function structEP from Section 2.5.5.
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type Generic = (VarName,GenericType,GenericFun)

instantiate :: Generic→ Datatype→ Q [Dec]
structure :: Datatype→ Q [Dec]

Using these functions a map function for rose trees can be generated by
data Rose a = Fork a [Rose a]

listD = datatype (? :�: ?) (reifyDecl [])
roseD = datatype (? :�: ?) (reifyDecl Rose)
gmapG = (“gmap”, gmapType, gmap)

$(structure listD)
$(structure roseD)
$(instantiate gmapG listD)
$(instantiate gmapG roseD)

Since the rose trees contain lists we have to create specializations for the list datatype
as well. The code generated for gmap specialized to rose trees will look something like
the following (after some formatting and alpha renaming). Note that gmapRoseS uses both
gmap[] and gmapRose.

gmapRoseS :: (a → b)→ (a, [Rose a])→ (b, [Rose b])
gmapRoseS = λ f → f −∗− gmap[] (gmapRose f )

gmapRose :: (a → b)→ Rose a → Rose b

gmapRose f = to (epRose
ep−→ epRose) (gmapRoseS f )

Our, now �nished, prototype implementation of Generic Haskell contains the following:
• The type codes Datatype and Code.
• A function datatype that computes the code a datatype, and a function to extract
the structure type code from a datatype code, structureCode.
• Datatypes Kind and Typ representing kinds and types.
• A function kindIndexedType that builds a kind indexed type.
• The defaults function that provides a default implementation for some common cases
in a generic function.
• Two functions structEP that generates the conversion functions between a datatype
and its structure type, and a function typeEP that generates conversion functions
between a structure type generic function and a datatype generic function.
• The top-level functions structure and instantiate that uses structEP and typeEP to
generate declarations that can be spliced into a Haskell program.
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Compared to the implementation of PolyP from Section 2.4, the Generic Haskell prototype
required more machinery. One reason for this is that Generic Haskell handles datatypes
of arbitrary kinds, which adds complexity. Another reason is that in the PolyP implemen-
tation, more work was left to the programmer of the generic functions. All in all, writing
generic functions in our prototype is not much more work than in the real language, al-
though one should keep in mind that a few nice features from the full implementation are
still missing in the prototype.

2.6 Conclusions and Future Work
E�orts to explore the design space of generic programming have been hampered by the fact
that implementing a generic programming language is a daunting task. In this paper we
have shown that this does not have to be the case. We have presented two prototype imple-
mentations of generic programming approximating PolyP and Generic Haskell. Thanks to
the Template Haskell machinery, these prototypes could be implemented in a short period
of time (each implementation consists of a few hundred lines of Haskell code). Comparing
these two implementations we obtain a better understanding of the design space when it
comes to implementations of generic programming languages.

There are a few di�erent areas one might want to focus future work on:
• The idea of fast prototyping is to make it possible to experiment with di�erent ideas
in an easy way. So far, most of our work has been concentrated on how to write the
prototypes and not so much on experimenting.
• One of the biggest problems with current generic programming systems is e�ciency.
The conversions between datatypes and structure types takes a lot of time and it
would be a big win if one could remove this extra cost. We have started working on
a simpli�er for Haskell expressions that can do this based on [2].
• It would be interesting to see how other generic programming styles �t into this
framework. In particular one could look at the Data.Generics libraries in GHC [21]
and also at the generic traversals of adaptive OOP [24].
• The design of a generic programming language includes the design of a type system.
In this paper we have ignored the issue of typing, leaving it up to the Haskell compiler
to �nd type errors in the specialized code. Is there an easy way to build prototype
type systems for our implementations?
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Chapter 3

Polytypic Programming in Haskell

A polytypic (or generic) program captures a common pattern of computation over di�erent
datatypes by abstracting over the structure of the datatype. Examples of algorithms that
can be de�ned polytypically are equality tests, mapping functions and pretty printers.

A commonly used technique to implement polytypic programming is specialization,
where a specialized version of a polytypic function is generated for every datatype it is
used at. In this paper we describe an alternative technique that allows polytypic functions
to be de�ned using Haskell's class system (extended with multi-parameter type classes
and functional dependencies). This technique brings the power of polytypic programming
inside Haskell allowing us to de�ne a Haskell library of polytypic functions. It also increases
our �exibility, reducing the dependency on a polytypic language compiler.

3.1 Introduction
Functional programming draws great power from the ability to de�ne polymorphic, higher
order functions that can capture the structure of an algorithm while abstracting away
from the details. A polymorphic function is parameterized over one or more types and
thus abstracting away from the speci�cs of these types. The same is true for a polytypic
(or generic) function, but while all instances of a polymorphic function share the same
de�nition, the instances of a polytypic function de�nition also depend on a type.

By parameterizing the function de�nition by a type one can capture common patterns
of computation over di�erent datatypes. Examples of functions that can be de�ned poly-
typically include the map function that maps a function over the elements of a container
datatype but also more complex algorithms like uni�cation and term rewriting.

Even if an algorithm will only be used at a single datatype it may still be a good idea
to implement it as a polytypic function. First of all, since a polytypic function abstracts
away from the details of the datatype, we cannot make any datatype speci�c mistakes in
the de�nition and secondly, if the datatype changes during algorithm development, there
is no need to change the polytypic function.

A common technique to implement polytypic programming is to specialize the polytypic
functions to the datatypes at which they are used. In other words the polytypic compiler
generates a separate function for each polytypic function-datatype pair. Unfortunately

31
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this implementation technique requires global access to the program using the polytypic
functions. In this paper we describe an alternative technique to implement polytypic
programs using the Haskell class system. The polytypic programs which can be de�ned
are restricted to operate on regular, single parameter datatypes. That is, datatypes that
are not mutually recursive and where the recursive calls all have the same form as the left
hand side of the datatype de�nition. Note that datatypes are allowed to contain function
spaces. This technique has been implemented as a Haskell library and as a modi�cation
of the PolyP [15] compiler resulting in PolyP version 2. The implementation of PolyP
2 is available from the polytypic programming home page [14]. In the following text we
normally omit the version number � PolyP will stand for the improved language and its
(new) compiler.

3.1.1 Overview
The rest of this paper is structured as follows. Section 3.2 describes how polytypic pro-
grams can be expressed inside Haskell. The structure of regular datatypes is captured
by pattern functors (expressed using datatype combinators) and the relation between a
regular datatype and its pattern functor is captured by a two parameter type class (with a
functional dependency). In this setting a polytypic de�nition is represented by a class with
instances for the di�erent datatype combinators. Section 3.3 shows how the implementa-
tion of PolyP has been extended to translate PolyP code to Haskell classes and instances.
Section 3.4 and Section 3.5 show two case studies of using PolyP and Haskell for polytypic
programming. Section 3.6 describes related work and Section 3.7 concludes.

3.2 Polytypism in Haskell
In this section we show how polytypic programs can be embedded in Haskell1. The em-
bedding uses datatype constructors to model the top level structure of datatypes, and the
two-parameter type class FunctorOf to relate datatypes to their structures.

The embedding closely mimics the features of the language PolyP [15], an extension
to (a subset of) Haskell that allows de�nitions of polytypic functions over regular, unary
datatypes. This section gives a brief overview of the embedding and compares it to PolyP.

3.2.1 Datatypes and pattern functors
As mentioned earlier we allow de�nition of polytypic functions over regular datatypes of
kind ?→ ?. A datatype is regular if it is not mutually recursive with another type and if
the argument to the type constructor is the same in the left-hand side and the right-hand
side of the de�nition. See Section 2.2 for examples of non-regular datatypes.

We describe the structure of a regular datatype by its pattern functor. A pattern functor
is a two-argument type constructor built up using the combinators shown in Figure 3.1.
Note that these are not the same de�nitions as the ones used in PolyP version 1 (Figure 2.1).

1The code for this paper works with current (October 2004) versions of the Glasgow Haskell Compiler
and the hugs, and can be obtained from the polytypic programming home page [14].
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data (g :+: h) p r = InL (g p r) | InR (h p r)
data (g :∗: h) p r = g p r :∗: h p r
data Unit p r = Unit
newtype Par p r = Par {unPar :: p}
newtype Rec p r = Rec {unRec :: r}
newtype (d :@: g) p r = Comp {unComp :: d (g p r)}
newtype Const t p r = Const {unConst :: t}
newtype (g :→: h) p r = Fun {unFun :: g p r → h p r}

Figure 3.1: Pattern functor combinators

The in�x combinators are right associative and their order of precedence is, from lower to
higher: (:+:), (:∗:), (:→:), (:@:). For the datatype List a we can use these combinators to
de�ne the pattern functor ListF as follows:

data List a = Nil | Cons a (List a)
type ListF = Unit :+: Par :∗: Rec

An element of ListF p r can take either the form InL Unit, corresponding to Nil or the form
InR (Par x :∗: Rec xs), corresponding to Cons x xs . A point worth noting is that the r does
not have to be instantiated to List a. This is, in fact, what allows us to de�ne polytypic
fold and unfold functions as we will see in Section 3.2.3.

The pattern functor d :@: g represents the composition of the regular datatype con-
structor d and the pattern functor g , allowing us to describe the structure of datatypes
like Rose:

data Rose a = Fork a (List (Rose a))
type RoseF = Par :∗: List :@: Rec

A constant type in a datatype de�nition is modeled by the pattern functor Const t. For
instance, the pattern functor of a binary tree storing height information in the nodes can
be expressed as

data HTree a = Leaf a | Branch Int (HTree a) (HTree a)
type HTreeF = Par :+: Const Int :∗: Rec :∗: Rec

The pattern functor (:→:) is used to model datatypes with function spaces. Only a few
polytypic functions are possible to de�ne for such datatypes, see Section A.16 for an ex-
ample.

