
Dependently Typed Programming in Agda

Ulf Norell1 and James Chapman2 ?

1 Chalmers University, Gothenburg
ulfn@chalmers.se

2 Institute of Cybernetics, Tallinn
james@cs.ioc.ee

1 Introduction

In Hindley-Milner style languages, such as Haskell and ML, there is a clear
separation between types and values. In a dependently typed language the
line is more blurry – types can contain (depend on) arbitrary values and
appear as arguments and results of ordinary functions.

The standard example of a dependent type is the type of lists of a
given length: Vec A n. Here A is the type of the elements and n is the
length of the list. Many languages allow you to define lists (or arrays) of
a given size, but what makes Vec a true dependent type is that the length
of the list can be an arbitrary term, which need not be known at compile
time.

Since dependent types allows types to talk about values, we can encode
properties of values as types whose elements are proofs that the property
is true. This means that a dependently typed programming language can
be used as a logic. In order for this logic to be consistent we need to require
programs to be total, i.e. they are not allowed to crash or non-terminate.

The rest of these notes are structured as follows: Section 2 introduces
the dependently typed language Agda and its basic features, and Sec-
tion 3 explains a couple of programming techniques made possible by the
introduction of dependent types.

2 Agda Basics

Agda is a dependently typed language based on intuitionistic type the-
ory[4]. Its current version (Agda 2) is a complete rewrite instigated by Ulf
Norell during his PhD[6] at Chalmers University in Gothenburg. This sec-
tion introduces the basic features of Agda and how they can be employed
in the construction of dependently typed programs. Information on how

? Please send bug reports for this tutorial to James.

to obtain the Agda system and further details on the topics discussed
here can be found on the Agda wiki [2].

This section is a literate Agda file which can be compiled by the Agda
system. Hence, we need to start at the beginning: Every Agda file contains
a single top-level module whose name corresponds to the name of the file.
In this case the file is called AgdaBasics.lagda3.

module AgdaBasics where

The rest of your program goes inside the top-level module. Let us
start by defining some simple datatypes and functions.

2.1 Datatypes and pattern matching

Similar to languages like Haskell and ML, a key concept in Agda is pattern
matching over algebraic datatypes. With the introduction of dependent
types pattern matching becomes even more powerful as we shall see in
Section 2.4 and Section 3. But for now, let us start with simply typed
functions and datatypes.

Datatypes are introduced by a data declaration, giving the name and
type of the datatype as well as the constructors and their types. For
instance, here is the type of booleans

data Bool : Set where
true : Bool
false : Bool

The type of Bool is Set, the type of small4 types. Functions over
Bool can be defined by pattern matching in a way familiar to Haskell
programmers:

not : Bool -> Bool
not true = false
not false = true

Agda functions are not allowed to crash, so a function definition must
cover all possible cases. This will be checked by the type checker and an
error is raised if there are missing cases.

3 Literate Agda files have the extension lagda and ordinary Agda files have the ex-
tension agda.

4 There is hierarchy of increasingly large types. The type of Set is Set1, whose type
is Set2, and so on.

In Haskell and ML the type of not can be inferred from the defining
clauses and so in these languages the type signature is not required. How-
ever, in the presence of dependent types this is no longer the case and
we are forced to write down the type signature of not. This is not a bad
thing, since by writing down the type signature we allow the type checker,
not only to tell us when we make mistakes, but also to guide us in the
construction of the program. When types grow more and more precise
the dialog between the programmer and the type checker gets more and
more interesting.

Another useful datatype is the type of (unary) natural numbers.

data Nat : Set where
zero : Nat
suc : Nat -> Nat

Addition on natural numbers can be defined as a recursive function.

+ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)

In the same way as functions are not allowed to crash, they must also
be terminating. To guarantee termination recursive calls have to be made
on structurally smaller arguments. In this case _+_ passes the termination
checker since the first argument is getting smaller in the recursive call
(n < suc n). Let us define multiplication while we are at it

* : Nat -> Nat -> Nat
zero * m = zero
suc n * m = m + n * m

Agda supports a flexible mechanism for mixfix operators. If a name of
a function contains underscores (_) it can be used as an operator with the
arguments going where the underscores are. Consequently, the function
+ can be used as an infix operator writing n + m for _+_ n m. There are
(almost) no restrictions on what symbols are allowed as operator names,
for instance we can define

or : Bool -> Bool -> Bool
false or x = x
true or _ = true

if_then_else_ : {A : Set} -> Bool -> A -> A -> A
if true then x else y = x
if false then x else y = y

In the second clause of the _or_ function the underscore is a wildcard
pattern, indicating that we don’t care what the second argument is and
we can’t be bothered giving it a name. This, of course, means that we
cannot refer to it on the right hand side. The precedence and fixity of an
operator can be declared with an infix declaration:

infixl 60 _*_
infixl 40 _+_
infixr 20 _or_
infix 5 if_then_else_

There are some new and interesting bits in the type of if_then_else_.
For now, it is sufficient to think about {A : Set} -> as declaring a poly-
morphic function over a type A. More on this in Sections 2.2 and 2.3.

Just as in Haskell and ML datatypes can be parameterised by other
types. The type of lists of elements of an arbitrary type is defined by

infixr 40 _::_
data List (A : Set) : Set where
[] : List A
:: : A -> List A -> List A

Again, note that Agda is quite liberal about what is a valid name.
Both [] and _::_ are accepted as sensible names. In fact, Agda names
can contain arbitrary non-whitespace unicode characters, with a few ex-
ceptions, such as parenthesis and curly braces. So, if we really wanted
(which we don’t) we could define the list type as

data _? (α : Set) : Set where
ε : α ?
C : α -> α ? -> α ?

This liberal policy of names means that being generous with whites-
pace becomes important. For instance, not:Bool->Bool would not be a
valid type signature for the not function, since it is in fact a valid name.

2.2 Dependent functions

Let us now turn our attention to dependent types. The most basic depen-
dent type is the dependent function type, where the result type depends
on the value of the argument. In Agda we write (x : A) -> B for the
type of functions taking an argument x of type A and returning a result
of type B, where x may appear in B. A special case is when x itself is a
type. For instance, we can define

identity : (A : Set) -> A -> A
identity A x = x

zero’ : Nat
zero’ = identity Nat zero

This is a dependent function taking a type argument A and an ele-
ment of A and returns the element. This is how polymorphic functions
are encoded in Agda. Here is an example of a more intricate dependent
function; the function which takes a dependent function and applies it to
an argument:

apply : (A : Set)(B : A -> Set) ->
((x : A) -> B x) -> (a : A) -> B a

apply A B f a = f a

Agda accepts some short hands for dependent function types:

– (x : A)(y : B) -> C for (x : A) -> (y : B) -> C , and
– (x y : A) -> B for (x : A)(y : A) -> B .

The elements of dependent function types are lambda terms which
may carry explicit type information. Some alternative ways to define the
identity function above are:

identity2 : (A : Set) -> A -> A
identity2 = \A x -> x

identity3 : (A : Set) -> A -> A
identity3 = \(A : Set)(x : A) -> x

identity4 : (A : Set) -> A -> A
identity4 = \(A : Set) x -> x

2.3 Implicit arguments

We saw in the previous section how dependent functions taking types as
arguments could be used to model polymorphic types. The thing with
polymorphic functions, however, is that you don’t have to say at which
type you want to apply it – that is inferred by the type checker. However,
in the example of the identity function we had to explicitly provide the
type argument when applying the function. In Agda this problem is solved
by a general mechanism for implicit arguments. To declare a function
argument implicit we use curly braces instead of parenthesis in the type:
{x : A} -> B means the same thing as (x : A) -> B except that when

you use a function of this type the type checker will try to figure out the
argument for you.

Using this syntax we can define a new version of the identity function,
where you don’t have to supply the type argument.

id : {A : Set} -> A -> A
id x = x

true’ : Bool
true’ = id true

Note that the type argument is implicit both when the function is
applied and when it is defined.

There are no restrictions on what arguments can be made implicit,
nor are there any guarantees that an implicit argument can be inferred
by the type checker. For instance, we could be silly and make the second
argument of the identity function implicit as well:

silly : {A : Set}{x : A} -> A
silly {_}{x} = x

false’ : Bool
false’ = silly {x = false}

Clearly, there is no way the type checker could figure out what the
second argument to silly should be. To provide an implicit argument
explicitly you use the implicit application syntax f {v}, which gives v as
the left-most implicit argument to f, or as shown in the example above,
f {x = v}, which gives v as the implicit argument called x. The name of
an implicit argument is obtained from the type declaration.

