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Abstract

One of the challenges when generating photorealistic images is to avoid a
synthetic appearance of the material or surface. A critical step to overcome

this obstacle is to introduce variations in the objects.

This thesis proposes how some of these variations can be introduced into
some selected materials and surfaces with the use of procedural generation
on the GPU. Numerous variations, chosen with rendering of cars as the
main aim, in metallic paint, carpets, tempered glass and generic materials

are presented along with suggested method to render them.

The graphical result is good and the artist is offered a good amount of

control over the appearance.

Sammanfattning

En av utmaningarna med att generera fotorealistiska bilder ar att fa ett
material att se levande ut. Man kan genom att introducera variationer i ett
objekt f& det att se mindre monotont ut och darmed hjilpa till att fa ett

objekt att se mer naturligt ut.

Denna tes presenterar hur vissa variationer kan introduceras i ett antal
utvalda material och ytor. Utover detta s& kommer dessa variationer
anvanda sig av procedurell generering, samt utfora alla berdkningar pa
GPU under rendering. De utvalda variationerna, som valts med rendering
av bilar i atanke, kan aterfinnas i metallic lack, mattor, tempererat glas samt

nagra generella material.

Det grafiska resultatet dr bra och mojligheterna f6r anvandaren att anpassa

utseendet ar goda.



Acknowledgments

First and foremost I want to thank my supervisor at Spark Vision, Johnny
Widerlund, for his guidance during the work of this thesis. Furthermore I
want to extend my thanks to Spark Vision as a whole for letting me use

their equipment and expertise.
I also want to thank Ulf Assarsson at Chalmers for establishing the contact

between me and Spark Vision and for agreeing to be the examiner of this

thesis.

ii



Table of Contents

1

INTRODUCTION ....ccuuuiiiiiiiinnnnnnsiinniiesssssssssissimesssssssssssissssssssssssssssssssssssssssssssssnnsnss 1
11 PROBLEM SPECIFICATION .eeeiuvreeeeureeesaureeesssreeessureeesanneesssnnesesansneesanneeessnsesessnsnesssnneeenas 2
1.2 LIMITATIONS ..ttt e ettt e e e ettt e e e sttt e e e e e e e bbbt e e eeeesanbnbeeeeeeesannnnneeeeaesannnnnees 3

BACKGROUND ......ccuuuuiiiiiiiiinnniiiiiiiiiretaeiiiisiiessaasisssisssssssssssssssnessssssssssssssessnnsses 4
2.1 NATURAL VARIATION . ¢ teeeiietteeeeeeeeiitteeeeeeseeiaseteeeeesausseeeeeessaannseeeeesesasnnreeeeessannnnnees 4
2.2 REALISTIC IMAGES ...ttt eieteeesttteeeiteeesiseeeesbeeesenre e e sanaeessabeeeesnreeesnneesanreeesnnneesnneesans 4
23 PROCEDURAL GENERATION ...utttteeeesauunreeeeeseaauuseeeeeessasusseeeeessaasunsseeeesssasaunseneeesssasannses 5

PREVIOUS WORK.......cuiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiessessissiiiessssssssissimessssssssssssssesssssnes 6
3.1 REAL-TIME VISUALIZATION OF IMETALLIC PAINT GLITTERING ...ceteeteeriiiitereeeeeriereeeeeeseeienees 6
3.2 METALLIC PAINT BY AMD/ATI c.vveieiiierieeeseeteeteeeestessestestesae e ssesresse e esaeseesesessennas 6
3.3 EFFICIENT ACQUISITION AND REALISTIC RENDERING OF CAR PAINT ....ovvviiiieiiieeeniiee e 7
3.4 CLOTH AND CARPETS ..teeuureeesunreesaureeesanseessanseesasnsesesanseesssnseesssnsesessnsseessnesesansneessnnees 8

1Y =3 1 o 10 Y 9
4.1 SIMPLEX NOISE c.tteeeureeesautreeesuneeesesteessnseeesnseesenreeesnsneesanseeeesnseeesansneessnneeessnsenesannne 9

4.1.1 Notes on GPU implementation................euueeeeeccieeeeeeeeesiciieieeeeeesicieeeaaeeesianns 10

4.1.2  Pseudo random number generator (PRNG)..........cccccovueeeevveeeecieeeesiieeaescrveanns 10

4.1.3  Noise gradient calCulation................cccoueeeeeeeeeiiieeieeeeeesiciieeeeeeesscieeaaaaeeesienes 11

4.1.4  Fractional Brownian motion (fBM) ...........cceeeeeeeieecieeeeicieeeecieeesiieeesciieeeens 12

S DS = 1o LY (ol ¢ o] K= 0 Lo | A £ =J o ¢ SN 13

4.1.6  Anti-QliGSiNgG Of NOISE .......coeeeveeeeeiiieeeieeeeeeeect e ettt e e st aeesta e e s iaeaessseeenanes 14
4.2 AAUTO CARPET ..ettttteeeee ettt et e e e e ettt e e e e e st e e e e e e e s ausae e e e e e e saannbaeeeeeesannnreeeeeesannnrees 16

4.2.1  Material deSCriPtioN ..........c.coccueevueenieeeiiesieete ettt 16

4.2.2  Rendering the tRreadS .............cccccveeeeceeeeieieeeeeeeeecieeeecteeeestee e s saaaesssaaeeans 17

3 B Y- o | o KOOSR PPPP 21

42,4 DAIK QIreAS .....vveeeveeseiiesieesiiiesiieesiee et et st e st se e s teesitsssase s taessseesteasseesasees 27

4.2.5  ROUGANESS ..ttt ettt ettt ettt ste e sae e s s 27

4.2.6  FOKE 1M JIGAT....ccc..eeeieeeeeeeeeeeeeee ettt e e et e et e et a e s aeesataa e e e 28
4.3 IMIETALLIC PAINT cettttttteteeeeteeeeeeeeeeeeeeeereeereteteseteteteeeteseeeeeeeeeeeeseseeeseseseseeeeeesesesesesesesens 30

4.3.1 Description of the MAteriQl................ccooueeeeueeeesiiieeiieeeesieeeecieeeecieeeesieeeeeans 30

4.3.2 OFANGE PEO ...ttt 31

.3.3  FIGKES...oveeeeeiieeseeeeet ettt ettt sttt ettt e e et s 33

4.3.4  SPAIrKING fIOKES ........oeveeaiiiieeeeseeee ettt 35

4.3.5  PASSIVE flOKES....cocceeeieeeeeeeeeee ettt e et e s e ettt e e s e et a e 46
4.4 TEMPERED GLASS ..cetttettieteterereteteteteteeeeeeeeteeeteteeeteeeeeesaeeeeeeeeseseseseseseeeseseesessesaeessesesens 50