In general we write ΦD for the pattern functor of the datatype D a, so for example
ΦList = ListF. To convert between a datatype and its pattern functor we use the methods
inn and out in the multi-parameter type class FunctorOf:
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class FunctorOf f d | d → f where
inn :: f a (d a)→ d a
out :: d a → f a (d a)
constructorName :: d a → String
datatypeName :: d a → String

Note that the class FunctorOf ranges over type constructors f :: ?→ ?→ ? and d :: ?→ ?,
rather than over base types of kind ?. The functions inn and out realize the isomorphism
d a ∼= Φd a (d a), that holds2 for every regular datatype. (We can view a regular datatype
d a as a �xed point of the corresponding functor Φd a.) The methods constructorName
and datatypeName (and a few more for �xity and precedence information) are used in the
de�nition of polytypic show and read functions.

In our list example we have
instance FunctorOf (Unit :+: Par :∗: Rec) List where

inn (InL Unit) = Nil
inn (InR (Par x :∗: Rec xs)) = Cons x xs
out Nil = InL Unit
out (Cons x xs) = InR (Par x :∗: Rec xs)
constructorName Nil = “Nil”
constructorName (Cons x xs) = “Cons”
datatypeName _ = “List”

Note that inn (out) only folds (unfolds) the top-level structure, leaving the substructures
intact and it is therefore normally a constant time operation. The exception is for datatypes
whose pattern functor contains a composition, d :@: g , like the Rose datatype above. In
this case inn and out have to remove and add the pattern functor constructors inside the
type d and thus have to traverse a potentially in�nite structure. Fortunately this traversal
can be done lazily so this is not a problem in practise.

The functional dependency d → f in the FunctorOf-class means that the set of instances
de�nes a type level function from datatypes to their pattern functors. Several di�erent
datatypes can map to the same pattern functor if they share the same structure, but
one datatype can not have more than one associated pattern functor. For an example
where we use the fact the several datatypes can have the same structure see the function
coerce in Section 3.2.6. The functional dependency allows the Haskell compiler to infer
unambiguous types for most generic functions � without the dependency, disambiguating
type annotations are often required.

3.2.2 Pattern functor classes
A polytypic function is a function that is parameterized by the structure of a datatype. In
this setting datatype structures are modeled by pattern functors, so we expect a polytypic
function to be de�ned by recursion over a pattern functor. Since pattern functors are types

2Since we are using a lifted binary product to represent the arguments to a datatype constructor we
actually have out ◦ inn v id , so inn and out form an embedding-projection pair rather than an isomor-
phism.
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rather than values we use the class system to achieve this recursion. For each polytypic
de�nition f we de�ne a pattern functor class P_f with a single method f . The pattern
functor class is parameterized by a type of kind ?→ ?→ ?, the kind of the pattern functors
and the set of instances for a class P_f corresponds to the clauses of the recursive de�nition
of the polytypic function f .

An example is a generalization of the standard Haskell Prelude class Functor to the
pattern functor class P_fmap2:

class Functor f where
fmap :: (a → b)→ (f a → f b)

class P_fmap2 f where
fmap2 :: (a → c)→ (b → d)→ (f a b → f c d)

All pattern functors constructors except (:→:) are instances of the class P_fmap2, the full
de�nition of fmap2 is shown in Figure 3.2, together with with the map function on regular
datatypes, pmap. Pattern functor classes and their instances are discussed in more detail
in Section 3.3, where we show how they can be generated from PolyP function de�nitions.

3.2.3 PolyLib in Haskell
PolyLib [16] is a library of polytypic de�nitions including generalized versions of well-
known functions such as map, zip and sum, as well as powerful recursion combinators such
as cata, ana and hylo. All these library functions have been converted to work with our new
framework, so that PolyLib is now available as a normal Haskell library (see Appendix A
for further details). The library functions can be used on all datatypes which are instances
of the FunctorOf class. The FunctorOf-instances can be generated either by the PolyP 2
compiler, by using Template Haskell (Section A.2), or by de�ning them manually.

Using fmap2 from the P_fmap2-class and inn and out from the FunctorOf class we can
already de�ne quite a few polytypic functions from the Haskell version of PolyLib. For
instance

pmap :: (FunctorOf f d ,P_fmap2 f )⇒ (a → b)→ (d a → d b)
cata :: (FunctorOf f d ,P_fmap2 f )⇒ (f a b → b)→ (d a → b)
ana :: (FunctorOf f d ,P_fmap2 f )⇒ (b → f a b)→ (b → d a)

pmap f = inn ◦ fmap2 f (pmap f ) ◦ out
cata ϕ = ϕ ◦ fmap2 id (cata ϕ) ◦ out
ana ψ = inn ◦ fmap2 id (ana ψ) ◦ ψ

We can use the functions above to de�ne other polytypic functions. For instance, we can
use cata to de�ne a generalization of sum :: Num a ⇒ [a]→ a which works for all regular
datatypes. Suppose we have a pattern functor class P_fsum with the method fsum:

class P_fsum f where
fsum :: Num a ⇒ f a a → a
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class P_fmap2 f where
fmap2 :: (a → c)→ (b → d)→ (f a b → f c d)

instance (P_fmap2 g , P_fmap2 h) ⇒ P_fmap2 (g :+: h) where
fmap2 p r (InL x ) = InL (fmap2 p r x )
fmap2 p r (InR y) = InR (fmap2 p r y)

instance (P_fmap2 g , P_fmap2 h) ⇒ P_fmap2 (g :∗: h) where
fmap2 p r (x :∗: y) = fmap2 p r x :∗: fmap2 p r y

instance P_fmap2 Unit where
fmap2 p r Unit = Unit

instance P_fmap2 Par where
fmap2 p r (Par x ) = Par (p x )

instance P_fmap2 Rec where
fmap2 p r (Rec x ) = Rec (r x )

instance (FunctorOf f d , P_fmap2 f , P_fmap2 g) ⇒ P_fmap2 (d :@: g) where
fmap2 p r (Comp x ) = Comp (pmap (fmap2 p r) x )

instance P_fmap2 (Const t) where
fmap2 p r (Const x ) = Const x

pmap :: (FunctorOf f d ,P_fmap2 f )⇒ (a → b)→ (d a → d b)
pmap f = inn ◦ fmap2 f (pmap f ) ◦ out

Figure 3.2: Haskell de�nition of a polytypic map function.
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(The method fsum takes care of summing the top-level, provided that the recursive occur-
rences have already been summed.) Then we can sum the elements of a regular datatype
by de�ning

psum :: (FunctorOf f d , P_fmap2 f ,P_fsum f ,Num a)⇒ d a → a
psum = cata fsum

We return to the function fsum in Section 3.3.1 when we discuss how the pattern functor
classes are generated. In the type of psum we can see an indication of a problem that
arises when combining polytypic functions without instantiating them to concrete types:
we get large class constraints. Fortunately we can let the Haskell compiler infer the type
for us in most cases, but our setting is certainly one which would bene�t from extending
Haskell type constraint syntax with wild cards, allowing us to write the type signature as
psum :: _⇒ d a → a.

3.2.4 Perfect binary trees
A bene�t of using the class system to do polytypic programming is that it allows us to treat
(some) non-regular datatypes as regular, thus providing a regular view of the datatype. For
instance, take the nested datatype of perfect binary trees, de�ned by

data Bin a = Single a | Fork (Bin (a, a))

Elements of Bin a take the form of a number of Forks followed by a Single containing all
the elements in a structure of nested pairs. For example

depth1 = Fork (Single (1, 2))
depth2 = Fork (Fork (Single ((1, 2), (3, 4))))
depth3 = Fork (Fork (Fork (Single (((1, 2), (3, 4)), ((5, 6), (7, 8))))))

This type can be viewed as having the pattern functor Par :+: Rec :∗: Rec, i.e. the same as
the ordinary binary tree.

data Tree a = Leaf a | Branch (Tree a) (Tree a)

By de�ning an instance of the FunctorOf class for Bin (see Figure 3.3) we can then use all
the PolyLib functions on perfect binary trees. For instance we can use an anamorphism to
generate a full binary tree of a given height as follows.

full :: a → Int→ Bin a
full x = ana (step x )

where step x 0 = InL (Par x )
step x (n + 1) = InR (Rec n) (Rec n)

By forcing the perfect binary trees into the regular framework we (naturally) loose some
type information. Had we, for instance, made a mistake in the de�nition of full so that it
did not generate a full tree, we would get a run-time error (pattern match failure in join)
instead of a type error.
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instance FunctorOf (Par :+: Rec :∗: Rec) Bin where
inn (InL (Par x )) = Single x
inn (InR (Rec l :∗: Rec r)) = Fork (join (l , r))
out (Single x ) = InL (Par x )
out (Fork t) = InR (Rec l :∗: Rec r)

where (l , r) = split t
constructorName (Single _) = “Single”
constructorName (Fork _) = “Fork”
datatypeName _ = “Bin”

join :: (Bin a,Bin a)→ Bin (a, a)
join (Single x , Single y) = Single (x , y)
join (Fork l ,Fork r) = Fork (join (l , r))

split :: Bin (a, a)→ (Bin a,Bin a)
split (Single (x , y)) = (Single x , Single y)
split (Fork t) = (Fork l , Fork r)

where (l , r) = split t

Figure 3.3: A FunctorOf instance for perfect binary trees

3.2.5 Abstract datatypes
In the previous example we provided a regular view on a non-regular datatype. We can
do the same thing for (some) abstract datatypes. Suppose we have an abstract datatype
Stack, with methods

push :: a → Stack a → Stack a
pop :: Stack a → Maybe (a, Stack a)
empty :: Stack a

By giving the following instance, we provide a view of the stack as a regular datatype with
the same pattern functor as normal lists: Unit :+: Par :∗: Rec.

instance FunctorOf (Unit :+: Par :∗: Rec) Stack where
inn (InL Unit) = empty
inn (InR (Par x :∗: Rec s)) = push x s

out s = case pop s of
Nothing → InL Unit
Just (x , s ′)→ InR (Par x :∗: Rec s ′)

constructorName s = case pop s of
Nothing→ “empty”
Just _ → “push”

datatypeName _ = “Stack”

As in the previous example, this instance allows us to use polytypic functions on stacks,
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for instance applying the function psum to a stack of integers or using pmap to apply a
function to all the elements on a stack.