Conversely, if you want the type checker to fill in a term which needs
to be given explicitly you can replace it by an underscore. For instance,

one : Nat
one = identity _ (suc zero)

It is important to note that the type checker will not do any kind of
search in order to fill in implicit arguments. It will only look at the typing
constraints and perform unification5.

Even so, a lot can be inferred automatically. For instance, we can
define the fully dependent function composition. (Warning: the following
type is not for the faint of heart!)

5 Miller pattern unification to be precise.

◦ : {A : Set}{B : A -> Set}{C : (x : A) -> B x -> Set}
(f : {x : A}(y : B x) -> C x y)(g : (x : A) -> B x)
(x : A) -> C x (g x)

(f ◦ g) x = f (g x)

plus-two = suc ◦ suc

The type checker can figure out the type arguments A, B, and C, when
we use _◦_.

We have seen how to define simply typed datatypes and functions,
and how to use dependent types and implicit arguments to represent
polymorphic functions. Let us conclude this part by defining some familiar
functions.

map : {A B : Set} -> (A -> B) -> List A -> List B
map f [] = []
map f (x :: xs) = f x :: map f xs

++ : {A : Set} -> List A -> List A -> List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

2.4 Datatype families

So far, the only use we have seen of dependent types is to represent
polymorphism, so let us look at some more interesting examples. The
type of lists of a certain length, mentioned in the introduction, can be
defined as follows:

data Vec (A : Set) : Nat -> Set where
[] : Vec A zero
:: : {n : Nat} -> A -> Vec A n -> Vec A (suc n)

This declaration introduces a number of interesting things. First, note
that the type of Vec A is Nat -> Set. This means that Vec A is a family
of types indexed by natural numbers. So, for each natural number n,
Vec A n is a type. The constructors are free to construct elements in an
arbitrary type of the family. In particular, [] constructs an element in
Vec A zero and _::_ an element in Vec A (suc n) for some n.

There is a distinction between parameters and indices of a datatype.
We say that Vec is parameterised by a type A and indexed over natural
numbers.

In the type of _::_ we see an example of a dependent function type.
The first argument to _::_ is an implicit natural number n which is the

length of the tail. We can safely make n implicit since the type checker
can infer it from the type of the third argument.

Finally, note that we chose the same constructor names for Vec as for
List. Constructor names are not required to be distinct between different
datatypes.

Now, the interesting part comes when we start pattern matching on
elements of datatype families. Suppose, for instance, that we want to take
the head of a non-empty list. With the Vec type we can actually express
the type of non-empty lists, so we define head as follows:

head : {A : Set}{n : Nat} -> Vec A (suc n) -> A
head (x :: xs) = x

This definition is accepted by the type checker as being exhaustive, despite
the fact that we didn’t give a case for []. This is fortunate, since the []
case would not even be type correct – the only possible way to build an
element of Vec A (suc n) is using the _::_ constructor.

The rule for when you have to include a particular case is very simple:
if it is type correct you have to include it.

Dot patterns Here is another function on Vec:

vmap : {A B : Set}{n : Nat} -> (A -> B) -> Vec A n -> Vec B n
vmap f [] = []
vmap f (x :: xs) = f x :: vmap f xs

Perhaps surprisingly, the definition map on Vec is exactly the same
as on List, the only thing that changed is the type. However, something
interesting is going on behind the scenes. For instance, what happens with
the length argument when we pattern match on the list? To see this, let
us define new versions of Vec and vmap with fewer implicit arguments:

data Vec2 (A : Set) : Nat -> Set where
nil : Vec2 A zero
cons : (n : Nat) -> A -> Vec2 A n -> Vec2 A (suc n)

vmap2 : {A B : Set}(n : Nat) -> (A -> B) -> Vec2 A n -> Vec2 B n
vmap2 .zero f nil = nil
vmap2 .(suc n) f (cons n x xs) = cons n (f x) (vmap2 n f xs)

What happens when we pattern match on the list argument is that
we learn things about its length: if the list turns out to be nil then the
length argument must be zero, and if the list is cons n x xs then the
only type correct value for the length argument is suc n. To indicate that

the value of an argument has been deduced by type checking, rather than
observed by pattern matching it is prefixed by a dot (.).

In this example we could choose to define vmap by first pattern match-
ing on the length rather than on the list. In that case we would put the
dot on the length argument of cons6:

vmap3 : {A B : Set}(n : Nat) -> (A -> B) -> Vec2 A n -> Vec2 B n
vmap3 zero f nil = nil
vmap3 (suc n) f (cons .n x xs) = cons n (f x) (vmap3 n f xs)

The rule for when an argument should be dotted is: if there is a unique
type correct value for the argument it should be dotted.

In the example above, the terms under the dots were valid patterns,
but in general they can be arbitrary terms. For instance, we can define
the image of a function as follows:

data Image_3_ {A B : Set}(f : A -> B) : B -> Set where
im : (x : A) -> Image f 3 f x

Here we state that the only way to construct an element in the image
of f is to pick an argument x and apply f to x. Now if we know that a
particular y is in the image of f we can compute the inverse of f on y:

inv : {A B : Set}(f : A -> B)(y : B) -> Image f 3 y -> A
inv f .(f x) (im x) = x

Absurd patterns Let us define another datatype family, namely the
family of numbers smaller than a given natural number.

data Fin : Nat -> Set where
fzero : {n : Nat} -> Fin (suc n)
fsuc : {n : Nat} -> Fin n -> Fin (suc n)

Here fzero is smaller than suc n for any n and if i is smaller than n
then fsuc i is smaller than suc n. Note that there is no way of construct-
ing a number smaller than zero. When there are no possible constructor
patterns for a given argument you can pattern match on it with the ab-
surd pattern ():

magic : {A : Set} -> Fin zero -> A
magic ()

6 In fact the dot can be placed on any of the ns. What is important is that there is a
unique binding site for each variable in the pattern.

Using an absurd pattern means that you do not have to give a right
hand side, since there is no way anyone could provide an argument to
your function. One might think that the clause would not have to be given
at all, that the type checker would see that the matching is exhaustive
without any clauses, but remember that a case can only be omitted if
there is no type correct way of writing it. In the case of magic a perfectly
type correct left hand side is magic x.

It is important to note that an absurd pattern can only be used if
there are no valid constructor patterns for the argument, it is not enough
that there are no closed inhabitants of the type7. For instance, if we define

data Empty : Set where
empty : Fin zero -> Empty

Arguments of type Empty can not be matched with an absurd pat-
tern, since there is a perfectly valid constructor pattern that would do:
empty x. Hence, to define the magic function for Empty we have to write

magic’ : {A : Set} -> Empty -> A
magic’ (empty ())
-- magic’ () -- not accepted

Now, let us define some more interesting functions. Given a list of
length n and a number i smaller than n we can compute the ith element
of the list (starting from 0):

! : {n : Nat}{A : Set} -> Vec A n -> Fin n -> A
[] ! ()
(x :: xs) ! fzero = x
(x :: xs) ! (fsuc i) = xs ! i

The types ensure that there is no danger of indexing outside the list.
This is reflected in the case of the empty list where there are no possible
values for the index.

The _!_ function turns a list into a function from indices to elements.
We can also go the other way, constructing a list given a function from
indices to elements:

tabulate : {n : Nat}{A : Set} -> (Fin n -> A) -> Vec A n
tabulate {zero} f = []
tabulate {suc n} f = f fzero :: tabulate (f ◦ fsuc)

Note that tabulate is defined by recursion over the length of the
result list, even though it is an implicit argument. There is in general
no correspondance between implicit data and computationally irrelevant
data.
7 Since checking type inhabitation is undecidable.

2.5 Programs as proofs

As mentioned in the introduction, Agda’s type system is sufficiently pow-
erful to represent (almost) arbitrary propositions as types whose elements
are proofs of the proposition. Here are two very simple propositions, the
true proposition and the false proposition:

data False : Set where
record True : Set where

trivial : True
trivial = _

The false proposition is represented by the datatype with no con-
structors and the true proposition by the record type with no fields (see
Section 2.8 for more information on records). The record type with no
fields has a single element which is the empty record. We could have de-
fined True as a datatype with a single element, but the nice thing with
the record definition is that the type checker knows that there is a unique
element of True and will fill in any implicit arguments of type True with
this element. This is exploited in the definition of trivial where the
right hand side is just underscore. If you nevertheless want to write the
element of True, the syntax is record{}.