4.4.1  MQaterial DESCIitiON . ........ccccveeeeeieieeeeieeeeieeeeeeeeeeitaaesstteaeesaaaeesaeaessssaeninns 50

iii



4.4.2  IMPIEMENTALION .......oeeeeeeeeeeeeesee et e et ettte e e s tee e e e taaeesiaaaessssaeenns 50

4.5 GENERAL VARIATIONS ...eeetvvtrutieeeeererersnneseeesesesssnnaesesessssssnsneseeesssesssssneeesessssssssnnneneees 52
I B X o T [ | 1 L= S 52
Y N Y o 1o || Yo T To 11 o] K3 S 52
5.3 DBNES oottt e e e ettt ————aa et ettt —————————————— 53

5 RESULT ..cuieiieiiieiriireerencencrenrenseessnscescrossessesssassesssnssasessssassssssnssasessssasssnssassanssnssanens 55

5.1 VISUAL REALISM ...eiieeeieeeieieieieiesesesesesesessssssesssesasasasassssssssnssnnssssnsssnnnnnsnsnsnsnsnnnsnnssnnnne 55

5.2 ARTIST CONTROL «.eevvvruuueeeeeererrsruneaeeeessessssnnaeeesssessssnnaaseessssssssnaeseesssssssnnesesesssessnnnns 56

5.3 PERFORMANCE .....cvtverererereeererereerrererererereretereeeteteteteeeteeeseeeeeseeeeeeseseseeeseeeeseseseseseseses 57

6 FUTURE WORK ...cciiireiiiiteerentteitiecteerentesseesrossesssessescssssessesssnssasessssassssssassenssnsseness 58

6.1 PROCEDURAL GENERATED 2D REPRESENTATION OF THREADS. ....evvveverererererereeereeeeeresereseeees 58

6.2 PROCEDURAL GENERATED SCRATCHES ON A SURFACE ...uueeeeeeririieeeeeeerersnnnneeeeesesessnnneeeees 58

6.3 BETTER MULTILEVEL MODEL OF FLAKE GLITTER vvvvevererererererereeereereeerreeereeseerereeesesseeseseeeeens 58

7 REFERENCES ......ccuiieiteiienetereerteirncencrosessesrassesssnssascssssassesssnssassssssassssssassenssnssanens 59
APPENDIX A.  SAMPLE IIMAGES .....c.ctuuiitniieniereniernncrenccrnncrenseressersssesascssnsssnssssasessnseses 62
APPENDIX B. VARIATION PARAMETERS......ccottiteiiencrerenrrecrencreceescescrassesssnnsencsnssnnsens 67

iv



1 Introduction

Generation of photorealistic images continues to get better as new
hardware, algorithms and techniques become available. Two of the main
advantages with this type of image creation is the great amount of control
the user can be offered and the elimination of prohibitive external factors
that may ruin a photo taken in the real world. The problem, however, is to

get the photos to look real.

Natural variations found within materials and surfaces are one of these
factors that have to be taken into account when trying to create photo
realistic images. Even though they might be hard to notice, the variations

do contribute to the appearance of the object in question as a whole.

Spark Vision is a company that specializes in CGI (Computer Generated
Imagery) of cars. These images should be photo realistic, which means that
the same issue with natural variations is applicable here too. The materials
and surfaces handled in this thesis have been chosen with rendering of cars
in focus. This does not exclude, however, that some of these materials may

be usable in other circumstances.

The reader should be familiar with real-time rendering in general and
Simplex noise. Akenine-Moller and Haine’s book Real-Time Rendering [1] is
a very good source of information regarding real-time rendering. Simplex
and Perlin noise is described very well by Stefan Gustavsson in Simplex
noise demystified [2].



1.1 Problem Specification

Enhancing the realism in computer generated environments such as games,
movies and images, is a process that has been going on for several years
now. What was previously done by using physical models in movies can
now be done entirely by computer generation. The problem though is to
make these models look real, to make them look “alive” in a sense. One
factor that that needs to be considered is the existence of natural variations.
These variations can be introduced by e.g. letting the object have some
texture and a bump map. Given that they are suited for the model in

question they can greatly enhance the appearance of said object.

These textures, however, are often taken from external sources, such as
photos. This procedure makes the artist dependent on that the sources are
good to begin with. Even though the textures can be edited with external
tools beforehand, the amount of work needed is still directly dependent on
the quality of the original. Externally created textures also suffer from finite
detail and tiling artefacts. Both of these deficiencies puts restrictions on

how the artist can model and texture an object.

Objects created through procedural generation, in contrast, enjoy infinite
detail and can avoid tiling artefacts. They can also offer the artist great

amount of control by exposing several parameters.

Given that natural variations can make objects look more realistic, and the
aim to give the artist a good amount of control, sets up the goal for this
thesis. The thesis should present some suggestions on how to procedurally
generate natural variations in certain materials. Furthermore, all
calculations should be done on the GPU by the use of a high level shading

language.



1.2 Limitations

One major aspect that is not covered in depth in this thesis is performance
and therefore lacks measurements in render time for the different shaders.
There is however some optimizations within some of the implementations
and these will be discussed. The shaders have also been designed in such a

way that the user can make trade-offs between render time and quality.

Even though variations in metallic paint are handled, metallic paint itself is
not. A general method for rendering metallic paint will therefore not be
presented in this thesis. The metallic paint shader used as a base during the
work on this thesis was provided by Spark Vision. This also holds true for

the carpet and the “general material” shader.

The simulations of natural variations in this thesis are in general not
physically correct. There is some physical reasoning behind them, but in
the end they try to approximate the visual appearance rather than a correct

simulation of physical properties.



2 Background

2.1 Natural Variation

Take a look on a straw of grass. It may appear just to be some green object
at first glance, but if it is observed closer an almost infinite amount of
details emerge. There are visible veins, parts of it have holes in it and other
areas may have a slightly yellow colour. Even if these variations are not
noticed right away, they do contribute to the visual appearance of the

object as a whole.

These occurrences are called natural variations and it is, as the name
suggests, variations found in some object that occurs due to the nature of
the material. It can be how things functions, like the veins in the grass, or
wear and tear in the case of scratches on a CD or dust on a table. The things

that make an object unique can be called variations.

2.2 Realistic images

There has been some research done on what makes a computer generated
picture appear realistic or synthetic. Rademacher et al.[3] tried to find what
components in a picture that makes humans believe that the contents in the
image are real or computer generated. One of the main components that
was found was that a rough surface on an object made the picture as a

whole more prone to be interpreted as realistic.

The research done by Radermacher et al. was done by showing people
different photos and then asking them if they thought the picture was
computer generated or not. Among the aspects tested was roughness of

objects in the picture. About 70% thought that the picture with the rough



object was real in contrast to 38% for the smooth variant. Worthy of note is
that the objects used, both the smooth and the rough, were all part of real
photographs. The fact is that that even a real life setting can be interpreted
as more or less real depending on the situation. When the test was done
using only computer generated images, the impact of a rough surface was
about the same. About 75% thought that the rough version was real

compared to 25% for the smooth.