3.2.6 Polytypic functions in Haskell
We have seen how to make di�erent kinds of datatypes �t the polytypic framework, thus
enabling us to use the polytypic functions from PolyLib on them, but we can also use the
PolyLib functions to create new polytypic functions. One interesting function that we can
de�ne is the function coerce

coerce :: (FunctorOf f d , FunctorOf f e, P_fmap2 f )⇒ d a → e a
coerce = cata inn

that converts between two regular datatypes with the same pattern functor. For instance
we could convert a perfect binary tree from Section 3.2.4 to a normal binary tree or convert
a list to an element of the abstract stack type from Section 3.2.5.

Another use of polytypic functions in Haskell is to de�ne default instances of the stan-
dard type classes. For instance we can de�ne

instance (FunctorOf f d ,P_fmap2 f )⇒ Functor d where
fmap = pmap

Since this is an instance for a type variable (d), we need the Haskell extensions (available
in ghc and hugs) for overlapping and undecidable instances.

Using the polytypic library we can also de�ne more complex functions such as the
transpose function that transposes two regular datatypes. For instance, converting a list of
trees to a tree of lists. To de�ne transpose we �rst de�ne the function listTranspose for the
special case of transposing the list type constructor with another regular type constructor.
We omit the class constraints in the types for brevity.

listTranspose :: _ ⇒ [d a]→ d [a]
listTranspose (x : []) = pmap singleton x
listTranspose (x : xs) = pzipWith (:) x (listTranspose xs)

The function pzipWith (from PolyLib [16]) is the polytypic version of the Haskell prelude
function zipWith and has type

pzipWith :: _ ⇒ (a → b → c)→ d a → d b → d c

If the structures of the arguments to pzipWith di�er the function fails. Using listTranspose
we can de�ne transpose as follows:

transpose :: _ ⇒ d (e a)→ e (d a)
transpose x = pmap (combine s) (listTranspose l)

where (s , l) = separate x

The idea is to separate the structure and the contents of the argument to transpose
using the function separate :: _ ⇒ d a → (d (), [a]). The unstructured representation
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polytypic fsum :: Num a ⇒ f a a → a
= case f of

g :+: h → λz → case z of
InL x → fsum x
InR y → fsum y

g :∗: h → λ(x :∗: y)→ fsum x + fsum y
Unit → const 0
Par → unPar
Rec → unRec
d :@: g → psum ◦ pmap fsum ◦ unComp
Const t → const 0

Figure 3.4: De�ning fsum using the polytypic construct

is then transposed using listTranspose and the structure is re-applied by the function
combine :: _ ⇒ d ()→ [a]→ d a. As with pzipWith, combine fails if the length of the
list does not match the number of holes in the structure. It is easy to modify transpose to
use the Maybe monad to catch the potential failures.

The complete code for the transpose function can be found in Section A.17

3.3 Translating PolyP into Haskell
So far we have seen how we can use the polytypic functions de�ned in PolyLib directly in our
Haskell program, either applying them to speci�c datatypes or using them to de�ne other
polytypic functions. In Section 3.3.1 below, we describe how to de�ne polytypic functions
from scratch using a slightly modi�ed version of the PolyP language [15]. The polytypic
de�nitions in PolyP can also be expressed in Haskell (as described in Section 3.2), but
the syntax of the language extension is more convenient than writing the classes and the
instances by hand. Sections 3.3.2 to 3.3.6 discuss how the PolyP de�nitions are compiled
into Haskell.

3.3.1 The polytypic construct
In Section 3.2.1 we introduced the pattern functor Φd of a regular datatype d a. In PolyP
we de�ne polytypic functions by recursion over this pattern functor, using a type case
construct that allows us to pattern match on pattern functors. This type case construct is
translated by the compiler into a pattern functor class and instances corresponding to the
branches.

In Figure 3.4 we de�ne, using the type case construct polytypic, the function fsum
from Section 3.2.3 that operates on pattern functors applied to some numeric type. This
function takes an element of type f a a where a is in Num and f is a pattern functor.
The �rst a means that the parameter positions contain numbers and the second a means
that all the substructures have been replaced by numbers (sums of the corresponding
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substructures). The result of fsum is the sum of the numbers in the top level structure.
To sum the elements of something of a sum type we just apply fsum recursively regardless
of if we are in the left or right summand. If we have something of a product type we sum
the components and add the results together. The sum of Unit or a constant type is zero
and when we get one Par or Rec they already contain a number so we just return it. If the
pattern functor is a regular datatype d composed with a pattern functor g we map fsum
over d and use the function psum to sum the result.

In general a polytypic de�nition has the form
polytypic p :: τ

= λ x1 . . . xm → case f of
ϕ1 → e1...
ϕn → en

where f is the pattern functor (occurring somewhere in τ) and ϕi is an arbitrary pat-
tern matching a pattern functor. The lambda abstraction before the type case is op-
tional and a short hand for splicing in the same abstraction in each of the branches.
The type of the branch body depends on the branch pattern; more speci�cally we have
(λ x1 . . . xm → ei) :: τ [ϕi/f ].

A polytypic de�nition operates on pattern functors, but what we are really interested
in are functions that operates on regular datatypes. We have already seen how to de�ne
these functions in Haskell and the only di�erence when de�ning them in PolyP is that the
class constraints are simpler. Take for instance the datatype level function psum which
can be de�ned as the catamorphism of fsum:

psum :: (Regular d ,Num a)⇒ d a → a
psum = cata fsum

The PolyP compiler translates the class constraint Regular d to a constraint FunctorOf Φd d
and constraints for any suitable pattern functor classes on Φd .

In summary, the polytypic construct allows us to write polytypic functions over pattern
functors by recursion over the structure of the pattern functor. We can then use these
functions together with the functions inn and out to de�ne functions that work on all
regular datatypes.

3.3.2 Compilation: from PolyP to Haskell
Given a PolyP program we want to generate Haskell code that can be fed into a standard
Haskell compiler. Our approach di�ers from the standard one in that we achieve polytypism
by taking advantage of the Haskell class system, instead of specializing polytypic functions
to the datatypes on which they are used. The compilation of a PolyP program consists
of the three phases described in the following subsections. In the �rst phase, described in
Section 3.3.3, the pattern functor of each regular datatype is computed and an instance of
the class FunctorOf is generated, relating the datatype to its functor. The second phase
(Section 3.3.4) deals with the polytypic de�nitions. For every polytypic function a type
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class is generated and each branch in the type case is translated to an instance of this class.
The third phase is described in Section 3.3.5 and consists of inferring the class constraints
introduced by our new classes. Section 3.3.6 describes how the module interfaces are
handled by the compiler.

Worth mentioning here is that we do not need to compile ordinary function de�nitions
(i.e. functions that have not been de�ned using the polytypic keyword) even when they use
polytypic functions. So for instance the de�nition of the function psum from Section 3.3.1
is the same in the generated Haskell code as in the PolyP code. The type on the other
hand does change, but this is handled by phase three.

3.3.3 From datatypes to instances
When compiling a PolyP program into Haskell we have to generate an instance of the
class FunctorOf for each regular datatype. How to do this is described in the rest of
this section. First we observe that we can divide the pattern functor combinators into
two categories: structure combinators that describe the datatype structure and content
combinators that describe the contents of the datatype. The structure combinators, (:+:),
(:∗:) and Unit, tell you how many constructors the datatype has and their arities, while
the content combinators, Par, Rec, Const, (:@:) and (:→:) represent the arguments of the
constructors. For a content pattern functor g we de�ne the meaning of g , denoted by ĝ ,
as

P̂ar p r = p
R̂ec p r = r

Ĉonst t p r = t

d̂ :@: g p r = d (ĝ p r)

ĝ :→: h p r = ĝ p r → ĥ p r

Using this notation we can write the general form of a regular datatype as
data D a = C1 (ĝ11 a (D a)) . . . (ĝ1m1 a (D a))...

| Cn (ĝn1 a (D a)) . . . (ĝnmn a (D a))

The corresponding pattern functor ΦD is
ΦD = (g11 :∗: · · · :∗: g1m1) :+: · · · :+: (gn1 :∗: · · · :∗: gnmn )

where we represent a nullary product by Unit. When de�ning the functions inn and out
for D a we need to convert between gij and ĝij . To do this we associate with each content
pattern functor g two functions tog and fromg such that

tog :: ĝ p r → g p r � tog ◦ fromg = id
fromg :: g p r → ĝ p r � fromg ◦ tog = id

For the pattern functors Par, Rec and Const, to and from are de�ned simply as adding
and removing the constructor. In the case of the pattern functor g :→: h we just have to
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apply the to and from functions for g and h at the appropriate places but for d :@: g we
have to map the conversion function for g over the regular datatype d . This is a source of
ine�ciency, as mentioned in Section 3.2.1.