These two propositions are enough to work with decidable proposi-
tions. We can model decidable propositions as booleans and define

isTrue : Bool -> Set
isTrue true = True
isTrue false = False

Now, isTrue b is the type of proofs that b equals true. Using this
technique we can define the safe list lookup function in a different way,
working on simply typed lists and numbers.

< : Nat -> Nat -> Bool
_ < zero = false
zero < suc n = true
suc m < suc n = m < n

length : {A : Set} -> List A -> Nat
length [] = zero
length (x :: xs) = suc (length xs)

lookup : {A : Set}(xs : List A)(n : Nat) ->
isTrue (n < length xs) -> A

lookup [] n ()
lookup (x :: xs) zero p = x
lookup (x :: xs) (suc n) p = lookup xs n p

In this case, rather than there being no index into the empty list, there
is no proof that a number n is smaller than zero. In this example using
indexed types to capture the precondition is a little bit nicer, since we
don’t have to pass around an explicit proof object, but some properties
cannot be easily captured by indexed types, in which case this is a nice
alternative.

We can also use datatype families to define propositions. Here is a
definition of the identity relation

data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x

For a type A and an element x of A, we define the the family of proofs
of “being equal to x”. This family is only inhabited at index x where the
single proof is refl.

Another example is the less than or equals relation on natural num-
bers. This could be defined as a boolean function, as we have seen, but
we can also define it inductively

data _≤_ : Nat -> Nat -> Set where
leq-zero : {n : Nat} -> zero ≤ n
leq-suc : {m n : Nat} -> m ≤ n -> suc m ≤ suc n

One advantage of this approach is that we can pattern match on the
proof object. This makes proving properties of _≤_ easier. For instance,

leq-trans : {l m n : Nat} -> l ≤ m -> m ≤ n -> l ≤ n
leq-trans leq-zero _ = leq-zero
leq-trans (leq-suc p) (leq-suc q) = leq-suc (leq-trans p q)

2.6 More on pattern matching

We have seen how to pattern match on the arguments of a function, but
sometimes you want to pattern match on the result of some intermediate
computation. In Haskell and ML this is done on the right hand side using
a case or match expression. However, as we have learned, when pattern
matching on an expression in a dependently typed language, you not
only learn something about the shape of the expression, but you can also
learn things about other expressions. For instance, pattern matching on
an expression of type Vec A n will reveal information about n. This is
not captured by the usual case expression, so instead of a case expression
Agda provides a way of matching on intermediate computations on the
left hand side.

The with construct The idea is that if you want to pattern match on
an expression e in the definition of a function f, you abstract f over the
value of e, effectively adding another argument to f which can then be
matched on in the usual fashion. This abstraction is performed by the
with construct. For instance,

min : Nat -> Nat -> Nat
min x y with x < y
min x y | true = x
min x y | false = y

The equations for min following the with abstraction have an extra
argument, separated from the original arguments by a vertical bar, cor-
responding to the value of the expression x < y. You can abstract over
multiple expressions at the same time, separating them by vertical bars
and you can nest with abstractions. In the left hand side, with abstracted
arguments should be separated by vertical bars.

In this case pattern matching on x < y doesn’t tell us anything inter-
esting about the arguments of min, so repeating the left hand sides is a
bit tedious. When this is the case you can replace the left hand side with
...:

filter : {A : Set} -> (A -> Bool) -> List A -> List A
filter p [] = []
filter p (x :: xs) with p x
... | true = x :: filter p xs
... | false = filter p xs

Here is an example when we do learn something interesting. Given
two numbers we can compare them to see if they are equal. Rather than
returning an uninteresting boolean, we can return a proof that the num-
bers are indeed equal when this is the case, and an explanation of why
they are different when this is the case:

data _6=_ : Nat -> Nat -> Set where
z6=s : {n : Nat} -> zero 6= suc n
s6=z : {n : Nat} -> suc n 6= zero
s6=s : {m n : Nat} -> m 6= n -> suc m 6= suc n

data Equal? (n m : Nat) : Set where
eq : n == m -> Equal? n m
neq : n 6= m -> Equal? n m

Two natural numbers are different if one is zero and the other suc of
something, or if both are successors but their predecessors are different.
Now we can define the function equal? to check if two numbers are equal:

equal? : (n m : Nat) -> Equal? n m
equal? zero zero = eq refl
equal? zero (suc m) = neq z6=s
equal? (suc n) zero = neq s6=z
equal? (suc n) (suc m) with equal? n m
equal? (suc n) (suc .n) | eq refl = eq refl
equal? (suc n) (suc m) | neq p = neq (s6=s p)

Note that in the case where both numbers are successors we learn
something by pattern matching on the proof that the predecessors are
equal. We will see more examples of this kind of informative datatypes in
Section 3.1.

When you abstract over an expression using with, that expression
is abstracted from the entire context. This means that if the expression
occurs in the type of an argument to the function or in the result type,
this occurrence will be replaced by the with-argument on the left hand
side. For example, suppose we want to prove something about the filter
function. That the only thing it does is throwing away some elements of
its argument, say. We can define what it means for one list to be a sublist
of another list:

infix 20 _⊆_
data _⊆_ {A : Set} : List A -> List A -> Set where

stop : [] ⊆ []
drop : forall {xs y ys} -> xs ⊆ ys -> xs ⊆ y :: ys
keep : forall {x xs ys} -> xs ⊆ ys -> x :: xs ⊆ x :: ys

The intuition is that to obtain a sublist of a given list, each element
can either be dropped or kept. When the type checker can figure out the
type of an argument in a function type you can use the forall syntax:

– forall {x y} a b -> A is short for {x : _}{y : _}(a : _)(b : _) -> A.

Using this definition we can prove that filter computes a sublist of
its argument:

lem-filter : {A : Set}(p : A -> Bool)(xs : List A) ->
filter p xs ⊆ xs

lem-filter p [] = stop
lem-filter p (x :: xs) with p x
... | true = keep (lem-filter p xs)
... | false = drop (lem-filter p xs)

The interesting case is the _::_ case. Let us walk through it slowly:

-- lem-filter p (x :: xs) = ?

At this point the goal that we have to prove is

-- (filter p (x :: xs) | p x) ⊆ x :: xs

In the goal filter has been applied to its with abstracted argument p x
and will not reduce any further. Now, when we abstract over p x it will
be abstracted from the goal type so we get

-- lem-filter p (x :: xs) with p x
-- ... | px = ?

where p x has been replaced by px in the goal type

-- (filter p (x :: xs) | px) ⊆ x :: xs

Now, when we pattern match on px the call to filter will reduce and
we get

-- lem-filter p (x :: xs) with p x
-- ... | true = ? {- x :: filter p xs ⊆ x :: xs -}
-- ... | false = ? {- filter p xs ⊆ x :: xs -}

In some cases, it can be helpful to use with to abstract over an ex-
pression which you are not going to pattern match on. In particular, if
you expect this expression to be instantiated by pattern matching on
something else. Consider the proof that n + zero == n:

lem-plus-zero : (n : Nat) -> n + zero == n
lem-plus-zero zero = refl
lem-plus-zero (suc n) with n + zero | lem-plus-zero n
... | .n | refl = refl

In the step case we would like to pattern match on the induction
hypothesis n + zero == n in order to prove suc n + zero == suc n,
but since n + zero cannot be unified with n that is not allowed. However,
if we abstract over n + zero, calling it m, we are left with the induction
hypothesis m == n and the goal suc m == suc n. Now we can pattern
match on the induction hypothesis, instantiating m to n.

2.7 Modules

The module system in Agda is primarily used to manage name spaces.
In a dependently typed setting you could imagine having modules as first
class objects that could be passed around and created on the fly, but in
Agda this is not the case.