2.3 Procedural generation

Computer Graphics is all about visualising some type of content, such as
models and textures. It is quite often the case that this content has already
been created before the actual rendering. An example is when texturing
some leather seat and a photo taken earlier of a leather material is used as a
texture source. This is not the only way however, as content can be created
during execution. The leather in this case can be calculated according to
some mathematical expression that is evaluated during rendering. This

type of content creation is called procedural generation.

The main advantages with procedural generation in computer graphics are
infinite detail and flexibility. Procedural generation is just based on
mathematical functions, and thus the rendering is not limited to some finite
set of information. This means that it can get accurate information at any
given point rather than resorting to interpolation between some existing
finite data. The flexibility feature is also a direct consequence of these
mathematical functions. These functions can namely be designed to allow a
different number and variants of parameters. If done right, this can provide

a very powerful way to change the appearance of the actual content.



3 Previous Work

3.1 Real-Time Visualization of Metallic Paint
Glittering

Metallic flakes have previously been investigated in a Master’s Thesis by
Thomas Nilsson [4] at Spark Vision. This investigation first made tests with
a two dimensional texture bump map, which got quite good results but
with the drawback that the texture coordinates on the models was often
quite bad. Therefore a three dimensional texture bump map was generated
so that the model coordinates could be used instead of the texture
coordinates. This yielded a much better result. It does, however, lack the
ability to control the flux of the flake normals and how often sparkles
should appear. Additionally, as it makes use of an external texture it is not

making use of procedural generation.

3.2 Metallic paint by AMD/ATI

With the shader editor RenderMonkey,
made by AMD/ATI, there is a shader
sample provided for the metallic flake
effect [5]. It handles both the slight
variation caused by flakes and the strong
glittering effect. The shader uses a pre-

generated bump map with a seemingly

uniform random distribution of values. It
also provides means to alter the size and colour variation of the glitter and

gives quite good result if not viewed to close up.



By using this method, a restriction is made on how close the surface can be
viewed. If viewed to close, the flakes will be clearly visible as squares
packed together, which is an undesired property. This can be countered
though by setting the flake size to quite small. The squares will still be
visible at really close range but the object should not be viewed at that
range anyways. By using a two dimensional texture, it is dependent on
well made texture coordinates. It also lacks control over how frequent the
sparkles should be and the spread of flake normals.[5]

3.3 Efficient Acquisition and Realistic Rendering
of Car Paint

This paper suggests a method for not just
the rendering of flakes, but the metallic
paint itself by measured BRDF. Just
using measured BRDF is not enough
when viewing the paint up close where
the sparkle effect appears. So, the flakes

are emulated by random perturbation of

the surface normals.

One problem with this implementation has to do with flake size and
viewing distance. When viewed up close, the highlighted flakes will risk
looking too large. This can be avoided somewhat by setting a very small
flake size. But this will, however, introduce the risk that the flakes will not
appear at all if the viewing distances are not extremely close to the surface
[6]. The model relies on multisampling to get rid of the aliasing effect, and
it is also stated in paper that an interesting future work would be to have

some multi-level model for the flakes to take care of the aliasing problem.



3.4 Cloth and carpets

The research that has gone into rendering and modelling of textiles are
quite often about cloth rather than carpets. One difference between cloth
and auto carpet is that the latter tends to be much more chaotic in its thread
composition. While the cloth may be tied down to some quite rigid pattern,
the auto carpet just has a couple of seams. The threads may also lean over

those seams, entangle with neighbouring threads or stand out quite freely.

The different models for cloth are also quite focused on either very accurate
rendering of cloth [7] by e.g. explicitly modelling the threads, which is very
expensive. Other variants focuses on efficient models [8] that avoids to
explicitly model the actual threads and instead concentrates on a good
lighting model and repeating patterns for the cloth. The model in this thesis
also incorporates repeating patterns but also different mapping techniques

to emulate the chaotic threads to give the appearance of carpet.



4 Method

The shader language used in this thesis is CgFX with vp40 and fp40 as
profiles. While both the vertex- and pixel shaders are used for these
materials, the interesting code can be found within the pixel shader. The

vertex shader only handles some space transformations.

The variations and materials that are handled here have been chosen from
materials that are often found in a car. This has to do with the fact that the
thesis has been done at Spark Vision, a company that creates photorealistic
images for the automobile industry. By comparing photos of real cars with
their computer generated counter parts, which can be found in e.g.
commercials and games, a number of variations not covered well by the
latter category were found. A number of these were then selected for
further analysis based on how prominent they were. These selected

variations can be found within this chapter.

4.1 Simplex noise

At an early stage it was realised that a large part of this thesis was going to
be based on different ways to use noise. The first noise implementation in
this thesis was that of standard Perlin noise but, because of a number of
deficiencies, it was later changed to Improved Perlin noise [9] and shortly

thereafter to Simplex noise.

Throughout this thesis the terms amplitude and frequency are used to
describe the behaviour of noise. Amplitude determines the signal strength,

and frequency decides how fast the noise values can fluctuate.



This section does not offer any description of Simplex noise. It is merely
some notes about GPU implementations and how to analytically determine

the noise gradient.

4.1.1 Notes on GPU implementation

There are two things that are important to know when doing a GPU
implementation of Simplex noise: the lack of random generators and how

to store gradient information.

The gradient information is just stored in a texture rather than a static
array, so a texture must be provided as an external source to the shader.
One way to implement a pseudo random number generator is described in

the next section.

4.1.2 Pseudo random number generator (PRNG)

Even though a PRNG is needed for Simplex noise, it is not something that
is supported natively as an intrinsic function in CgFX. Instead, this
functionality has to be explicitly implemented into the shader. One way to

do this is to use a texture to store a random permutation of some value [10].

If this permutation texture would be used directly, the texture would need
to be very large in order to avoid repetitive patterns. But it is possible, by
using another sampling technique, to use a texture as small as 256x1 with
good results. Even smaller can be used, but then the risk is larger for

repetitive patterns.

The sampling method used in this thesis doesn’t just do one look up in the
permutation texture for each sampling point; it does three, one for each
axis. Each lookup only uses the value of one axis, rather than all the values
at once. The result from the lookup is then used to offset the next input

value. So, in CgFX syntax this would be:

10



#define TEXTURE_RES 256 // Resolution of the texture

float PRNG(float3 pos, float size, sampler2D perm_sampler)

{
float permute_val = 0.0f;

pos = pos /( size*TEXTURE_RES);
for(int axis = 0; axis < 3; axis++)
permute_val = tex2D(perm_sampler,float2(pos [axis]+ permute_val,0)).r;

return permute_val;

}

Note that this method supports arbitrary dimensions depending on how

the function is designed. This is a major advantage if one wants to use
model space rather than texture coordinates as it doesn’t need a three

dimensional texture.