toPar = Par fromPar = unPar
toRec = Rec fromRec = unRec
toConst t = Const fromConst t = unConst

tod :@: g = Comp ◦ pmap tog

fromd :@: g = pmap fromg ◦ unComp

tog:→: h f = Fun (toh ◦ f ◦ fromg)
fromg:→: h f = fromh ◦ unFun f ◦ tog

Now de�ne ιnm to be the sequence of InL and InR's corresponding to the mth constructor
out of n, as follows

ιnm x =


x if n = m = 1
InL x if m = 1 ∧ n > 1
InR (ιn−1

m−1 x) if m,n > 1

For instance the second constructor out of three is ι32 x = InR (InL x ).
Finally an instance FunctorOf ΦD D for the general form of a regular datatype D a can

be de�ned as follows:
instance FunctorOf ΦD D where

inn (ιn1 (x1 :∗: . . . :∗: xm1)) = C1 (fromg11 x1) . . . (fromg1m1
xm1)...

inn (ιnn (x1 :∗: . . . :∗: xmn )) = Cn (fromgn1 x1) . . . (fromgnmn
xmn )

out (C1 x1 . . . xm1) = ιn1 (tog11 x1 :∗: . . . :∗: tog1m1
xm1)...

out (Cn x1 . . . xmn ) = ιnn (togn1 x1 :∗: . . . :∗: tognmn
xmn )

constructorName (C1 _ . . . _) = “C1”...
constructorName (Cn _ . . . _) = “Cn”

datatypeName _ = “D”

3.3.4 From polytypic de�nitions to classes
The second phase of the code generation deals with the translation of the polytypic
construct. This translation is purely syntactic and translates each polytypic function into
a pattern functor class with one method (the polytypic function) and an instance of this
class for each branch in the type case. More formally, given a polytypic function de�nition
like the left side in Figure 3.5 the translation produces the result on the right.
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polytypic p :: τ
= case f of

ϕ1 → e1...
ϕn → en

 =⇒


class P_p f where p :: τ
instance ρ1 ⇒ P_p ϕ1where p = e1...
instance ρn ⇒ P_p ϕnwhere p = en

Figure 3.5: Translation of a polytypic construct to a class and instances

However, the instances generated by this phase are not complete. To make them pass
the Haskell type checker we have to �ll in the appropriate class constraints ρi . For example,
in the de�nition of fsum from Section 3.3.1, the instance P_fsum (g :∗: h) needs instances
of P_fsum for g and for h. How to infer these constraints is the topic of the next section.

3.3.5 Inferring class constraints
When we introduce a new class for every polytypic function we automatically introduce
a class constraint everywhere this function is used. Ideally the Haskell compiler should
be able to infer these constraints for us, allowing us to simply leave out the types in
the generated Haskell code. This is indeed the case most of the time, but there are a few
exceptions that require us to take a more rigorous approach. For example, class constraints
must be explicitly stated in instance declarations. In other cases the Haskell compiler can
infer the type of a function, but it might not be the type we want. For instance, the
inferred type of the (translation of) function pmap is

pmap :: (FunctorOf f d , FunctorOf f e, P_fmap2 f )⇒ (a → b)→ d a → e b

which is a little too general to be practical. In the expression psum (pmap (1+) [1, 2, 3]),
for example, the compiler would not be able to infer the return type of pmap. To get
the type we want the inferred type is uni�ed with the type stated in the PolyP code.
When doing this we have to replace the constraint Regular d in the PolyP type, by the
corresponding Haskell constraint FunctorOf f d for a free type variable f . Subsequently we
replace all occurrences of Φd in the type body with f . We also add a new type constraint
variable to the given type, that can be uni�ed with the set of new constraints inferred in
the type inference. In the case of pmap we would unify the inferred type from above with
the modi�ed version of the type stated in the PolyP code:

(FunctorOf f d , ρ)⇒ (a → b)→ d a → d b

Here e would be identi�ed with d and ρ would be uni�ed with {P_fmap2 f }, yielding the
type we want.

The instance declarations can be treated in much the same way. That is, we infer the
type of the method body and unify this type with the expected type of the method. We
take the de�nition of fsum in Figure 3.4 as an example. This de�nition is translated to a
class and instance declarations for each branch:
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class P_fsum f where
fsum :: Num a ⇒ f a a → a

instance ρ∗ ⇒ P_fsum (g :∗: h) where
fsum = λ(x :∗: y)→ fsum x + fsum y...

In the instance for the pattern functor g :∗: h, the PolyP compiler infers the following type
for fsum

(Num a,P_fsum g , P_fsum h)⇒ (g :∗: h) a a → a

This type is then uni�ed with the type of fsum extended with the constraint set variable
ρ∗ serving as a place holder for the extra class constraints:

(Num a, ρ∗)⇒ f a a → a

In this case the result of the uni�cation would be
f 7→ g :∗: h
ρ∗ 7→ {P_fsum g ,P_fsum h}

The part of the substitution that we are interested in is the assignment of ρ∗, i.e. the class
constraints that are in the instance declaration but not in the class declaration. We obtain
the following �nal instance of P_fsum (g :∗: h):

instance (P_fsum g , P_fsum h)⇒ P_fsum (g :∗: h) where
fsum = λ(x :∗: y)→ fsum x + fsum y

3.3.6 Modules: transforming the interface
The old PolyP compiler used the cut-and-paste approach to modules, treating import
statements as C-style #includes, e�ectively ignoring explicit import and export lists. Since
we claim that embedding polytypic programs in Haskell's class system alleviates separate
compilation, we, naturally, have to do better than the cut-and-paste approach.

To be able to compile a PolyP module without knowledge of the source code of all
imported modules, we generate an interface �le for each module, containing the type sig-
natures for all exported functions as well as the de�nitions of all exported datatypes in the
module. The types of polytypic functions are given in Haskell form (that is using FunctorOf
and P_name, not Regular), since we need to know the class constraints when inferring the
constraints for functions in the module we are compiling.

A slightly trickier issue is the handling of explicit import and export lists in PolyP
modules. Fortunately, the compilation does not change the function names, so we do not
have to change which functions are imported and exported. However, we do have to import
and export the generated pattern functor classes. This is done by looking at the types of the
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functions in the import/export list and collecting all the pattern functor classes occurring
in their constraints. So given the following PolyP module

module Sum (psum) where
import Base (cata)

polytypic fsum :: . . .
psum = cata fsum

we would generate a Haskell module looking like this:
module Sum (psum, P_fmap2, P_fsum) where
import Base (cata, P_fmap2)

class P_fsum f where
fsum :: . . .
〈P_fsum instances〉
psum = cata fsum

The P_fmap2 in the import declaration comes from the type of cata, which is looked
up in the interface �le for the module Base, and the two exported classes come from the
inferred type of psum. The interface �les are generated by the compiler when it compiles
a PolyP module. At the moment there is no automated support for generating interface
�les for normal Haskell modules, though this should not be di�cult to add. This means
that interface �les for normal Haskell modules have to be written by hand.

3.4 A polytypic show function
A common example of a function that can be de�ned polytypically is the show function,
that turns its argument into a string. In this section we show how to de�ne a polytypic
show function in PolyP. For simplicity we ignore in�x constructors and precedences, and
always generate fully parenthesized strings, so for instance, our show function will generate
the string � : (1) (: (2) ([]))�, instead of the more aesthetically pleasing �1 : 2 : []�, when
applied to the list [1, 2].

We start by de�ning the top level function pshow that takes an element of a regular
datatype and a function to show the elements of the datatype and produces a string.

pshow :: Regular d ⇒ (a → String)→ d a → String
pshow showA x = constructorName x ++ fshowSum

$ fmap2 showA (pshow showA)
$ out x

The function pshow starts by applying out to the element we want to show, thus revealing
its top level structure yielding an element of the type Φd a (d a). Then fmap2 is used
with showA to convert the as to strings and a recursive call to pshow to convert the
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d as to strings, resulting in something of the type Φd String String. Finally the function
fshowSum is applied to the result of fmap2 and the name of the constructor prepended to
the resulting string. The job of the function fshowSum is combine the strings generated
from the parameters and the recursive occurrences of d into one string.

A regular datatype is normally built up as a sum of products of content pattern functors,
and in many cases you �nd that you want to do di�erent things for each of the three layers.
In this example we do not do anything at the sum layer, in the product layer we add spaces
and parentheses and the actual showing takes place in the content layer. A good technique
to deal with this is to de�ne one polytypic function for each layer, in our case we de�ne
the functions fshowSum, fshowProd and fshowContent . In this example we could actually
combine fshowSum and fshowProd into a single function, but for the sake of the example
we keep them separate.

polytypic fshowSum :: f String String→ String
= case f of

g :+: h → λ z → case z of
InL x → fshowSum x
InR y → fshowSum y

g → fshowProd

Since the constructor name is printed already at top level the sum part of the regular data
type (i.e. which constructor is used) is not interesting, so if f is a sum type we just apply
fshowSum recursively until we get something that is not a sum type. In that case we call
fshowProd to print the argument list.

As an aside, note that this de�nition requires that overlapping instances are allowed
by the Haskell compiler, since we have overlapping patterns in the type case (g :+: h and
g). The generated code is accepted by current GHC and hugs (with suitable extensions
turned on), but if more portable Haskell code is wanted the de�nition could be changed to
explicitly match on all the remaining pattern functor cases.