We have already seen that each file must define a single top-level
module containing all the declarations in the file. These declarations can
in turn be modules.

module M where
data Maybe (A : Set) : Set where
nothing : Maybe A
just : A -> Maybe A

maybe : {A B : Set} -> B -> (A -> B) -> Maybe A -> B
maybe z f nothing = z
maybe z f (just x) = f x

By default all names declared in a module are visible from the outside.
If you want to hide parts of a module you can declare it private:

module A where
private
internal : Nat
internal = zero

exported : Nat -> Nat
exported n = n + internal

To access public names from another module you can qualify the name
by the name of the module.

mapMaybe1 : {A B : Set} -> (A -> B) -> M.Maybe A -> M.Maybe B
mapMaybe1 f M.nothing = M.nothing
mapMaybe1 f (M.just x) = M.just (f x)

Modules can also be opened, locally or on top-level:
mapMaybe2 : {A B : Set} -> (A -> B) -> M.Maybe A -> M.Maybe B
mapMaybe2 f m = let open M in maybe nothing (just ◦ f) m

open M

mapMaybe3 : {A B : Set} -> (A -> B) -> Maybe A -> Maybe B
mapMaybe3 f m = maybe nothing (just ◦ f) m

When opening a module you can control which names are brought into
scope with the using, hiding, and renaming keywords. For instance, to
open the Maybe module without exposing the maybe function, and using
different names for the type and the constructors we can say

open M hiding (maybe)
renaming (Maybe to _option; nothing to none; just to some)

mapOption : {A B : Set} -> (A -> B) -> A option -> B option
mapOption f none = none
mapOption f (some x) = some (f x)

Renaming is just cosmetic, Maybe A and A option are interchangable.
mtrue : Maybe Bool
mtrue = mapOption not (just false)

Parameterised modules Modules can be parameterised by arbitrary
types8.

module Sort (A : Set)(_<_ : A -> A -> Bool) where
insert : A -> List A -> List A
insert y [] = y :: []
insert y (x :: xs) with x < y
... | true = x :: insert y xs
... | false = y :: x :: xs

sort : List A -> List A
sort [] = []
sort (x :: xs) = insert x (sort xs)

When looking at the functions in parameterised module from the outside,
they take the module parameters as arguments, so

sort1 : (A : Set)(_<_ : A -> A -> Bool) -> List A -> List A
sort1 = Sort.sort

You can apply the functions in a parameterised module to the module
parameters all at once, by instantiating the module

module SortNat = Sort Nat _<_

This creates a new module SortNat with functions insert and sort.

sort2 : List Nat -> List Nat
sort2 = SortNat.sort

Often you want to instantiate a module and open the result, in which
case you can simply write

open Sort Nat _<_ renaming (insert to insertNat; sort to sortNat)

without having to give a name to the instantiated module.
Sometimes you want to export the contents of another module from

the current module. In this case you can open the module publicly using
the public keyword:

module Lists (A : Set)(_<_ : A -> A -> Bool) where
open Sort A _<_ public
minimum : List A -> Maybe A
minimum xs with sort xs
... | [] = nothing
... | y :: ys = just y

Now the Lists module will contain insert and sort as well as the
minimum function.
8 But not by other modules.

Importing modules from other files Agda programs can be split over
multiple files. To use definitions from a module defined in another file the
module has to be imported. Modules are imported by their names, so if
you have a module A.B.C in a file /some/local/path/A/B/C.agda it is
imported with the statement import A.B.C. In order for the system to
find the file /some/local/path must be in Agda’s search path.9.

I have a file Logic.agda in the same directory as these notes, defining
logical conjunction and disjunction. To import it we say

import Logic using (_∧_; _∨_)

Note that you can use the same namespace control keywords as when
opening modules. Importing a module does not automatically open it
(like when you say import qualified in Haskell). You can either open
it separately with an open statement, or use the short form open import
Logic.

Splitting a program over several files will improve type checking per-
formance, since when you are making changes the type checker only has
to type check the files that are influenced by the changes.

2.8 Records

We have seen a record type already, namely the record type with no fields
which was used to model the true proposition. Now let us look at record
types with fields. A record type is declared much like a datatype where
the fields are indicated by the field keyword. For instance

record Point : Set where
field x : Nat

y : Nat

This declares a record type Point with two natural number fields x and
y. To construct an element of Point you write

mkPoint : Nat -> Nat -> Point
mkPoint a b = record{ x = a; y = b }

To allow projection of the fields from a record, each record type comes
with a module of the same name. This module is parameterised by an
element of the record type and contains projection functions for the fields.
In the point example we get a module

-- module Point (p : Point) where
-- x : Nat
-- y : Nat

9 The search path can be set from emacs by executing M-x customize-group agda2.

This module can be used as it is or instantiated to a particular record.

getX : Point -> Nat
getX = Point.x

abs2 : Point -> Nat
abs2 p = let open Point p in x * x + y * y

At the moment you cannot pattern match on records, but this will
hopefully be possible in a later version of Agda.

It is possible to add your own functions to the module of a record by
including them in the record declaration after the fields.

record Monad (M : Set -> Set) : Set1 where
field
return : {A : Set} -> A -> M A
>>= : {A B : Set} -> M A -> (A -> M B) -> M B

mapM : {A B : Set} -> (A -> M B) -> List A -> M (List B)
mapM f [] = return []
mapM f (x :: xs) = f x >>= \y ->

mapM f xs >>= \ys ->
return (y :: ys)

mapM’ : {M : Set -> Set} -> Monad M ->
{A B : Set} -> (A -> M B) -> List A -> M (List B)

mapM’ Mon f xs = Monad.mapM Mon f xs

2.9 Exercises

Exercise 2.1. Matrix transposition
We can model an n×m matrix as a vector of vectors:

Matrix : Set -> Nat -> Nat -> Set
Matrix A n m = Vec (Vec A n) m

The goal of this exercise is to define the transposition of such a matrix.

(a) Define a function to compute a vector containing n copies of an ele-
ment x.

vec : {n : Nat}{A : Set} -> A -> Vec A n
vec {n} x = {! !}

(b) Define point-wise application of a vector of functions to a vector of
arguments.

infixl 90 _$_
$: {n : Nat}{A B : Set} -> Vec (A -> B) n -> Vec A n -> Vec B n
fs $ xs = {! !}

(c) Define matrix transposition in terms of these two functions.

transpose : forall {A n m} -> Matrix A n m -> Matrix A m n
transpose xss = {! !}

Exercise 2.2. Vector lookup
Remember tabulate and ! from Section 2.4. Prove that they are

indeed each other’s inverses.

(a) This direction should be relatively easy.

lem-!-tab : forall {A n} (f : Fin n -> A)(i : Fin n) ->
tabulate f ! i == f i

lem-!-tab f i = {! !}

(b) This direction might be trickier.

lem-tab-! : forall {A n} (xs : Vec A n) -> tabulate (_!_ xs) == xs
lem-tab-! xs = {! !}

Exercise 2.3. Sublists
Remember the representation of sublists from Section 2.4:

data _⊆_ {A : Set} : List A -> List A -> Set where
stop : [] ⊆ []
drop : forall {x xs ys} -> xs ⊆ ys -> xs ⊆ x :: ys
keep : forall {x xs ys} -> xs ⊆ ys -> x :: xs ⊆ x :: ys

(a) Prove the reflexivity and transitivity of ⊆ :

⊆-refl : {A : Set}{xs : List A} -> xs ⊆ xs
⊆-refl {xs = xs} = {! !}

⊆-trans : {A : Set}{xs ys zs : List A} ->
xs ⊆ ys -> ys ⊆ zs -> xs ⊆ zs

⊆-trans p q = {! !}

Instead of defining the sublist relation we can define the type of sub-
lists of a given list as follows:

infixr 30 _::_
data SubList {A : Set} : List A -> Set where
[] : SubList []
:: : forall x {xs} -> SubList xs -> SubList (x :: xs)
skip : forall {x xs} -> SubList xs -> SubList (x :: xs)

(b) Define a function to extract the list corresponding to a sublist.

forget : {A : Set}{xs : List A} -> SubList xs -> List A
forget s = {! !}

(c) Now, prove that a SubList is a sublist in the sense of ⊆ .

lem-forget : {A : Set}{xs : List A}(zs : SubList xs) ->
forget zs ⊆ xs

lem-forget zs = {! !}

(d) Give an alternative definition of filter which satisfies the sublist prop-
erty by construction.

filter’ : {A : Set} -> (A -> Bool) -> (xs : List A) -> SubList xs
filter’ p xs = {! !}

(e) Define the complement of a sublist

complement : {A : Set}{xs : List A} -> SubList xs -> SubList xs
complement zs = {! !}

(f) Compute all sublists of a given list

sublists : {A : Set}(xs : List A) -> List (SubList xs)
sublists xs = {! !}

3 Programming Techniques

In this section we will describe and exemplify a couple of programming
techniques which are made available in dependently typed languages:
views and universe constructions.