Also, note the scaling of the input position. Not only does it get divided by
the size input but also by the texture resolution. That is because the texture
size has very much to do with how frequent the changes in values are from
the tex2D operation. With large textures comes frequent change in output
as more data fits into the [0,1] range. By dividing the input by the

resolution this behaviour is redeemed.

The sampling method described above has previously been used in e.g.
Jonsson’s [10] implementation. The only difference is the ability to resize

the frequency of the output changes.

4.1.3 Noise gradient calculation

A noise function typically returns just one value, and that value represents
the actual noise. There are times, however, when this information is not
enough. One technique that puts additional requirements to the noise
function is bump mapping. Bump mapping is not in need of the actual
noise value, but rather the noise gradient. In Perlin noise a neighbourhood

sampling method is often used, which is quite expensive as it needs to run

11



through the noise function several times. This approach is fortunately not
needed with Simplex noise as the gradient can easily be determined

analytically.

When trying to determine the expression needed to calculate the gradient,
it helps to look at the original expression for the noise calculation. For each
node a specific interpolation expression is used that varies depending on
the dimension. Throughout the thesis, the dimension used is three, so the

calculation of the gradient would be like the one below.

n = 8x (0.6- x%- y?- z2)* x (x xxy- y * yy- z % 2,)
t = (0.6 - x?- y2- z%)

s = (x*xg= y* Yy~ 2% 7,)

n=8xttxs

n'y = 8x(=8xt3 x5 4+ x5 th)

So by simply calculating the resulting partial derivative for each axis in

every neighbouring simplex node, the noise gradient can be obtained.

4.14 Fractional Brownian motion (fBm)

Fractional Brownian motion (fBm) is, in the world of Perlin and Simplex
noise, all about self similarity. Self similarity means that different fractions

of an object look similar to the object itself.

This property can be simulated by adding together several octaves of noise
[11][12]. An octave is essentially a combination of frequency and amplitude
that has some relation to the previous octave. The amplitude can for
example be halved while the frequency is instead doubled for each
consecutive octave. This means that if the starting octave has 2 in
amplitude and 2 in frequency, the following octave would instead have 1
and 4 respectively. Throughout this thesis, the scaling of amplitude and
frequencies between these octaves are referred to amplitude and frequency

multipliers.

12



Lastly, the octave sum is divided by the amplitude sum in order to keep the

result within the [-1,1] range.

4.1.5 Basic noise patterns

In this section, a number of basic and well known noise patterns are
presented. The given names are not official ones but they help to
distinguish the patterns from each other in this thesis. They all use fBm in

some way to get their respective pattern.

Cloud

This pattern, with its very soft noise
variations, bears similarities to how clouds
look [11].

The pattern is achieved by using an amplitude
multiplier of 0.5 and frequency multiplier of 2.

Turbulence
A turbulence pattern [11] looks, like the name
suggests, similar to turbulent flow found in

e.g. smoke.

It is generated in a way that is similar to the

cloud pattern. The difference lays in the

summation of the octaves, where the

Turbulence pattern uses absolute values rather - o
fig 4.2 Turbulence pattern

than the usual signed ones. This means that no

negative values will be generated, which is why there is a positive RGB

value everywhere in fig 4.2. The areas where the values are close to zero can

be observed as the veins that run through the picture.

13



Plasma
This pattern looks like plasma or an electrical %f,-_:r & -iQ':}%
discharge.[11] ¢ :?-‘,‘J T .

| ‘.r . ‘
The plasma pattern is generated by ¥ ;‘?"5 : 4
& L Al R

subtracting the Turbulence pattern from 1.

fig 4.3 Plasma pattern

4.1.6 Anti-aliasing of noise

Tatarchuck [13] described a way to implement anti-aliasing for noise in a
way called frequency clamping. The idea is to find out how much the
position used for sampling changes between pixels and then fadeout the
signal if the change in position is too large. This thesis makes use of the
very same implementation for anti-aliasing, which works quite well. A

description of the implementation is given here as a summary.

A function is used as a kind of filter where the signal is provided as input
along with some other necessary data. The output is then a faded variant of
the input where the signal has become weakened to avoid aliasing.

float3 fadeout(float signal, float average_signal,
float item_size, float pos_per_pix)

float inter_point = smoothstep(0.2,0.6, pos_per_pix /item_size)

return lerp(signal,average_signal,inter_point);

The signal parameter is the value of the actual noise while the
average_signal is the average value of the signal type. The average signal
value is 0 for Simplex noise if the range [-1,1] is used. The item_size is the

physical size of the item that holds the noise value. In Simplex noise this

14



would be the inverse of the frequency. The last parameter, pos_per_pix, is
the ratio of how many position units can fit within one pixel. This only
needs to be calculated once in the shader code rather than one for each

fadeout call.

The ratio needed for the last parameter can be calculated by using the ddx
and ddy methods in CgFX. These two methods can calculate what the
difference would be for the given argument if the sampling pixel was

moved one step along the x and y axis respectively.

So, if some position of the object is given as argument, the functions would
calculate how much that position is changed in one pixel step. In practice
this determines how wide a pixel is measured in position units, which is
exactly what is needed as the last argument. The problem is that not only
does ddx and ddy each output a value with the same dimension as the
input, they also return two separate value vectors while only one value is
needed for the last argument. Given that the aim is to anti-alias, the highest
value should be used as it represents the largest possible change for any

axis.

When using fBm, the input value of item_size needs to be scaled for each
iteration step. It should be scaled by the inverse of the frequency to the
power of the current iteration step. This makes the item_size adapt to the

different sizes of the octaves in each step in fBm.

There is one more thing to keep in mind and that concerns effects that
should only make a visual contribution at close range like sparkles in
metallic paint. One of the parameters should be the mean value. So in the
case of sparkles, where it is simply active or inactive (1 or 0), it might be
tempting to set this value to 0.5. This is, however, wrong. It should be 0 as
these effects are supposed to disappear entirely after some distance. If 0.5 is

set it will fade towards 0.5, but never get to a smaller value than that.
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4.2 Auto carpet

4.2.1 Material description

In the interior of a car there are several surfaces that are expected to
withstand quite an amount of wear and tear. Additionally, these surfaces
should often offer a good amount of friction in order to offer adequate grip.
Examples of such surfaces are the floor of the trunk and in front of the
seats. These surfaces can be made purely out of plastics but they can also
make use of auto carpets. In the latter case, the construction is somewhat
similar to those found on towels and doormats. This means that it is not a
knitted carpet but rather several small threads extending from the base

surface.

The auto carpet also displays quite dramatic colour fluctuations on a
surface when the threads are leaning in different directions. This can be
caused by simply dragging an object across the surface as the threads then

will lean in the direction of the force that was applied.