The function fshowProd is de�ned in a similar style.
polytypic fshowProd :: f String String→ String
= case f of

g :∗: h → λ(x :∗: y)→ fshowProd x ++ fshowProd y
→ Unit

const “” g → λ x → “ (” ++ fshowContent x ++ “)”

Function fshowProd is used to print the spine of the argument list that follows after the
constructor printed at top level (by pshow). The actual arguments in the list are �lled in
by fshowContent . Finally we de�ne the function fshowContent as

polytypic fshowContent :: f String String→ String
= case f of

→ Par
unPar → Rec
unRec d :@: g → pshow fshowContent ◦ unComp
Const t → show ◦ unConst
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If the argument is a parameter (Par) or a recursive call (Rec) we simply return the (already
generated) string and if it is a constant type we apply the standard show function from the
Haskell prelude. Note that this means that we can only apply the polytypic show function
to datatypes where all the constant types are in the class Show. When the argument type
is a composition, d :@: g , we call pshow at d using fshowContent to show the parameters
(of type g String String).

The functions de�ned in this section can be compiled by the PolyP compiler into a
Haskell module that can be understood by a normal Haskell compiler (that allows multi-
parameter type classes and overlapping instances). If we also allow undecidable instances
we can write the following neat instance in our Haskell program

instance (FunctorOf f d , P_fmap2 f , P_fshowSum f , Show a)⇒
Show (d a) where

show = pshow show

This instance enables us to use the standard show function for any regular datatype for
which pshow is de�ned. This another example of the problem mentioned in Section 3.2.3,
namely that the class constraints quickly get out of hand when using polytypic functions.
In this case it is a bit more serious though, since the Haskell compiler will not infer class
constraints in instance declarations for us. A solution to this inconvenience could be to
extend the compiler to handle instance declarations, allowing you to write

instance (Regular d , Show a)⇒ Show (d a) where
show = pshow show

in the PolyP code. The most labor intensive part of such an extension would be to make
the compiler understand and type check instance declarations � the constraint inference
is already implemented.

3.5 A polytypic term interface
As our second case study we de�ne polytypic functions to handle terms with binding
constructs, illustrating the use of polytypic functions in Haskell programs. Our term
interface builds on work by Jansson and Jeuring [17], but adds support for dealing with
bound variables generically.

We de�ne a term to be a regular datatype containing variables, and require for simplicity
that the �rst constructor contains the variable, i.e. that the �rst constructor has the form
Const Var for some prede�ned variable type Var. We can then de�ne a polytypic function
that checks if a term is a variable.

polytypic fvarCheck :: f p r → Maybe Var
= case f of

Const Var :+: h → λ z → case z of
InL (Const x )→ Just x
InR _ → Nothing
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Here we have a single branch in the type case that only matches datatypes whose �rst
constructor only contains a variable. This e�ectively restricts the domain of fvarCheck to
a particular subset of the regular datatypes. If the argument to fvarCheck is built up using
the �rst constructor we simply return the variable otherwise we return Nothing. Note that
fvarCheck operates on the pattern functor level, so we have to de�ne another function,
pvarCheck operating on the datatype level. We will save that one for later, though.

The function fvarCheck acts as an elimination function for variables, taking a term
and returning a Var if the term is a single variable. We also need to be able to construct
variables. To do this we de�ne the function fVar as

polytypic fVar :: Var→ f p r
= case f of

Const Var :+: h → InL ◦ Const

Again we only have a single branch in the type case stating that we can only construct an
element of datatypes whose �rst constructor only contains a variable.

The polytypic functions de�ned above are enough to handle the variables occurring in a
term, but we also need functions to handle variable bindings. We de�ne that a constructor
is binding if has more than one argument and the �rst argument is a Var, in other words if
it has the structure Const Var :∗: h for some pattern functor h. First let us de�ne a function
fbindCheck that returns the bound variable if applied to a binding construct.

polytypic fbindCheck :: f p r → Maybe Var
= case f of

g :+: h → λ z → case z of
InL x → fbindCheck x
InR y → fbindCheck y

Const Var :∗: h → λ (Const x :∗: _)→ Just x
g → const Nothing

Any constructor can be binding so we simply lift fbindCheck through the sum part of the
datatype. If the argument matches the structure of a binding construct we return the
variable, otherwise we return Nothing.

Since a term can have more than one binding construct (e.g. lambda abstraction and
let bindings) we cannot de�ne a constructor function for bindings as we did for variables.
Something we want to be able to do, though, is to rename the bound variable in a binding,
so let us de�ne a function frenameBound to do this.

polytypic frenameBound :: Var→ f p r → f p r
= λ v →
case f of

g :+: h → λ z → case z of
InL x → InL (frenameBound v x )
InR y → InR (frenameBound v y)

Const Var :∗: h → λ (_ :∗: y)→ Const v :∗: y
g → id
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This function follows the same pattern as fbindCheck but now, when we �nd a binding
construct we replace the bound variable with the provided variable and leave the rest
of the term intact. Note that this is not a semantic preserving operation on terms�
frenameBound only renames the variable in the actual binding, it does not rename the
occurrences of the bound variable in the term.

These four functions can be compiled by the PolyP compiler into four Haskell classes
and corresponding instances. The rest of this case study is ordinary Haskell code that
requires no preprocessing.

As we mentioned above, the polytypic functions we have de�ned work at the pattern
functor level but what we really want is functions the operates on regular datatypes. So
let us de�ne the datatype level functions corresponding to the polytypic functions above.

pvarCheck :: (FunctorOf f d , P_fVarCheck f )⇒ d a → Maybe Var
pvarCheck t = fvarCheck (out t)

pVar :: (FunctorOf f d , P_fVar f )⇒ Var→ d a
pVar x = inn (fVar x )

pbindCheck :: (FunctorOf f d , P_fbindCheck f )⇒ d a → Maybe Var
pbindCheck t = fbindCheck (out t)

prenameBound :: (FunctorOf f d , P_frenameBound f )⇒
Var→ d a → d a

prenameBound x = inn ◦ frenameBound x ◦ out

We write down the type of these functions explicitly here, but in the following we will elide
the class constraints and use the same notation as in Section 3.2.6.

Apart from these functions for manipulating variables and variable bindings we need
functions that operates on the top level children of a term.

pchildren :: _⇒ d a → [d a]
pchildren t = fl_rec (out t)

pmapC :: _⇒ (d a → d a)→ d a → d a
pmapC f = inn ◦ fmap2 id f ◦ out

The function pchildren takes an element of a regular datatype and returns a list of its
immediate children, so for instance, pchildren [1, 2, 3] = [[2, 3]]. The function fl_rec is a
polytypic library function of type f p r → [r ]. The function pmapC applies a function to
all immediate children of an element of a datatype.

We can combine the functions pvarCheck and pBindCheck into a single function as
follows.

data VarOrBind = IsVar Var | IsBind Var | Neither
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pvarOrBind :: _⇒ d a → VarOrBind
pvarOrBind t =

case pvarCheck t of
Just x → IsVar x
_ → case pbindCheck t of

Just x → IsBind x
_ → Neither

Now let us de�ne a function for computing the free variables of a term:
pfreeVars :: _⇒ d a → [Var]
pfreeVars t = case pvarOrBind t of

IsVar x → [x ]
IsBind x → delete x vs
Neither → vs

where vs = foldr union [] $ map pfreeVars $ pchildren t

If the term is a variable we just return the variable otherwise we compute the list of free
variables in the children of the term by applying pfreeVars recursively to all immediate
children and then combining the results. If the term is binding we remove the bound
variable from the computed list. Using this function we can de�ne a function for checking
if a variable is free in a term.

isFreeIn :: _⇒ Var→ d a → Bool
isFreeIn x t = elem x (pfreeVars t)

Another interesting function that we can de�ne is term substitution. The trickiest part of
a substitution function is to avoid inadvertent variable capture. To solve this problem we
need to be able to generate fresh variable names, so assume we have a function freshVar

freshVar :: [Var]→ Var

that takes a list of variables and returns a variable that is not in the list. We can now
de�ne substitution as follows

subst :: _⇒ (Var, d a)→ d a → d a
subst (y , u) t =

case pvarOrBind t of
IsVar x | x == y → u

| otherwise → t
IsBind x | x == y → t

| isFreeIn x u → pmapC (subst (y , u)) (renameB x (freshVar [u, t ]) t)
_ → pmapC (subst (y , u)) t

where
renameB x z t = pmapC (subst (x , pVar z )) (prenameBound z t)

The substitution function subst takes a variable y and two terms u and t and substitutes
u for y in t . This is done by analyzing the structure of t . The �rst three cases are easy,
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the most di�cult case is when t binds a variable that occurs free in u, in which case we
have to alpha rename the bound variable avoid capturing free occurrences in u. If t does
not bind a variable occurring free in u we can just apply the substitution recursively to
the children of t .

Now we can de�ne a concrete datatype for terms and apply our functions to it. Take
for instance lambda terms with constants and let bindings

data Term a =Var Var
| Constant a
| Term a :@ Term a
| Lam Var (Term a)
| Let Var (Term a) (Term a)

A thing that is worth mentioning is that by our de�nition of variable binding the let
construct is automatically recursive, in other words in the term Let x u t (representing the
let expression let x = u in t), x is bound in u as well as in t . One could of course imagine
other de�nitions of variable bindings that would allow both recursive and non recursive let
constructs, but that would complicate things unnecessarily.