3.1 Views

As we have seen pattern matching in Agda can reveal information not
only about the term being matched but also about terms occurring in the
type of this term. For instance, matching a proof of x == y against the
refl constructor we (and the type checker) will learn that x and y are
the same.

We can exploit this, and design datatypes whose sole purpose is to
tell us something interesting about its indices. We call such a datatype a
view [5]. To use the view we define a view function, computing an element
of the view for arbitrary indices.

This section on views is defined in the file Views.lagda so here is the
top-level module declaration:

module Views where

Natural number parity Let us start with an example. We all know
that any natural number n can be written on the form 2k or 2k + 1
for some k. Here is a view datatype expressing that. We use the natural
numbers defined in the summer school library [7] module Data.Nat.

open import Data.Nat

data Parity : Nat -> Set where
even : (k : Nat) -> Parity (k * 2)
odd : (k : Nat) -> Parity (1 + k * 2)

An element of Parity n tells you if n is even or odd, i.e. if n = 2k
or n = 2k + 1, and in each case what k is. The reason for writing k * 2
and 1 + k * 2 rather than 2 * k and 2 * k + 1 has to do with the fact
that _+_ and _*_ are defined by recursion over their first argument. This
way around we get a better reduction behaviour.

Now, just defining the view datatype isn’t very helpful. We also need
to show that any natural number can be viewed in this way. In other
words, that given an arbitrary natural number n we can to compute an
element of Parity n.

parity : (n : Nat) -> Parity n
parity zero = even zero
parity (suc n) with parity n
parity (suc .(k * 2)) | even k = odd k
parity (suc .(1 + k * 2)) | odd k = even (suc k)

In the suc n case we use the view recursively to find out the parity
of n. If n = k * 2 then suc n = 1 + k * 2 and if n = 1 + k * 2 then
suc n = suc k * 2.

In effect, this view gives us the ability to pattern match on a natu-
ral number with the patterns k * 2 and 1 + k * 2. Using this ability,
defining the function that divides a natural number by two is more or less
trivial:

half : Nat -> Nat
half n with parity n
half .(k * 2) | even k = k
half .(1 + k * 2) | odd k = k

Note that k is bound in the pattern for the view, not in the dotted
pattern for the natural number.

Finding an element in a list Let us turn our attention to lists. First
some imports: we will use the definitions of lists and booleans from the
summer school library [7].

open import Data.Function
open import Data.List
open import Data.Bool

Now, given a predicate P and a list xs we can define what it means
for P to hold for all elements of xs:

infixr 30 _:all:_
data All {A : Set}(P : A -> Set) : List A -> Set where
all[] : All P []
:all: : forall {x xs} -> P x -> All P xs -> All P (x :: xs)

A proof of All P xs is simply a list of proofs of P x for each ele-
ment x of xs. Note that P does not have to be a decidable predicate. To
turn a decidable predicate into a general predicate we define a function
satisfies.

satisfies : {A : Set} -> (A -> Bool) -> A -> Set
satisfies p x = isTrue (p x)

Using the All datatype we could prove the second part of the correct-
ness of the filter function, namely that all the elements of the result
of filter satisfies the predicate: All (satisfies p) (filter p xs).
This is left as an exercise. Instead, let us define some interesting views on
lists.

Given a decidable predicate on the elements of a list, we can either
find an element in the list that satisfies the predicate, or else all elements
satifies the negation of the predicate. Here is the corresponding view
datatype:

data Find {A : Set}(p : A -> Bool) : List A -> Set where
found : (xs : List A)(y : A) -> satisfies p y -> (ys : List A) ->

Find p (xs ++ y :: ys)
not-found : forall {xs} -> All (satisfies (not ◦ p)) xs ->

Find p xs

We don’t specify which element to use as a witness in the found case.
If we wanted the view to always return the first (or last) matching element
we could force the elements of xs (or ys) to satisfy the negation of p. To
complete the view we need to define the view function computing an
element of Find p xs for any p and xs. Here is a first attempt:

find1 : {A : Set}(p : A -> Bool)(xs : List A) -> Find p xs
find1 p [] = not-found all[]
find1 p (x :: xs) with p x
... | true = found [] x {! !} xs
... | false = {! !}

In the case where p x is true we want to return found (hence, re-
turning the first match), but there is a problem. The type of the hole
({! !}) is isTrue (p x), even though we already matched on p x and
found out that it was true. The problem is that when we abstracted over
p x we didn’t know that we wanted to use the found constructor, so there
were no p x to abstract over. Remember that with doesn’t remember the
connection between the with-term and the patterns. One solution to this
problem is to make this connection explicit with a proof object. The idea
is to not abstract over the term itself but rather over an arbitrary term of
the same type and a proof that it is equal to the original term. Remember
the type of equality proofs:

data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x

Now we define the type of elements of a type A together with proofs
that they are equal to some given x in A.

data Inspect {A : Set}(x : A) : Set where
it : (y : A) -> x == y -> Inspect x

There is one obvious way to construct an element of Inspect x, namely
to pick x as the thing which is equal to x.

inspect : {A : Set}(x : A) -> Inspect x
inspect x = it x refl

We can now define find by abstracting over inspect (p x) rather
than p x itself. This will provide us with either a proof of p x == true or
a proof of p x == false which we can use in the arguments to found and
not-found. First we need a couple of lemmas about isTrue and isFalse:

trueIsTrue : {x : Bool} -> x == true -> isTrue x
trueIsTrue refl = _

falseIsFalse : {x : Bool} -> x == false -> isFalse x
falseIsFalse refl = _

Now we can define find without any problems.

find : {A : Set}(p : A -> Bool)(xs : List A) -> Find p xs
find p [] = not-found all[]
find p (x :: xs) with inspect (p x)
... | it true prf = found [] x (trueIsTrue prf) xs
... | it false prf with find p xs
find p (x :: ._) | it false _ | found xs y py ys =
found (x :: xs) y py ys

find p (x :: xs) | it false prf | not-found npxs =
not-found (falseIsFalse prf :all: npxs)

In the case where p x is true, inspect (p x) matches it true prf
where prf : p x == true. Using our lemma we can turn this into the
proof of isTrue (p x) that we need for the third argument of found.
We get a similar situation when p x is false and find p xs returns
not-found.

Indexing into a list In Sections 2.4 and Section 2.5 we saw two ways of
safely indexing into a list. In both cases the type system guaranteed that
the index didn’t point outside the list. However, sometimes we have no
control over the value of the index and it might well be that it is pointing
outside the list. One solution in this case would be to wrap the result of
the lookup function in a maybe type, but maybe types don’t really tell
you anything very interesting and we can do a lot better. First let us
define the type of proofs that an element x is in a list xs.

data _∈_ {A : Set}(x : A) : List A -> Set where
hd : forall {xs} -> x ∈ x :: xs
tl : forall {y xs} -> x ∈ xs -> x ∈ y :: xs

The first element of a list is a member of the list, and any element
of the tail of a list is also an element of the entire list. Given a proof
of x ∈ xs we can compute the index at which x occurs in xs simply by
counting the number of tls in the proof.

index : forall {A}{x : A}{xs} -> x ∈ xs -> Nat
index hd = zero
index (tl p) = suc (index p)

Now, let us define a view on natural numbers n with respect to a list
xs. Either n indexes some x in xs in which case it is of the form index p
for some proof p : x ∈ xs, or n points outside the list, in which case it
is of the form length xs + m for some m.

data Lookup {A : Set}(xs : List A) : Nat -> Set where
inside : (x : A)(p : x ∈ xs) -> Lookup xs (index p)
outside : (m : Nat) -> Lookup xs (length xs + m)

In the case that n is a valid index we not only get the element at
the corresponding position in xs but we are guaranteed that this is the
element that is returned. There is no way a lookup function could cheat
and always return the first element, say. In the case that n is indexing
outside the list we also get some more information. We get a proof that
n is out of bounds and we also get to know by how much.

Defining the lookup function is no more difficult than it would have
been to define the lookup function returning a maybe.

! : {A : Set}(xs : List A)(n : Nat) -> Lookup xs n
[] ! n = outside n
(x :: xs) ! zero = inside x hd
(x :: xs) ! suc n with xs ! n
(x :: xs) ! suc .(index p) | inside y p = inside y (tl p)
(x :: xs) ! suc .(length xs + n) | outside n = outside n

A type checker for λ-calculus To conclude this section on views, let
us look at a somewhat bigger example: a type checker for simply typed
λ-calculus. This example is due to Conor McBride [5] and was first imple-
mented in Epigram. His version not only guaranteed that when the type
checker said ok things were really ok, but also provided a detailed expla-
nation in the case where type checking failed. We will focus on the positive
side here and leave the reporting of sensible and guaranteed precise error
message as an exercise.