The carpet is also based on regularly appearing
seams that are often arranged as lines across
the surface. These seams may not be
considered natural variations, but they are

certainly an important characteristic in the

carpet. Furthermore, some threads may lean
over the seams at certain places, which create : PEnL
variations on the surface. So the seams fig 44 Auto-carpet
themselves are important to consider in order enable the generation of

some natural variations.

Carpet, cloth and fabric in general are very interesting materials that are
highly affected by natural variations. It's the complex formations of threads
and how the light interacts with them that give the cloth its soft and diffuse

appearance.
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4.2.2 Rendering the threads

A carpet, as mentioned earlier, is built up by threads. These threads give
the carpet its unique appearance while offering abundance in natural
variations. This makes the rendering of threads paramount for the visual
appearance of the carpet as a whole. It is extremely computational taxing to
explicitly create every single thread and calculate the correct light
interaction between them so this is not an option in this implementation.
Just using a simple lighting model is not suitable either as the actual

variations will be lost.

When they needed to render carpets previously at Spark Vision, they had
done it mainly with a combination of diffuse and specular maps. By doing
this, they avoided modelling the threads explicitly while still giving the
impression of a surface filled with threads. Inspired by this, the thesis
makes use of procedural generated diffuse and specular maps to represent
the threads.

The way to use these maps in this implementation is to let them have very
separate, but equally important, tasks. A carpet is, as mentioned earlier, a
very rough object with plenty of light scatterings and diffuse reflections.
Single threads are seldom seen on an auto carpet; it is instead the collective
of threads that can be clearly seen. These collectives, however, can vary in
shape and colour depending on how many threads that are in them, how
tightly packed they are and so on. These variations can be distinguished
even at range. The task the diffuse map has is to represent these collective
threads.

There are, however, some threads that can be seen individually among the
other threads quite clearly. The aim with the specular map in this case is to
simulate these threads. It can be said that the diffuse map is used for the

collective, and the specular map for the individual threads.
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Diffuse map

Even though the diffuse map should concentrate on the collective of
threads rather than individual ones, it should still emulate the rough
surface caused by many threads. The natural thing is to turn to fBm for
generation of this type of diffuse map, but the roughness issue needs to be

kept in mind when determining on how to use said technique.

When looking at the regular fBm, with amplitude and frequency multiplier
of 0.5 and 2 respectively, it might be tempting to use that directly. It has
nice variations in noise values, and avoids too strong concentrations of
high noise values given low enough frequency. It is, however, not rough
enough. With an amplitude multiplier of 0.5, the amplitude for each octave
is halved. This means that the contribution for each consecutive octave is
halved while the earliest ones remain dominant. What is needed is more

fluctuation in the noise.

This can be done by setting the amplitude multiplier to 1. With this setting,
the amplitude is neither scaled up nor down for each step. This means that
the value from each octave is valued just as high as any other one. This
creates a rough surface as there is a larger chance that peaks may form. The
number of octaves does, however, have an adverse effect after about three
steps. After that, the averaging over the values is beginning to take its toll,

and the values will smooth out.

The fact that the fBm output values ranges from -1 to 1 while the diffuse
map should not contain any large black areas needs to be tended to. It may
be tempting to simply rescale the value to [0, 1] as it will eliminate the
aforementioned completely black areas. This will, however, not only halve
the noise range but also the difference between noise signals. This leads to a
softened signal, which is not desirable in this case. Using the absolute value
of the octaves would also bring it into the desired range. It would,
however, also get 0 values formed as clear veins, like in fig 4.2, throughout

the diffuse map.
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To preserve the range, while at the same time get rid of the black areas, a
change can be done in how this diffuse map is used. Normally, the diffuse
value is multiplied with the diffuse map to get the final value. This
behaviour is kept, but the value is instead added to the diffuse value rather
than replacing it. These yields diffuse values in the range of [diffuse —
strength, dif fuse + strength] . The strength variable is a multiplier for the
diffuse map so that the magnitude of the alteration can be controlled. This
setup will, however, introduce a risk of getting diffuse value outside the
colour range. The diffuse value and the diffuse map strength should thus

be chosen with care.

This provides a quite nice, rough, surface that
works well for the collectives of threads viewed
from a distance. The rough surface also provides
a sense of threads at close range as there are
several peaks and ridges within the noise. Its
Achilles heel is that it at loses the illusion of

threads at really close viewing distance. This is

fig 4.5 Diﬁ"se thread nois
quite natural as individual threads have not been

generated.

To counter this, several attempts were made to introduce plasma patterns
in different ways. Used alone the pattern lacked the fluctuations needed for
the diffuse map, and when mixed with the usual thread it didn’t have a
significantly good impact. This was abandoned as it is only an issue at
really close range, but it might be a good idea to look into some way to

model the threads so that it provides a better representation at micro level.

Given that the noise gradient in Simplex noise can be calculated
analytically, it becomes quite cheap to apply bump mapping. This is
especially true if the noise signal is going to be used anyway, like in this
case with the diffuse map noise. Thus, bump mapping can be applied with

the values received from the generation of the diffuse map to give a more
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uneven feeling to the surface. It should, however, preferably be done with

just a small amount. If too much is used it will look rocky.

Specular map
The focus of the specular map is to simulate individual threads. This means
that the noise function that was used for the diffuse map is not suitable

here as the two maps have different aims.

A natural place to start is with the quite well known plasma pattern, which
can be seen at fig 4.6 and described in 4.1.5 Basic noise patterns. While it does

resemble plasma, it also looks a bit like entangled threads.

Just like the noise for the diffuse map, it might be tempting to use the
regular 0.5 amplitude multiplier. Looking at fig 4.6 this might seem like a
good idea as it has several threads entangled. The major problem is that it
doesn’t fluctuate much in signal strength so the actual veins are not that
distinct. This creates something like a background noise where the noise is
quite smooth and the veins are quite blurry. Applying a filter that sorts out
the veins and background noise is hard with this noise pattern as the small

threads run a high risk to disappear along with the blurred noise.
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By setting the amplitude multiplier to 1, it becomes easier to filter the noise
at the veins become more distinct. There is still a need though to filter the
noise so that the background noise is eliminated. An easy way to do this is
to use a simple power function. The power used in this implantation is 7,

which means that all noise values are evaluated by a 7 as exponent. This
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will nearly eliminate the small values and only keep the larger ones

relatively close to their original values.

4.2.3 Seams

Carpets found in cars often have a certain regular seam pattern, like lines or
a grid. This is not a natural variation as such but is nevertheless important
to consider in the carpet shader. Besides, there are natural variations that

depend on these seams such as threads that lean over the seams.

The idea is to generate these seams by altering the diffuse and specular
values and also apply bump mapping. Threads are represented in the
diffuse and specular map, so it is natural to alter the diffuse and specular
values if the amount of threads should be changed. By scaling these values
with a value that fluctuates according to some seam pattern, the amount of
threads will seem to vary periodically. The bump map can also help to

make the seams more prominent by varying the surface normal.