For us to be able to apply our polytypic term functions to lambda terms we have
to have an instance FunctorOf f Term for some pattern functor f . This instance can be
generated by the PolyP compiler, or by the Template Haskell function deriveFunctorOf
from PolyLib (see Section A.2 in the Appendix). Having the FunctorOf instance we can
apply the polytypic substitution function to our terms. To improve the readability of the
examples we omit the Var constructor in the terms and write x instead of Var x . Assume
that x , y and z are variables, then

subst (x , y :@ z ) (Lam y (y :@ x )) =⇒ Lam w (w :@ (y :@ z ))
subst (x , y) (Let z (Lam y x ) (z :@ x )) =⇒ Let z (Lam w y) (z :@ y)

for some variable w .
This example has shown that a lot of the polytypic programming can be done inside

Haskell. The only parts that had to be run through the PolyP compiler were the four
polytypic de�nitions in the beginning.

3.6 Related work
A number of languages and tools for polytypic programming with Haskell have been de-
scribed in the last few years:
• The old PolyP [15] allows user-de�ned polytypic de�nitions over regular datatypes.
The language for de�ning polytypic functions is more or less the same as in our
work, however, the expressiveness of old PolyP is hampered by the fact that the
specialization needs access to the entire program. Neither the old nor the new PolyP
compiler supports full Haskell 98, something that severely limits the usefulness of the
old version, while in the new version it is merely a minor inconvenience.
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• Generic Haskell [4, 10] allows polytypic de�nitions over Haskell datatypes of arbi-
trary kinds. The Generic Haskell compiler uses specialization to compile polytypic
programs into Haskell, which means that it su�ers from the drawbacks mentioned
above, namely that we have to apply the compiler to any code that mentions poly-
typic functions or contains datatype de�nitions. This is not as serious in Generic
Haskell as it is in old PolyP however, since Generic Haskell supports full Haskell 98
and has reasonably good support for separate compilation. A more signi�cant short-
coming of Generic Haskell is that it does not allow direct access to the substructures
in a datatype, so we cannot de�ne, for instance, the function children :: t → [t ] that
takes an element of a datatype and returns the list of its immediate children.
Generic Haskell requires de�nitions of polytypic functions to be over arbitrary kinds,
even if a function is only intended for a single kind. This sometimes makes it rather
di�cult to come up with the right de�nition for a polytypic function.
• Derivable type classes [11] is an extension of the Glasgow Haskell Compiler (ghc)
which allows limited polytypic de�nitions. The user can de�ne polytypic default
methods for a class by giving cases for sums, products and the singleton type. To
make a datatype an instance of a class with polytypic default methods it su�ces
to give an empty instance declaration. Nevertheless this requires the user to write
an empty instance declaration for each polytypic function-datatype pair while we
only require a FunctorOf-instance for each datatype. Furthermore the derivable type
classes extension only allows a limited form of polytypic functions over kind ?, as
opposed to kind ?→ ? in PolyP. Only allowing polytypic functions over datatypes
of kind ? excludes many interesting functions, such as pmap, and since a datatype of
kind ? can always be transformed into a datatype of kind ?→ ? (by adding a dummy
argument) we argue that our approach is preferable. A similar extension to derivable
type classes, exists also for Clean [1].
• The DrIFT preprocessor for deriving non-standard Haskell classes has been used
together with the Strafunski library [23] to provide generic programming in Haskell.
The library de�nes combinators for de�ning generic traversal and generic queries on
datatypes of kind ?. A generic traversal is a function of type t → m t for some monad
m and a generic query on t has type t → a. The library does not support functions
of any other form, such as unfolds or polytypic equality.
The Strafunski implementation relies on a universal term representation, and generic
functions are expressed as normal Haskell functions over this representation. This
means that only the Regular sublanguage has to be compiled (suitable instances to
convert to and from the term representation have to be generated). This is done by
the DrIFT preprocessor.
• Recently Lämmel and Peyton-Jones [21] have incorporated a version of Strafunski in
ghc providing compiler support for de�ning generic functions. This implementation
has the advantage that the appropriate instances can be derived by the compiler,
only requiring the user to write a deriving-clause for each of her datatypes. Support
has been added for unfolds and so called twin transformations (of type t → t → m t)
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which enables for instance, polytypic read, equality and zip functions. Still, only
datatypes of kind ? is handled, so we cannot get access to the parameters of a
datatype.
• Sheard [31] describes how to use two-level types to implement e�cient generic uni-
�cation. His ideas, to separate the structure of a datatype (the pattern functor)
from the actual recursion, are quite similar to those used in PolyP, although he lacks
the automated support provided by the PolyP compiler. In fact, the functions that
Sheard requires over the structure of a datatype can all be de�ned in PolyP.
• In a recent paper [8] Hinze shows how to use Haskell 98 type classes to encode generic
programming. Instead of having one type class for each generic function, as we have,
Hinze uses a single class Generic for all generic functions. In his approach a generic
function is de�ned by giving an instance of this class. He shows how generic functions
over arbitrary datatypes of kind ? or kind ?→ ? can be de�ned using this technique.
• When we use type classes to implement generic programming, we are basically mov-
ing computation from the terms to the types. The pattern matching on a pattern
functor in PolyP is, in the Haskell world, done by the type system looking for the
the appropriate instance for the pattern functor. This technique is not limited to
generic programming, for instance, McBride [25] shows how to encode dependently
typed programming using the class system.

Other implementations of functional generic programming include Charity [5], FISh [19]
and G'Caml [6] but in this paper we focus on the Haskell-based languages.

3.7 Conclusions
In this paper we have shown how to allow polytypic programming inside Haskell, by taking
advantage of the class system. To accomplish this we introduced datatype constructors for
modeling the top level structure of a datatype, together with a multi-parameter type class
FunctorOf relating datatypes to their top level structure.

Using this framework we have been able to rephrase the PolyLib library [16] as a Haskell
library as well as de�ne new polytypic functions such as coerce that converts between
two datatypes of the same shape, a substitution function on terms with bindings and the
transpose function that commutes a composition of two datatypes, converting, for instance,
a list of trees to a tree of lists.

To aid in the de�nition of polytypic functions we have a compiler that translates PolyP
de�nitions to Haskell classes and instances. The same compiler can generate instances of
FunctorOf for regular datatypes, but the framework also allows the programmer to provide
tailor made FunctorOf instances, thus extending the applicability of the polytypic functions
to datatypes that are not necessarily regular.

Areas of possible future work include extending our approach to more datatypes (par-
tially explored in [27]), and to explore in more detail which polytypic functions are express-
ible in this setting. It would also be interesting to measure the e�ciency of the polytypic
functions in this approach compared to the specialized code of previous methods.
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PolyLib

Using the PolyP 2 compiler described in Chapter 3, the polytypic library [16] can be
compiled into a Haskell library that provides polytypic programming inside Haskell. In
this appendix we describe this library, listing the polytypic functions and their types.

A.1 PolyLib.Prelude

The Prelude module contains the basic machinery needed to do polytypic programming in
Haskell: the FunctorOf class and the de�nition of the pattern functors.

module PolyLib.Prelude where

class FunctorOf f d | f → d where
inn :: f a (d a)→ d a
out :: d a → f a (d a)
dataTypeName :: d a → String
constructorName :: d a → String
constructorFixity :: d a → Fixity
� Defaults

constructorFixity _ :: Fixity LeftAssoc 9

data Fixity = Fixity {associativity :: Associativity
, precedence :: Int
}

data Associativity = NonAssoc | LeftAssoc | RightAssoc

data (f :+: g) p r = InL (f p r) | InR (g p r)
data (f :∗: g) p r = f p r :∗: g p r
data Unit p r = Unit
newtype Par p r = Par { unPar :: p }
newtype Rec p r = Rec { unRec :: r }
newtype (d :@: g) p r = Comp { unComp :: d (g p r) }
newtype Const t p r = Const { unConst :: t }
newtype (f :→: g) p r = Fun { unFun :: f p r → g p r }

55
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This precisely what was presented in Section 3.2.1 with the addition of the �xity in-
formation. Furthermore, the Prelude contains the to and from functions described in
Section 3.3.3 and an implementation of a polytypic map function (recall that the to and
from functions for (:@:) do mapping over regular datatypes).

class Bifunctor f where
bimap :: (a → c)→ (b → d)→ f a b → f c d

gmap :: (FunctorOf f d , Bifunctor f )⇒ (a → b)→ d a → d b

class PatternFunctor f p r t | f p r → t where
to :: t → f p r
from :: f p r → t

instance PatternFunctor Par p r p where . . .
instance PatternFunctor Rec p r r where . . .
instance (FunctorOf f d , Bifunctor f, PatternFunctor g p r t)

⇒ PatternFunctor (d :@: g) p r (d t) where . . .
instance (PatternFunctor f p r t , PatternFunctor g p r u)

⇒ PatternFunctor (f :→: g) p r (t → u) where . . .

To make them easier to use the to and from functions are wrapped up in a class
PatternFunctor. The constraint PatternFunctor f p r t states that f is a pattern functor
with f p r ∼= t .

A.2 PolyLib.FunctorOf

The FunctorOf module contains a single Template Haskell function, deriveFunctorOf , that
generates FunctorOf instances:

module PolyLib.FunctorOf (deriveFunctorOf ) where

deriveFunctorOf :: Q Dec→ Q [Dec]

This function takes the abstract syntax for the de�nition of a regular datatype and
produces an instance of FunctorOf for this datatype. So to use it in a Haskell program one
would write

data T a = . . .