First, let us define the type language. We have one base type ı and a
function type.

infixr 30 _⇒_
data Type : Set where
ı : Type
⇒ : Type -> Type -> Type

When doing type checking we will inevitably have to compare types
for equality, so let us define a view.

data Equal? : Type -> Type -> Set where
yes : forall {τ} -> Equal? τ τ
no : forall {σ τ} -> Equal? σ τ

=?= : (σ τ : Type) -> Equal? σ τ
ı =?= ı = yes
ı =?= (_ ⇒ _) = no
(_ ⇒ _) =?= ı = no
(σ1 ⇒ τ1) =?= (σ2 ⇒ τ2) with σ1 =?= σ2 | τ1 =?= τ2
(σ ⇒ τ) =?= (.σ ⇒ .τ) | yes | yes = yes
(σ1 ⇒ τ1) =?= (σ2 ⇒ τ2) | _ | _ = no

Note that we don’t give any justification in the no case. The _=?=_
could return no all the time without complaints from the type checker.
In the yes case, however, we guarantee that the two types are identical.

Next up we define the type of raw lambda terms. We use unchecked
deBruijn indices to represent variables.

infixl 80 _$_
data Raw : Set where
var : Nat -> Raw
$: Raw -> Raw -> Raw
lam : Type -> Raw -> Raw

We use Church style terms in order to simplify type inference. The
idea with our type checker is that it should take a raw term and return a
well-typed term, so we need to define the type of well-typed λ-terms with
respect to a context Γ and a type τ .

Cxt = List Type

data Term (Γ : Cxt) : Type -> Set where
var : forall {τ} -> τ ∈ Γ -> Term Γ τ
$: forall {σ τ} -> Term Γ (σ ⇒ τ) -> Term Γ σ -> Term Γ τ
lam : forall σ {τ} -> Term (σ :: Γ) τ -> Term Γ (σ ⇒ τ)

We represent variables by proofs that a type is in the context. Re-
member that the proofs of list membership provide us with an index into
the list where the element can be found. Given a well-typed term we can
erase all the type information and get a raw term.

erase : forall {Γ τ} -> Term Γ τ -> Raw
erase (var x) = var (index x)
erase (t $ u) = erase t $ erase u
erase (lam σ t) = lam σ (erase t)

In the variable case we turn the proof into a natural number using the
index function.

Now we are ready to define the view of a raw term as either being the
erasure of a well-typed term or not. Again, we don’t provide any justifi-
cation for giving a negative result. Since, we are doing type inference the
type is not a parameter of the view but computed by the view function.

data Infer (Γ : Cxt) : Raw -> Set where
ok : (τ : Type)(t : Term Γ τ) -> Infer Γ (erase t)
bad : {e : Raw} -> Infer Γ e

The view function is the type inference function taking a raw term
and computing an element of the Infer view.

infer : (Γ : Cxt)(e : Raw) -> Infer Γ e

Let us walk through the three cases: variable, application, and lambda
abstraction.

infer Γ (var n) with Γ ! n
infer Γ (var .(length Γ + n)) | outside n = bad
infer Γ (var .(index x)) | inside σ x = ok σ (var x)

In the variable case we need to take case of the fact that the raw
variable might be out of scope. We can use the lookup function _!_ we
defined above for that. When the variable is in scope the lookup function
provides us with the type of the variable and the proof that it is in scope.

infer Γ (e1 $ e2)
with infer Γ e1

infer Γ (e1 $ e2) | bad = bad
infer Γ (.(erase t1) $ e2) | ok ı t1 = bad
infer Γ (.(erase t1) $ e2) | ok (σ ⇒ τ) t1

with infer Γ e2
infer Γ (.(erase t1) $ e2) | ok (σ ⇒ τ) t1 | bad = bad
infer Γ (.(erase t1) $.(erase t2)) | ok (σ ⇒ τ) t1 | ok σ’ t2

with σ =?= σ’
infer Γ (.(erase t1) $.(erase t2))

| ok (σ ⇒ τ) t1 | ok .σ t2 | yes = ok τ (t1 $ t2)
infer Γ (.(erase t1) $.(erase t2))

| ok (σ ⇒ τ) t1 | ok σ’ t2 | no = bad

The application case is the bulkiest simply because there are a lot of
things we need to check: that the two terms are type correct, that the first
term has a function type and that the type of the second term matches
the argument type of the first term. This is all done by pattern matching
on recursive calls to the infer view and the type equality view.

infer Γ (lam σ e) with infer (σ :: Γ) e
infer Γ (lam σ .(erase t)) | ok τ t = ok (σ ⇒ τ) (lam σ t)
infer Γ (lam σ e) | bad = bad

Finally, the lambda case is very simple. If the body of the lambda is
type correct in the extended context, then the lambda is well-typed with
the corresponding function type.

Without much effort we have defined a type checker for simply typed
λ-calculus that not only is guaranteed to compute well-typed terms, but
also guarantees that the erasure of the well-typed term is the term you
started with.

3.2 Universes

The second programming technique we will look at that is not available
in non-dependently typed languages is universe construction. First the
module header.

module Universes where

A universe is a set of types (or type formers) and a universe construc-
tion consists of a type of codes and a decoding function mapping codes
to types in the universe. The purpose of a universe construction is to be
able to define functions over the types of the universe by inspecting their
codes. In fact we have seen an example of a universe construction already.

A familiar universe The universe of decidable propositions consists of
the singleton type True and the empty type False. Codes are booleans
and the decoder is the isTrue function.

data False : Set where
record True : Set where

data Bool : Set where
true : Bool
false : Bool

isTrue : Bool -> Set
isTrue true = True
isTrue false = False

Now functions over decidable propositions can be defined by manip-
ulating the boolean codes. For instance, we can define negation and con-
junction as functions on codes and prove some properties of the corre-
sponding propositions.

infix 30 not_
infixr 25 _and_

not_ : Bool -> Bool
not true = false
not false = true

and : Bool -> Bool -> Bool
true and x = x
false and _ = false

notNotId : (a : Bool) -> isTrue (not not a) -> isTrue a

notNotId true p = p
notNotId false ()

andIntro : (a b : Bool) -> isTrue a -> isTrue b -> isTrue (a and b)
andIntro true _ _ p = p
andIntro false _ () _

A nice property of this universe is that proofs of True can be found
automatically. This means that if you have a function taking a proof of
a precondition as an argument, where you expect the precondition to be
trivially true at the point where you are calling the function, you can
make the precondition an implicit argument. For instance, if you expect
to mostly divide by concrete numbers, division of natural numbers can
be given the type signature

open import Data.Nat

nonZero : Nat -> Bool
nonZero zero = false
nonZero (suc _) = true

postulate _div_ : Nat -> (m : Nat){p : isTrue (nonZero m)} -> Nat

three = 16 div 5

Here the proof obligation isTrue (nonZero 5) will reduce to True and
solved automatically by the type checker. Note that if you tell the type
checker that you have defined the type of natural numbers, you are allowed
to use natural number literals like 16 and 5. This has been done in the
library.

Universes for generic programming Generic programming deals with
the problem of defining functions generically over a set of types. We can
achieve this by defining a universe for the set of types we are interested
in. Here is a simple example of how to program generically over the set
of types computed by fixed points over polynomial functors.

First we define a type of codes for polynomial functors.

data Functor : Set1 where
|Id| : Functor
|K| : Set -> Functor
|+| : Functor -> Functor -> Functor
|x| : Functor -> Functor -> Functor

A polynomial functor is either the identity functor, a constant functor, the
disjoint union of two functors, or the cartesian product of two functors.

Since codes for functors can contain arbitrary Sets (in the case of the
constant functor) the type of codes cannot itself be a Set, but lives in
Set1.

Before defining the decoding function for functors we define datatypes
for disjoint union and cartesian product.

data _⊕_ (A B : Set) : Set where
inl : A -> A ⊕ B
inr : B -> A ⊕ B

data _×_ (A B : Set) : Set where
, : A -> B -> A × B

infixr 50 _|+|_ _⊕_
infixr 60 _|x|_ _×_

The decoding function takes a code for a functor to a function on Sets
and is computed recursively over the code.