To generate the seam patterns, the texture coordinates needs to be used
rather than model space coordinates. This is provided by the texture
coordinates to the shader. However, be aware that this will make the

shader dependent on correctly generated texture coordinates

Given that one has access to the surface coordinates, there is just one simple
expression that needs to be evaluated to get a pattern with parallel lines.
The expression should have the property that the output ranges from 0 to 1,
where 1 is the largest amount of threads and 0 the lowest. This value can
then be multiplied with the specular and diffuse values to simulate varying
amount of threads. A simple way would be to simply use linear
interpolation between zero and one as a function of surface position as the

example below shows.

float p = position.x/frequency;
float amount = abs(frac(2*p));
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The x position is used here in this example, which means that the lines will
go along the y-axis. This is just a simple example, any axis can be used to
determine how the lines by altering the calculations a bit. Just replace
position.x with a position that has been projected down to an axis that is
perpendicular to the axis the lines should align with. By dividing the
position with a frequency value, the user can control how frequent the

change between seam and fabric is.

This simple calculation will give the amount variable a value in the range of
[0,1] in intervals of 0.5 on p, or simply put the doubled distance that p has
to the closest 0.5 multiple. If high frequencies are going to be used with

little to no bump mapping, this will give a good enough result.

The calculation is simple, but the result will not look right; the slope is too
small and gives a too smooth transition between seam and fabric. The
fabric clusters, which are tightly packed, have more of a round shape than a
prism. A more suitable shape can be found in the sinus curve since it has a

more round shape and is simple to use.

The sine function should not be used directly as it will create too large
seams. Natively, the sine curve yields negative values for half its period,
and due to the fact that negative values will be interpreted as seams, the
seams will become much larger than they should be. This is easily solved
by the use of the absolute value of the sine function. That approach turns

the negative values to positive, and thus seams to fabric.

float p = position.x/frequency;
float amount = abs(sin(p));

There is one additional desired parameter, and that is the amplitude, or
rather the amplitude difference between peak and valley. With that
parameter it becomes possible to control how prominent the seams should
be. The current implementation will create very deep seams as it will yield
values in the full [0,1] range. Note that the seam value should always range

to 1 in order to not tone down the diffuse and specular values in general.
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The amplitude difference is based on how far from the value 1 the seam
value can get. To get this behaviour, and extra amount of control, the

amount calculation is extended a bit:

float p = position.x/frequency;
float amount = 1-amplitude*( 1-abs( sin(p) ) );

With this it becomes possible to control the difference in amplitude of the
seams. The problem is that threads that lean over the seams have not been
accounted for, so the carpet still looks quite artificial. This raises the need
for some way to fill some seams with threads, so that it looks like the
threads are crossing over the gaps. Simplex noise is very suitable for this

task as it can create coherent areas for where the threads cross.

One could choose fBm, but just usual Simplex noise is good enough. It is
not that noticeable that fBm is applied or not. This can be explained by the
fact that noise is already used to create the threads in the diffuse and
specular map. So even if just the usual Simplex noise is used here, the noise
in the diffuse and specular map will hide the monotone appearance of the

crossover noise.

The Simplex noise default output range [-1,1] is not suitable for this task
though because of the negative values. It should only be able to fill seams,
not make them deeper. A simple way to solve the problem is to simply
scale the noise values to the range of [0,1]. After that, the noise value is
multiplied with the difference between the maximum, which is 1, and the
current seam value. This will ensure that the seam value will not go over its
capacity while at the same time enable it to be reach up to the said limit.
Furthermore, a parameter should be provided to determine how much the
disturbance should affect the amount of threads. Put into actual code it
would look like this:

float disturb = (noise(p)+1)*0.5 * disturb_amount;
amount += (1-amount)*disturb;
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The appearance of an uneven surface can be further enhanced by the use of
bump mapping. In order to do this, a perturbation normal is needed, which

can be calculated analytically.

One problem though is the use of absolute value within the function that
calculates the periodic seam pattern. Absolute values are not differentiable
so the seam function as whole isn’t either. But the absolute value here is
only used to make the negative sine signals turn positive. This can be
achieved also by just assuring that that all the input points are within 0 and
7. By using this approach, the functions derivate can be calculated without

the absolute value. The function derivative then becomes:

float derivative = amplitude*cos(p-floor(p/PIl)*Pl );
float2 partial_deriv = derivative*align_vector;

The align_vector in this case where p is just position.x is [1,0]. Note that this
derivative is in two, rather than three, dimensions. This is a direct
consequence of using a two dimensional coordinate system. These two
values in the derivative can be seen as the change in height when moving
along the surface. The problem is that these values are not in model space,
so there is a need for some transformation. In model space, the axis on the
surface is the tangent and bitangent (also called binormal by some). By
simply multiplying the tangent and bitangent with their respective partial

derivative a transformation can be made.
Ngeam perturp = Tangent * derivative,, + Bitangent * derivative,

That deals with the regular pattern gradient, but the final normal needs to
accommodate for the leaning threads. Even though the analytical gradient
is available for the Simplex noise, it doesn’t need to be used in this case.
What the leaning threads is used for is to fill the seams. This can be
accomplished by using a simple linear interpolation between the seam
normal and zero with the disturbance value as interpolation point. When

the disturbance value increases, the seam normal perturbation is
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approaches [0,0,0]. This means in practice that the normal perturbation gets
less influential with a higher disturbance value.

Below is an example of how the amount function as a whole can be
implemented.

float3 amount_calc(float3 alignment, float2 pos,
float amplitude, float frequency)

float amount = 1.0f;
float2 derivative = 0.0f;
float length=0;
pos *= frequency;
alignment.xy = normalize(alignment.xy);
// Lines
if(alignment.z == 1.0f | | alignment.z ==2.0f)
{
length = dot(alignment.xy, pos);
amount = 1-amplitude *(1-abs(sin(length));
}
// Grid
if(alignment.z == 2.0f)
{
float2 p_pos = float2(pos.y,-pos.x);
float p_length = dot(alignment.xy,p_pos);
float alt_amount =1- amplitude *(1-abs(sin(p_length));
iflamount>alt_amount)

{
amount=alt_amount;
pos =p_pos:
length = p_length;

}

}
derivative = amplitude*cos(length -floor(length /P1)*P! );
derivative = derivative*alignment;

return float3(derivative,amount);
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The pictures in fig 4.9 show how the different seam patterns affect a carpet.

All, except the one without seams, uses seam amplitude of 0.2.

fig 4.9 Different seam patterns applied, top left lacks seams.