$(deriveFunctorOf (reifyDecl T))

The techniques used to de�ne this function are the same as the ones used when implement-
ing the PolyP prototype from Section 2.4.
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A.3 PolyLib.Base

The Base module contains the polytypic map function pmap and various morphisms.

module PolyLib.Base where

import PolyLib.Prelude

class P_fmap2 f where
fmap2 :: (a → c)→ (b → d)→ f a b → f c d

The P_fmap2 class is the extension of the Functor class from the standard Prelude. All
pattern functors except (:→:) are instances of this class.

pmap :: (FunctorOf f d , P_fmap2 f )⇒ (a → b)→ d a → d b
cata :: (FunctorOf f d , P_fmap2 f )⇒ (f a b → b)→ d a → b
ana :: (FunctorOf f d , P_fmap2 f )⇒ (b → f a b)→ b → d a
hylo :: P_fmap2 f ⇒ (f a b → b)→ (c → f a c)→ c → b
para :: (FunctorOf f d , P_fmap2 f )⇒ (d a → f a b → b)→ d a → b

The functions cata, ana, hylo and para implement the recursion schemes popularized
by Meijer et al. [26].

A.4 PolyLib.BaseM

The BaseM module contains the monadic versions of the functions from the Base module.
Every function f comes in two versions: fM , which threads the monad through left to
right, and fMr , which threads the monad right to left.

module PolyLib.BaseM where

import PolyLib.Prelude
import PolyLib.Base

class P_fmap2M f where
fmap2M :: Monad m ⇒

(a → m c)→ (b → m d)→ f a b → m (f c d)
class P_fmap2Mr f where

fmap2Mr :: Monad m ⇒
(a → m c)→ (b → m d)→ f a b → m (f c d)

All pattern functors except (:→:) are instances of P_fmap2M and P_fmap2Mr. This is true
for following pattern functor classes as well, unless we state otherwise.
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pmapM :: (FunctorOf f d , P_fmap2M f , Monad m)⇒
(a → m b)→ d a → m (d b)

pmapMr :: (FunctorOf f d , P_fmap2Mr f , Monad m)⇒
(a → m b)→ d a → m (d b)

cataM :: (FunctorOf f d , P_fmap2M f , Monad m)⇒
(f a b → m b)→ d a → m b

cataMr :: (FunctorOf f d , P_fmap2Mr f , Monad m)⇒
(f a b → m b)→ d a → m b

anaM :: (FunctorOf f d , P_fmap2M f , Monad m)⇒
(b → m (f a b))→ b → m (d a)

anaMr :: (FunctorOf f d , P_fmap2Mr f , Monad m)⇒
(b → m (f a b))→ b → m (d a)

hyloM :: (P_fmap2M f , Monad m)⇒
(f a b → m b)→ (c → m (f a c))→ c → m b

hyloMr :: (P_fmap2Mr f , Monad m)⇒
(f a b → m b)→ (c → m (f a c))→ c → m b

paraM :: (FunctorOf f d , P_fmap2M f , Monad m)⇒
(d a → f a b → m b)→ d a → m b

paraMr :: (FunctorOf f d , P_fmap2Mr f , Monad m)⇒
(d a → f a b → m b)→ d a → m b

A.5 PolyLib.Crush

A common pattern of computation is to collapse or crush a data structure by combining
all its elements using a binary operation. This pattern is captured by the crush function.

module PolyLib.Crush where
import PolyLib.Prelude
import PolyLib.Base

class P_fcrush f where
fcrush :: (a → a → a)→ a → f a a → a

crush :: (FunctorOf f d , P_fmap2 f , P_fcrush f )⇒
(a → a → a)→ a → d a → a

A.6 PolyLib.CrushFuns

Many well-known functions can be expressed as a crush. The CrushFuns module contains
a few of them.

module PolyLib.CrushFuns where

import PolyLib.Prelude
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import PolyLib.Base
import PolyLib.Crush

psum :: (FunctorOf f d , P_fmap2 f , P_fcrush f , Num a)⇒ d a → a
prod :: (FunctorOf f d , P_fmap2 f , P_fcrush f , Num a)⇒ d a → a
pand :: (FunctorOf f d , P_fmap2 f , P_fcrush f )⇒ d Bool→ Bool
por :: (FunctorOf f d , P_fmap2 f , P_fcrush f )⇒ d Bool→ Bool
conc :: (FunctorOf f d , P_fmap2 f , P_fcrush f )⇒ d [a]→ [a]
comp :: (FunctorOf f d , P_fmap2 f , P_fcrush f )⇒

d (a → a)→ (a → a)

The �rst four functions generalizes the Prelude functions sum, product , and and or . The
conc function concatenates all lists in a structure and comp takes a structure of functions
and returns their composition. Using crush to do concatenation can be slightly ine�cient,
since there is no guarantee that crush uses its function argument ((++) in this case) right
associatively.

size :: (FunctorOf f d , P_fmap2 f , P_fcrush f )⇒ d a → Int
flatten :: (FunctorOf f d , P_fmap2 f , P_fcrush f )⇒ d a → [a]
flatten ′ :: (FunctorOf f d , P_fmap2 f , P_fcrush f )⇒ d a → [a]→ [a]
pall :: (FunctorOf f d , P_fmap2 f , P_fcrush f )⇒

(a → Bool)→ d a → Bool
pany :: (FunctorOf f d , P_fmap2 f , P_fcrush f )⇒

(a → Bool)→ d a → Bool
pelem :: (FunctorOf f d , P_fmap2 f , P_fcrush f , Eq a)⇒

a → d a → Bool

The function size counts the number of elements in a structure and the flatten ′ function
is a more e�cient version of flatten that returns a list of all the elements in a structure.
The functions pall , pany and pelem are generalizations of the Prelude functions all , any
and elem.

A.7 PolyLib.Flatten

In Section A.6 we saw that flatten can be de�ned using crush. However, by de�ning a new
pattern functor class we get a bit more functionality.

module PolyLib.Flatten where

import PolyLib.Prelude
import PolyLib.Base

class P_fflatten f where
fflatten :: f [a] [a]→ [a]

flatten :: (FunctorOf f d , P_fmap2 f , P_fflatten f )⇒ d a → [a]
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This version of the flatten function does the same thing as the version using crush from
Section A.6, in particular it has the same problem with left associative use of (++).

fl_par :: (P_fmap2 f , P_fflatten f )⇒ f a b → [a]
fl_rec :: (P_fmap2 f , P_fflatten f )⇒ f a b → [b]
fl_all :: (P_fmap2 f , P_fflatten f )⇒ f a a → [a]

With a special pattern functor class for �attening we can do more than just returning the
elements in a structure. The above functions operates on pattern functors and returns a
list of all parameters, recursive calls, or both.

substructures :: (FunctorOf f d , P_fmap2 f , P_fflatten f )⇒
d a → [d a]

Using fl_rec we can de�ne a function that computes all substructures of a structure. For
instance, applied to a list it would return all su�xes of the list.

A.8 PolyLib.Fold

The module Fold contains generalizations of the list functions foldr and foldl from the
standard Prelude.

module PolyLib.Fold where

import PolyLib.Prelude
import PolyLib.Base

class P_ffoldr f where
ffoldr :: (a → b → b)→ f a (b → b)→ b → b

class P_ffoldl f where
ffoldl :: (a → b → b)→ f a (b → b)→ b → b

pfoldr :: (FunctorOf f d , P_fmap2 f , P_ffoldr f )⇒
(a → b → b)→ b → d a → b

pfoldl :: (FunctorOf f d , P_fmap2 f , P_ffoldl f )⇒
(b → a → b)→ b → d a → b

A.9 PolyLib.ConstructorName

The FunctorOf class contains a method that returns the name of the top-level constructor
of its argument. The ConstructorName module elaborates on this and provides functions
for computing the names and arities of datatype constructors.

module PolyLib.ConstructorName where
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import PolyLib.Prelude

class P_fconstructors f where
fconstructors :: [f a b]

class P_fconstructorArity f where
fconstructorArity :: f a b → Int

class P_fconstructor2Int f where
fconstructor2Int :: f a b → Int

The above pattern functor classes have instances for all pattern functors, including (:→:).
constructors :: (FunctorOf f d , P_fconstructors f )⇒ [d a]
constructorNames :: (FunctorOf f d , P_fconstructors f )⇒

d a → [String]
constructorArity :: (FunctorOf f d , P_fconstructorArity f )⇒

d a → Int
constructorsAndArities

:: (FunctorOf f d , P_fconstructors f , P_fconstructorArity f )⇒
[d a]

constructorNamesAndArities
:: (FunctorOf f d , P_fconstructors f , P_fconstructorArity f )⇒

d a → [(d a, Int)]

constructor2Int :: (FunctorOf f d , P_fconstructor2Int)⇒ d a → Int
int2constructor :: (FunctorOf f d , P_fconstructors⇒ Int→ d a

The list produced by constructors contains elements of the corresponding datatype
built from each of the constructors. For instance, for the Maybe type constructors returns
[Nothing, Just undefined ] and for lists it returns [[] , undefined : undefined ].

A.10 PolyLib.Show

In Section 3.4 we saw how to implement a polytypic pretty printer using three pattern
functor classes P_fshowSum, P_fshowProd and P_fshowContent. The pretty printer de�ned
in PolyLib.Show combines the three into a single pattern functor class P_fshowsPrec.

module PolyLib.Show where

import PolyLib.Prelude
import PolyLib.Base
import PolyLib.ConstructorName

class P_fshowsPrec f where
fshowsPrec :: Int→ f (Int→ ShowS) (Int→ ShowS)→ ShowS

There are P_fshowsPrec instances for all pattern functors except (:→:), but the instance
for Const t requires that t is Showable.
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pshowsPrec ′ :: ( FunctorOf f d ,
P_fmap2 f ,
P_fconstructorArity f ,
P_fshowsPrec f

)⇒ (Int→ a → ShowS)→ Int→ d a → ShowS
pshowsPrec :: ( FunctorOf f d ,

P_fmap2 f ,
P_fconstructorArity f ,
P_fshowsPrec f ,
Show a

)⇒ Int→ d a → ShowS

pshow :: ( FunctorOf f d ,
P_fmap2 f ,
P_fconstructorArity f ,
P_fshowsPrec f ,
Show a

)⇒ d a → String

The pretty printer de�ned in Section 3.4 did not handle parenthesis in any clever way,
adding parenthesis around everything. This pretty printer does a little better. The Int
argument to pshowsPrec is the precedence level of the surrounding context and parenthe-
sis will only be added if this is high enough. This pretty printer does not handle in�x
constructors, so pretty printing the list [1, 2] yields “(:) 1 ((:) 2 [])”.