[_] : Functor -> Set -> Set
[|Id|] X = X
[|K| A] X = A
[F |+| G] X = [F] X ⊕ [G] X
[F |x| G] X = [F] X × [G] X

Since it’s called a functor it ought to support a map operation. We
can define this by recursion over the code.

map : (F : Functor){X Y : Set} -> (X -> Y) -> [F] X -> [F] Y
map |Id| f x = f x
map (|K| A) f c = c
map (F |+| G) f (inl x) = inl (map F f x)
map (F |+| G) f (inr y) = inr (map G f y)
map (F |x| G) f (x , y) = map F f x , map G f y

Next we define the least fixed point of a polynomial functor.

data µ_ (F : Functor) : Set where
<_> : [F] (µ F) -> µ F

To ensure termination, recursive datatypes must be strictly positive
and this is checked by the type checker. Our definition of least fixed point
goes through, since the type checker can spot that [_] is strictly positive
in its second argument.

With this definition we can define a generic fold operation on least
fixed points. Grabbing for the closest category theory text book we might
try something like this

-- fold : (F : Functor){A : Set} -> ([F] A -> A) -> µ F -> A
-- fold F ϕ < x > = ϕ (map F (fold F ϕ) x)

Unfortunately, this definition does not pass the termination checker since
the recursive call to fold is passed to the higher order function map
and the termination checker cannot see that map isn’t applying it to bad
things.

To make fold pass the termination checker we can fuse map and fold
into a single function mapFold F G ϕ x = map F (fold G ϕ) x defined
recursively over x. We need to keep two copies of the functor since fold
is always called on the same functor, whereas map is defined by taking its
functor argument apart.

mapFold : forall {X} F G -> ([G] X -> X) -> [F] (µ G) -> [F] X
mapFold |Id| G ϕ < x > = ϕ (mapFold G G ϕ x)
mapFold (|K| A) G ϕ c = c
mapFold (F1 |+| F2) G ϕ (inl x) = inl (mapFold F1 G ϕ x)
mapFold (F1 |+| F2) G ϕ (inr y) = inr (mapFold F2 G ϕ y)
mapFold (F1 |x| F2) G ϕ (x , y) = mapFold F1 G ϕ x , mapFold F2 G ϕ y

fold : {F : Functor}{A : Set} -> ([F] A -> A) -> µ F -> A
fold {F} ϕ < x > = ϕ (mapFold F F ϕ x)

There is a lot more fun to be had here, but let us make do with a
couple of examples. Both natural numbers and lists are examples of least
fixed points of polynomial functors:

NatF = |K| True |+| |Id|
NAT = µ NatF

Z : NAT
Z = < inl _ >

S : NAT -> NAT
S n = < inr n >

ListF = \A -> |K| True |+| |K| A |x| |Id|
LIST = \A -> µ (ListF A)

nil : {A : Set} -> LIST A
nil = < inl _ >

cons : {A : Set} -> A -> LIST A -> LIST A
cons x xs = < inr (x , xs) >

To make implementing the argument to fold easier we introduce a few
helper functions:

[_||_] : {A B C : Set} -> (A -> C) -> (B -> C) -> A ⊕ B -> C
[f || g] (inl x) = f x
[f || g] (inr y) = g y

uncurry : {A B C : Set} -> (A -> B -> C) -> A × B -> C
uncurry f (x , y) = f x y

const : {A B : Set} -> A -> B -> A
const x y = x

Finally some familiar functions expressed as folds.

foldr : {A B : Set} -> (A -> B -> B) -> B -> LIST A -> B
foldr {A}{B} f z = fold [const z || uncurry f]

plus : NAT -> NAT -> NAT
plus n m = fold [const m || S] n

Universes for overloading At the moment, Agda does not have a class
system like the one in Haskell. However, a limited form of overloading can
be achieved using universes. The idea is simply if you know in advance at
which types you want to overload a function, you can construct a universe
for these types and define the overloaded function by pattern matching
on a code.

A simple example: suppose we want to overload equality for some of
our standard types. We start by defining our universe:

open import Data.List

data Type : Set where
bool : Type
nat : Type
list : Type -> Type
pair : Type -> Type -> Type

El : Type -> Set
El nat = Nat
El bool = Bool
El (list a) = List (El a)
El (pair a b) = El a × El b

In order to achieve proper overloading it is important that we don’t
have to supply the code explicitly everytime we are calling the overloaded
function. In this case we won’t have to since the decoding function com-
putes distinct datatypes in each clause. This means that the type checker
can figure out a code from its decoding. For instance, the only code that

can decode into Bool is bool, and if the decoding of a code is a product
type then the code must be pair of some codes.

Now an overloaded equality function simply takes an implicit code
and computes a boolean relation over the semantics of the code.

infix 30 _==_
== : {a : Type} -> El a -> El a -> Bool

== {nat} zero zero = true
== {nat} (suc _) zero = false
== {nat} zero (suc _) = false
== {nat} (suc n) (suc m) = n == m

== {bool} true x = x
== {bool} false x = not x

== {list a} [] [] = true
== {list a} (_ :: _) [] = false
== {list a} [] (_ :: _) = false
== {list a} (x :: xs) (y :: ys) = x == y and xs == ys

== {pair a b} (x1 , y1) (x2 , y2) = x1 == x2 and y1 == y2

In the recursive calls of _==_ the code argument is inferred automat-
ically. The same happens when we use our equality function on concrete
examples:

example1 : isTrue (2 + 2 == 4)
example1 = _

example2 : isTrue (not (true :: false :: [] == true :: true :: []))
example2 = _

In summary, universe constructions allows us to define functions by
pattern matching on (codes for) types. We have seen a few simple exam-
ples, but there are a lot of other interesting possibilities. For example

– XML schemas as codes for the types of well-formed XML documents,
– a universe of tables in a relational database, allowing us to make

queries which are guaranteed to be well-typed

3.3 Exercises

Exercise 3.1. Natural numbers
Here is a view on pairs of natural numbers.

data Compare : Nat -> Nat -> Set where
less : forall {n} k -> Compare n (n + suc k)
more : forall {n} k -> Compare (n + suc k) n
same : forall {n} -> Compare n n

(a) Define the view function

compare : (n m : Nat) -> Compare n m
compare n m = {! !}

(b) Now use the view to compute the difference between two numbers

difference : Nat -> Nat -> Nat
difference n m = {! !}

Exercise 3.2. Type checking λ-calculus
Change the type checker from Section 3.1 to include precise informa-

tion also in the failing case.

(a) Define inequality on types and change the type comparison to include
inequality proofs. Hint: to figure out what the constructors of 6=
should be you can start defining the =?= function and see what you
need from 6= .

data _6=_ : Type -> Type -> Set where
-- ...

data Equal? : Type -> Type -> Set where
yes : forall {τ} -> Equal? τ τ
no : forall {σ τ} -> σ 6= τ -> Equal? σ τ

=?= : (σ τ : Type) -> Equal? σ τ
σ =?= τ = {! !}

(b) Define a type of illtyped terms and change infer to return such a
term upon failure. Look to the definition of infer for clues to the
constructors of BadTerm.

data BadTerm (Γ : Cxt) : Set where
-- ...

eraseBad : {Γ : Cxt} -> BadTerm Γ -> Raw
eraseBad b = {! !}

data Infer (Γ : Cxt) : Raw -> Set where
ok : (τ : Type)(t : Term Γ τ) -> Infer Γ (erase t)
bad : (b : BadTerm Γ) -> Infer Γ (eraseBad b)

infer : (Γ : Cxt)(e : Raw) -> Infer Γ e
infer Γ e = {! !}

Exercise 3.3. Properties of list functions
Remember the following predicates on lists from Section 3.1

data _∈_ {A : Set}(x : A) : List A -> Set where
hd : forall {xs} -> x ∈ x :: xs
tl : forall {y xs} -> x ∈ xs -> x ∈ y :: xs

infixr 30 _::_
data All {A : Set}(P : A -> Set) : List A -> Set where
[] : All P []
:: : forall {x xs} -> P x -> All P xs -> All P (x :: xs)

(a) Prove the following lemma stating that All is sound.

lemma-All-∈ : forall {A x xs}{P : A -> Set} ->
All P xs -> x ∈ xs -> P x

lemma-All-∈ p i = {! !}

We proved that filter computes a sublist of its input. Now let’s finish
the job.