It is also possible to get a carpet surface that looks like it has fuzz on it by
the use of a grid seam pattern and seam bumps. It also helps to use the
bump map generated by the diffuse threads as it gives the carpet a more

uneven appearance. The result can be seen in fig 4.10.

fig 4.10 Fuzz on a carpet
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4.2.4 Dark areas

The threads in a carpet are not rigid and can therefore bend and entangle
with each other quite freely. This has an impact on the appearance of the
carpet as different thread orientations can give different colour tones,
depending on how the light is reflected. As a result of this, arbitrarily large
areas may look quite a bit darker than its surroundings when the threads in
these areas lean in roughly the same way. To simulate this, the carpet
colour can be altered depending on the output from Simplex noise. The
output from the noise function can simply be multiplied with the specular
and diffuse values to get colour variations. This requires that the noise
output is within [0,1] range, which means there are some alterations

needed.

The dark areas should be quite discrete, or there should at least be quite a
dramatic change in colour between these dark areas and the surroundings.
These means a rescaling of the noise output range to [0,1] should not be
done. Instead of rescaling, the noise output can be clamped so that no
values below zero are possible. This makes the fluctuations more dramatic

than with a rescaling approach and offers the correct output range.

It is not necessary to use fBm for this task with the same reason it didn’t
need to be used for the thread crossover noise in 4.2.3 Seams; there is simply
already plenty of noise used in the threads. So, even if the diffuse colour is
scaled in some large area with the same factor it, will still appear non-

monotonous.

4.2.5 Roughness

A carpet is a very rough material; the surface has very frequent variations
and it is hard to find any part of a carpet that is blank. This does, in fact,
have an impact on how the light is reflected that is not covered in the

standard Lambertian model.
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The Lambertian model assumes that the diffuse reflections is all about
randomly reflecting incoming light rays out from the surface. However, in
a very rough surface there are lots of reflections between the bumps and
backscattering taking place. This means that, for a very rough surface, the
light reflected toward the observer is almost the same from any point of the
object. An object with the aforementioned properties will therefore look
quite flat. Carpets can certainly be considered rough, so this effect needs to
be accounted for in the auto carpet model. There are lighting models that
captures this behaviour, and one of them is Oren-Nayar [14].

Oren-Nayar is a generalization of the Lambartian diffuse model. This
lighting model provides a parameter that can control the roughness of the
surface. The higher this parameter is set, the more evenly will the diffuse
light be spread in the diffuse lobe.

For more details about Oren-Nayar, read the paper written by Oren and
Nayar [14], or the GamaSutra article [15] for a great explanation and
implementation of this lighting model.

4.2.6 Fake rim light

One important aspect of cloth and carpet is the fact that light is reflected
between the threads. This gives areas light that wouldn’t be receiving it at
all in other circumstances. One of the most noticeable effects of this is the
lighting across the rim of an object when a light source is positioned behind
it.

This rim light effect makes the object look softer, which is a good attribute
when dealing with carpets. Real rim light can, of course, be used but this
thesis uses a fake rim light. This means that an existing light source is not
used. Instead, light is just added along the rim regardless if there actually is
any light behind the object or not.

The idea is to provide a gradually changing lighting on the object where it

is strongest in the rim and decreases towards the centre. One simple way to
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do this is to calculate the dot product between the view vector and the
surface normal. That value will go towards zero the closer the sampling
point gets to the rim. By taking that product and decrementing it from 1,
the desired behaviour will be reached. The result can be seen in fig 4.11

where the result has been rendered directly to a sphere.

It is desirable to be able to control how wide this
rim light should be. One way to do it is by using the
smoothstep function provided by CgFX. This
function offers a Hermite interpolation between 0

and 1 and a parameter for the actual interpolation

point. The function also offers means to set the
minimum and maximum range of the interpolation fig 4.11: Rimlight on a
. . . . sphere

point. If the interpolation point would be lower or

higher than that range, the output would become 0 and 1 respectively.

The raw rim light value is used as the actual interpolation point. Also, by
using 1 — width as the minimum value, the actual rim light width can be
controlled. By setting a smaller width, the rim light value will decrease

more rapidly and also reach 0 earlier than before.

This implementation that follows has been directly taken from Kesson’s
webpage [16], no enhancements has been made on that implementation in

the making of this thesis.

float calc_rim_light(float3 normal, float3 view_vector, float rim_light_width)

{
float rim_light = (1-abs(dot(normal, view_vector)));
rim_light = smoothstep(1.0 - rim_light_width, 1.0, rim_light);
return rim_light;

}

One important thing to be aware of is that the original surface normal

should be used rather than a normal that has been altered through bump
mapping. The reason is that the bumps will otherwise receive rim light

regardless of where they are located on the surface.
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These picture show the effect of the rim light applied to a sphere using the

auto carpet shader.

fig 4.13: Rimlight disabled fig 4.12: Rimlight enabled

4.3 Metallic paint

This section will not give a suggestion for a general metallic paint model; it

is focused entirely on the variations found within metallic paint.

4.3.1 Description of the material

Metallic paint has some important characteristics that makes it visual
appealing and usable on cars. To understand how these properties came to

be one need to understand roughly how the paint is composed.

Metallic paint can be seen as a composition of
. Clearcoat
layers: clearcoat, basecoat, primer, electrocoat and
lastly the metal body itself. The clearcoat layer is Bgs_ecoat
. . . romer
situated at the very top of the paint, where it
: : : Electrocoat
provides protection for the other layers and gives a
Metal body

glossy appearance to the paint. Below the clearcoat
fig 4.14: Schematic view

resides the base coat, which adds colour to the .
over the paint layers

paint. The primer is used to even out the surface on
the metal body, which gives a surface with fewer bumps. Just above the

actual metal body is the electrocoat which protects against corrosion.
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The colour base coat in metallic paint is what
makes it really special. Not only does it have
colour pigments in that layer but also
randomly scattered metallic flakes. This makes
the colour vary a bit in appearance, and

introduces the characteristic glittering effect.

4.3.2 Orange Peel
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fig 4.15: Pigments and flakes in the
colour base coat

When applying metallic paint to a surface it is often desirable to get a

smooth paint surface for aesthetic appeal. The resulting surface may

however get slightly bumpy after the paint has dried. The surface texture

bears a resemblance to that of an orange, so the defect is called orange peel.

Clearcoat

Basecoat
Primer

Electrocoat
Metal body

fig 4.16: Notice the bumps on the fig 4.17: Orange peel

clearcoat laver

There are a number of effects of orange peel that is quite prominent.

Among these effects are:

- Ridges and valleys are visible up close.

- It affects the reflection on the surface so that it gets more of a diffuse

characteristic.

- Self shadowing between the bumps is negligible, and the height

difference cannot be registered by the human eye in grazing angles.

Based on these observations, it is quite clear that a simple bump map

would fit nicely.
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It is important to note how the texture of orange peel looks like. Like the
name suggests, the texture bares a similarity to the rough surface of the
peels of an orange. This appearance appears quite naturally by just simply
taking the output from a Simplex noise function with medium to small
frequency. The fBm function does not need to be used because of this and
the orange peel should also just perturb the normal quite little so there is no
real need to soften the signal with fBm.