A.11 PolyLib.Thread

The Prelude function sequence :: Monad m ⇒ [m a]→ m [a] threads a monad through a
list. We de�ne the generalization of this function to an arbitrary regular datatype in the
function thread .

module PolyLib.Thread where
import PolyLib.Prelude
import PolyLib.Base

class P_fthread f where
fthread :: Monad m ⇒ f (m a) (m b)→ m (f a b)

thread :: (FunctorOf f d , P_fmap2 f , P_fthread f , Monad m)⇒
d (m a)→ m (d a)

As with sequence, the monad is threaded left-to-right, so thread [print 1, print 2] will
output a 1 followed by a 2.
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A.12 PolyLib.ThreadFuns

Specializing the thread function from Section A.11 to the list monad and the maybe monad
we obtain the functions cross and propagate.

module PolyLib.ThreadFuns where

import PolyLib.Prelude
import PolyLib.Thread

cross :: (FunctorOf f d , P_fmap2 f , P_fthread f )⇒
d [a]→ [d a]

propagate :: (FunctorOf f d , P_fmap2 f , P_fthread f )⇒
d (Maybe a)→ Maybe (d a)

The cross function takes a d -structure of lists and produces the list of all d -structures
we can acquire by just picking one element from each list. For example:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

cross (Branch (Leaf [1, 2]) (Leaf [3, 4])) == [Branch (Leaf 1) (Leaf 3),
Branch (Leaf 1) (Leaf 4),
Branch (Leaf 2) (Leaf 3),
Branch (Leaf 2) (Leaf 4)
]

The propagate function returns Nothing unless all elements in the d -structure are Justs, in
which case it returns Just the d -structure with the maybe type stripped away.

A.13 PolyLib.Zip

The Zip module de�nes generalizations of the Prelude functions unzip, zip and zipWith
that works on pairs of lists. When zipping together two lists a natural thing to do if the lists
have di�erent lengths is to truncate the longer of the two�this is indeed what the Prelude
zip functions do�but for an arbitrary regular datatype truncation is not well de�ned. For
this reason the polytypic zip functions produce results in the maybe monad, if the zipped
structures do not match Nothing is returned.

module PolyLib.Zip where

import PolyLib.Prelude
import PolyLib.Base
import PolyLib.ThreadFuns

class P_fzip f where
fzip :: (f a b, f c d)→ Maybe (f (a, c) (b, d))
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When trying to zip two structures containing constant types (the Const t pattern func-
tor), the ts are required to be the same. Consequently there is an Eq t constraint on the
Const t instance of P_fzip.

punzip :: (FunctorOf f d , P_fmap2 f )⇒ d (a, b)→ (d a, d b)
pzip :: (FunctorOf f d ,

P_fmap2 f ,
P_fthread f ,
P_fzip f

)⇒ (d a, d b)→ Maybe (d (a, b))
pzipWith :: (FunctorOf f d ,

P_fmap2 f ,
P_fthread f ,
P_fzip f

)⇒ ((a, b)→ Maybe c)→ (d a, d b)→ Maybe (d c)

Recall the type of zipWith :: (a → b → c)→ [a]→ [b]→ [c]. Apart from currying a
di�erence between this function and the polytypic pzipWith is that the function argument
to pzipWith is allowed to fail, adding some extra generality to the polytypic function.

A.14 PolyLib.Equal

It is possible to implement polytypic equality using pzipWith from Section A.13 and pand
from Section A.6. In this module, however we choose an independent implementation.

module PolyLib.Equal where

import PolyLib.Prelude

class P_fequal f where
fequal :: (a → c → Bool)→ (b → d → Bool)→

f a b → f c d → Bool

As for the polytypic zip functions in the previous section we need equality over all
constant types.

pequal :: (FunctorOf f d , P_fequal f )⇒
(a → b → Bool)→ d a → d b → Bool

peq :: (FunctorOf f d , P_fequal f , Eq a)⇒ d a → d a → Bool

A.15 PolyLib.Compare

The implementation of a polytypic compare function works along the same lines as the
polytypic equality from Section A.14.

module PolyLib.Compare where



A.16. PolyLib.EP 65

import PolyLib.Prelude

class P_fcompare f where
fcompare :: (a → b → Ordering)→ (c → d → Ordering)→

f a c → f b d → Ordering

Here we require constant types to be instances of the Ord class, to be able to compare
them.

pcompare :: (FunctorOf f d , P_fcompare f )⇒
(a → b → Ordering)→ d a → d b → Ordering

pcompare ′ :: (FunctorOf f d , P_fcompare f , Ord a)⇒
d a → d a → Ordering

A.16 PolyLib.EP

So far, most polytypic functions have been de�ned only on datatypes with no function
spaces. In the EP module we de�ne polytypic embedding-projection pairs that allows
mapping over datatypes with function spaces.

module PolyLib.EP where

import PolyLib.Prelude

data EP a b = EP (a → b) (b → a)

An embedding-projection pair is basically a pair of functions ι :: a → b and π :: b → a.
Formally, for (ι, π) to be a true embedding-projection pair they should satisfy π ◦ ι = id
and ι ◦ π v id , but for our purposes we can ignore these requirements.

class P_fEP f where
fEP :: EP a c → EP b d → EP (f a b) (f c d)

pEP :: (FunctorOf f d , P_fEP f )⇒ EP a b → EP (d a) (d b)

A.17 PolyLib.Transpose

In Section 3.2.6 we described how to implement the function transpose in Haskell using
polytypic functions from PolyLib. We now give the complete de�nition.

module PolyLib.Transpose where



66 A. PolyLib

import PolyLib.Prelude (FunctorOf)
import PolyLib.Base (P_fmap2, pmap)
import PolyLib.BaseM (P_fmapM, P_fmapMr, pmapMr , pmapM )
import PolyLib.Zip (P_fzip, P_fthread, pzipWith)
import Control.Monad.State (runState, put , get)

Apart from a few modules from the polytypic library we also use the state monad im-
plementation from Control.Monad.State. The function runState :: State s a → s → (a, s)
runs a computation in a given state and returns a pair of the result and the �nal state,
and the functions get and put are used to read and write the state.

separate :: (FunctorOf f d , P_fmap2Mr f )⇒ d a → (d (), [a])
separate x = runState (pmapMr store x ) []

where store x = do xs ← get
put (x : xs)
return ()

The function separate takes an element of a regular datatype d a and separates the
shape from the contents, returning a d -structure of unit values (the shape) and a list of
as (the contents). We use a state monad and the monadic map function pmapMr (see
Section A.4) to traverse the structure, store away all the as in the state and replace them
with unit values. Since store adds elements at the head of the list we have to traverse the
structure in reverse order to get the elements in the right order.

combine :: (FunctorOf f d , P_fmap2M f )⇒ d ()→ [a]→ d a
combine s xs = fst (runState (pmapM load s) xs)

where load () = do x : xs ← get
put xs
return x

The (left) inverse of separate is the function combine that takes a shape and a list of
values and inserts the values into the shape. We replace each unit value in the structure
with an element from the state, by mapping the load function over the structure.

pZipWith_ :: (FunctorOf f d , P_fmap2 f , P_fzip f , P_fthread f )⇒
(a → b → c)→ d a → d b → d c

pZipWith_ f x y = z
where f ′ (x , y) = Just (f x y)

Just z = pzipWith f ′ (x , y)

The pzipWith function de�ned in Section A.13 uses the maybe monad to handle the
case when the zipped structures do not match. Since we do not care about the exceptional
cases here, we de�ne a function pzipWith_ that gives an error if the structures do not
match.

listTranspose :: (FunctorOf f d , P_fzip f , P_fthread f , P_fmap2 f )⇒
[d a]→ d [a]
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listTranspose [x ] = pmap ( : []) x
listTranspose (x : xs) = pzipWith_ (:) x (listTranspose xs)

The special case of transposing the list datatype and another regular datatype d is a
bit easier than the general case. If we get a list of a single d -structure x , we should return
a d -structure of the same shape as x , but where all the elements are singleton lists, so we
just map the function ( : []) over x . If we get a list x : xs of more than one d -structure, we
transpose the list xs , resulting in a d -structure of lists. To each of these lists we add the
corresponding element of x by zipping the two structures together.

transpose :: ( FunctorOf f d ,
P_fmap2Mr f ,
P_fmap2M f ,
FunctorOf g e,
P_fmap2 g ,
P_fthread g ,
P_fzip g

)⇒ d (e a)→ e (d a)
transpose x = pmap (combine s) (listTranspose es)

where (s , es) = separate x

Finally the transpose function separates the shape and the contents of its argument,
yielding a d -shape, s :: d (), and a list of e-structures, es :: [e a]. The list es can be
transposed using listTranspose resulting in an e-structure of lists. Now we just force each
of these lists into the shape s and we have an e-structure of d -structures.
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