(b) Below is the proof that all elements of filter p xs satisfies p. Doing
this without any auxiliary lemmas involves some rather subtle use of
with-abstraction.
Figure out what is going on by replaying the construction of the pro-
gram and looking at the goal and context in each step.

lem-filter-sound : {A : Set}(p : A -> Bool)(xs : List A) ->
All (satisfies p) (filter p xs)

lem-filter-sound p [] = []
lem-filter-sound p (x :: xs) with inspect (p x)
lem-filter-sound p (x :: xs) | it y prf with p x | prf
lem-filter-sound p (x :: xs) | it .true prf | true | refl =
trueIsTrue prf :: lem-filter-sound p xs

lem-filter-sound p (x :: xs) | it .false prf | false | refl =
lem-filter-sound p xs

(c) Finally prove filter complete, by proving that all elements of the
original list satisfying the predicate are present in the result.

lem-filter-complete : {A : Set}(p : A -> Bool)(x : A){xs : List A} ->
x ∈ xs -> satisfies p x -> x ∈ filter p xs

lem-filter-complete p x el px = {! !}

Exercise 3.4. An XML universe
Here is simplified universe of XML schemas:

Tag = String

mutual
data Schema : Set where
tag : Tag -> List Child -> Schema

data Child : Set where
text : Child
elem : Nat -> Nat -> Schema -> Child

The number arguments to elem specifies the minimum and maximum
number of repetitions of the subschema. For instance, elem 0 1 s would
be an optional child and elem 1 1 s would be a child which has to be
present.

To define the decoding function we need a type of lists of between n
and m elements. This is the FList type below.

data BList (A : Set) : Nat -> Set where
[] : forall {n} -> BList A n
:: : forall {n} -> A -> BList A n -> BList A (suc n)

data Cons (A B : Set) : Set where
:: : A -> B -> Cons A B

FList : Set -> Nat -> Nat -> Set
FList A zero m = BList A m
FList A (suc n) zero = False
FList A (suc n) (suc m) = Cons A (FList A n m)

Now we define the decoding function as a datatype XML.

mutual
data XML : Schema -> Set where
element : forall {kids}(t : Tag) -> All Element kids ->

XML (tag t kids)

Element : Child -> Set
Element text = String
Element (elem n m s) = FList (XML s) n m

(a) Implement a function to print XML documents. The string concate-
nation function is +++ .

mutual
printXML : {s : Schema} -> XML s -> String
printXML xml = {! !}

printChildren : {kids : List Child} -> All Element kids -> String
printChildren xs = {! !}

4 Compiling Agda programs

This section deals with the topic of getting Agda programs to interact
with the real world. Type checking Agda programs requires evaluating
arbitrary terms, ans as long as all terms are pure and normalizing this is
not a problem, but what happens when we introduce side effects? Clearly,
we don’t want side effects to happen at compile time. Another question is
what primitives the language should provide for constructing side effect-
ing programs. In Agda, these problems are solved by allowing arbitrary
Haskell functions to be imported as axioms. At compile time, these im-
ported functions have no reduction behaviour, only at run time is the
Haskell function executed.

4.1 Relating Agda types to Haskell types

In order to be able to apply arbitrary Haskell functions to Agda terms we
need to ensure that the run time representation of the Agda terms is the
same as what the function expects. To do this we have to tell the Agda
compiler about the relationships between our user defined Agda types and
the Haskell types used by the imported functions. For instance, to instruct
the compiler that our Unit type should be compiled to the Haskell unit
type () we say

data Unit : Set where
unit : Unit

{-# COMPILED_DATA Unit () () #-}

The COMPILED DATA directive takes the name of an Agda datatype,
the name of the corresponding Haskell datatype and its constructors. The
compiler will check that the given Haskell datatype has precisely the given
constructors and that their types match the types of the corresponding
Agda constructors. Here is the declaration for the maybe datatype:

data Maybe (A : Set) : Set where
nothing : Maybe A
just : A -> Maybe A

{-# COMPILED_DATA Maybe Maybe Nothing Just #-}

Some types have no Agda representation, simply because they are
abstract Haskell types exported by some library that we want to use.
An example of this is the IO monad. In this case we simply postulate
the existence of the type and use the COMPILED TYPE directive to tell the
compiler how it should be interpreted.

postulate IO : Set -> Set
{-# COMPILED_TYPE IO IO #-}

The first argument to COMPILED TYPE is the name of the Agda type
and the second is the corresponding Haskell type.

4.2 Importing Haskell functions

Once the compiler knows what the Agda type corresponding to a Haskell
type is, we can import Haskell functions of that type. For instance, we
can import the putStrLn function to print a string10 to the terminal.

open import Data.String

postulate
putStrLn : String -> IO Unit

{-# COMPILED putStrLn putStrLn #-}

Just as for compiled types the first argument to COMPILED is the name
of the Agda function and the second argument is the Haskell code it should
compile to. The compiler checks that the given code has the Haskell type
corresponding to the type of the Agda function.

4.3 Our first program

This is all we need to write our first complete Agda program. Here is the
main function:

main : IO Unit
main = putStrLn "Hello world!"

To compile the program simply call the command-line tool with the
--compile (or -c) flag. The compiler will compile your Agda program
and any Agda modules it imports to Haskell modules and call the Haskell
compiler to generate an executable binary.

4.4 Haskell module imports

In the example above, everything we imported was defined in the Haskell
prelude so there was no need to import any additional Haskell libraries.

10 The string library contains the compiler directives for how to compile the string
type.

This will not be the case in general – for instance, you might write some
Haskell code yourself, defining Haskell equivalents of some of your Agda
datatypes. To import a Haskell module there is an IMPORT directive, which
has the same syntax as a Haskell import statement. For instance, to im-
port a function to print a string to standard error, we can write the
following:

{-# IMPORT System.IO #-}

postulate printError : String -> IO Unit
{-# COMPILED printError (hPutStrLn stderr) #-}

4.5 Importing polymorphic functions

As we saw in Section 2.2 in Agda polymorphic functions are modeled by
functions taking types as arguments. In Haskell, on the other hand, the
type arguments of a polymorphic functions are completely implicit. When
importing a polymorphic Haskell function we have to keep this difference
in mind. For instance, to import return and bind of the IO monad we say

postulate
return : {A : Set} -> A -> IO A
>>= : {A B : Set} -> IO A -> (A -> IO B) -> IO B

{-# COMPILED return (\a -> return) #-}
{-# COMPILED _>>=_ (\a b -> (>>=)) #-}

Applications of the Agda functions return and >>= will include
the type arguments, so the generated Haskell code must take this into
account. Since the type arguments are only there for the benefit of the
type checker, the generated code simply throws them away.

4.6 Exercises

Exercise 4.1. Turn the type checker for λ-calculus from Section 3.1 into a
complete program that can read a file containing a raw λ-term and print
its type if it’s well-typed and an error message otherwise. To simplify
things you can write the parser in Haskell and import it into the Agda
program.

5 Further reading

More information on the Agda language and how to obtain the code for
these notes can be found on the Agda wiki [2]. If you have any Agda
related questions feel free to ask on the Agda mailing list [1].

My thesis [6] contains more of the technical and theoretical details
behind Agda, as well as some programming examples. To learn more
about dependently typed programming in Agda you can read The power
of Pi by Oury and Swierstra [8]. For dependently typed programming in
general try The view from the left by McBride and McKinna [5] andWhy
dependent types matter by Altenkirch, McBride and McKinna [3].

References

1. The Agda mailing list, 2012. https://lists.chalmers.se/mailman/listinfo/agda.
2. The Agda wiki, 2012. http://www.cs.chalmers.se/~ulfn/Agda.
3. T. Altenkirch, C. McBride, and J. McKinna. Why dependent types matter.

Manuscript, available online, April 2005.
4. P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis·Napoli, 1984.
5. C. McBride and J. McKinna. The view from the left. Journal of Functional Pro-
gramming, 14(1):69–111, January 2004.

6. U. Norell. Towards a practical programming language based on dependent type the-
ory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden, September 2007.

7. U. Norell and J. Chapman. Dependently Typed Programming in Agda (source
code), 2012. http://www.cse.chalmers.se/~ulfn/darcs/AFP08/LectureNotes/.

8. N. Oury and W. Swierstra. The power of pi. In Proceedings of the 13th ACM
SIGPLAN international conference on Functional programming, ICFP ’08, pages
39–50, New York, NY, USA, 2008. ACM.