Even though orange peel in paint will give it a rougher appearance due to
the scattered reflection, it is important to note that the reflection also should
be notably distorted. This means that the bumps should be so large that
separate valleys and peaks may be distinguishable but also small enough to

appear natural.

The main problem with this effect is to set the amplitude low enough so
that the surface doesn’t look too rough; it should be just enough to distort

the reflections but low enough to avoid a rocky appearance.

fig 4.18 Resulting orange peel effect
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4.3.3 Flakes

As mentioned earlier in this thesis, there is a
component called flakes within metallic
paints. These flakes reside within the same
layer as the colour pigments and are

essentially tiny metallic mirrors.

Rather than being perfectly aligned with the
surface, the metallic flakes have a slightly ]
random orientation. By arranging the flakes fig 4.19 Metallic flakes
in this way, incident light that hits the flakes will not necessarily be
reflected perpendicular to the surface of the coat. Furthermore, due to the
fact that flakes are like mirrors, there isn’t much diffuse reflection from
them but rather a pure specular reflection. This, combined with the small
size of the flakes, makes it practically impossible to observe a single flake
except when looking at one from an angle within the specular lobe. When

viewed in this way, the flake will be seen as a sparkle.

Even though single flakes are seldom distinguishable, the collective do
have a combined impact on the appearance of the paint as a whole. It gives
variations to the paint colour as different areas reflect light in a different
way. The very first implementation done within the scope of this thesis was
to simulate the flakes and the sparkles in one common model. Given that
the main problems with the RenderMonkey implementation [5] was its
dependency on texture coordinates and Giinther’s et al.[6] with viewing
distance, the focus in this thesis was first set to see if flakes could be

generated with fBm.

One nice property with fBm, when used for flakes, is its self similarity
property. This feature provides level of detail, which means that one could
theoretically get flake contribution far away while still providing good

detail at close range. It is furthermore not dependent of texture coordinates.
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Both of these properties were the deciding factor when this model for flake

simulation was chosen for further investigation.

A number of issues became clear very early. One of these was that the
flakes should not be able to affect the reflections from the environment
map. By having a complete flake cover and letting it affect the reflections,
the surface will end up looking diffuse. The frequency can be lowered to
make the surface less diffuse, but that will make the surface look like it has
orange peel rather than flakes. Therefore, the altered normals should only

be used during light calculations and omitted during environment lookup.

Another problem was to get a good high frequency effect while still
providing contribution at a quite large viewing distance. The smooth noise
value transition, which is one of the main properties in Simplex noise,
becomes prohibitive in this case as it is easy to wind up with a rocky
surface. This can be countered by using a higher frequency, but then the
flake will filter out very early. Tests were done where the noise was
generated with quite high frequency and low amplitude and the peaks
were enhanced with an artificial specular colour boost. The hope was that
by doing this, the rocky texture would be less prominent with the lower
amplitude while still offering strong, high frequency signals. It was hard
however to get single, strong points this way. Often an entire ridge would

get a colour boost making relatively large, coherent areas light up.

Another variant that was more successful was to cut off noise values below
some threshold. Just not boosting the peaks as before, but actually keeping
just that noise. This got rid of the rocky appearance while at the same time
providing quite small flakes. Ridges could still be seen but they were
smaller now. The problem now was that flakes that made the surface reflect
less light had a significantly more adverse effect then before. Previously
they didn’t stand out as much as they were surrounded by other noise, but

now these “negative” flakes could be seen clearly as dark spots.
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To get rid of these dark spots, some kind of filter needs to be applied.
Before an implementation attempt was made, a major shift occurred in the
development of the flake effect. Even though the implementation with a cut
off on the noise was crippled, the method did show promise as it gave a
much better result than before. However, by applying noise cut off and
filtering, the flakes that vary the colour, but not sparkling strongly, will be
lost. The choice was thus made to separate the sparkle effect from the
actual flake effect; one part simulates the sparkles while the other

concentrated on the colour variations caused by the flakes.

This approach is not physically correct due to the fact that flakes and the
sparkles are very much dependent on each other, but it gives the artist
more freedom to alter the shader. The different ways to do glitter are
handled in 4.3.4 Sparkling flakes. Flakes in general will be handled in 4.3.5

Passive flakes.

4.3.4 Sparkling flakes

This section handles the strong sparkling effect caused by flakes that are
viewed within the specular lobe at close range. The sparkling effect is
highly sensitive to viewing direction and gives small points a strong signal

compared to its surroundings.

As stated in 4.3.3 Flakes, the first implementation was with Simplex noise,
but that version was omitted for various reasons. A part of the
implementation that followed, more precisely the sparkling effect, will be
discussed here. Three different types were considered in this

implementation; among them was the old Simplex noise with a cut off.

The Simplex noise version was, however, omitted very early as it isn’t
suitable for generating isolated, high frequency, discrete points. The other
two will be described below with their respective advantages and
disadvantages along with a motivation for the final choice between them.
After that a number of techniques needed for the development of the

sparkling effect are described.
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Flake grid using texture coordinates

The glitter can be generated as circles or squares using texture coordinates.
This can be done in a grid that draws the shape at each distance multiple of
x and y. The PRNG could then be used to generate the flake normals. It is
quite straightforward and easily implemented. It does, however, suffer

from one major drawback: its dependency on texture coordinates.

The reason for this dependency on texture coordinates is that one way or
another one needs to generate squares, circles or other geometrical figures
on the surface to represent the flakes. In order to do this, a two dimensional
coordinate system, representing the surface, is needed. The model
coordinates are in three dimensions and represents the entire model, while
the texture coordinates represent the surface and resides in two
dimensions. Therefore, the texture coordinate should be used for the
aforementioned task. This dependency is a drawback because it is not
unusual that three dimensional models tend to have stretched, or generally
faulty, texture coordinates in some vertexes, which has a serious impact on

the visual appearance.

It might be tempting to simply generate cubes or spheres and use the
model coordinates instead, but this will not at all guarantee that every
surface gets flakes of about the same size and distribution or any at all. The

limitations with texture coordinates ruled out this one pretty early.

Direct use of the PRNG

The PRNG used for the Simplex noise takes, as stated earlier, three
dimensional coordinates and outputs a pseudo random value based on the
input values. Given that the PRNG has already been implemented earlier,

the flake generation is simply a matter of one function call.
One major advantage of this method is that it can use model coordinates

rather than texture coordinates. The flakes will, however, vary in shape

depending on where they are located on the surface. This means that it will
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not yield forms independent on the shape of the model. It will however
provide sufficiently similar looking flakes for the intended flake size. This
way of creating the flakes also has the drawback that the flakes need to be
very small indeed to avoid getting to large flakes at close range.
Additionally, it also lacks native support for level of detail. There are

means to get around these issues, which will be discussed later.

The method of using PRNG directly was the method among these three
that was found to be the most beneficent for this application.

Flake normal variation

One important factor for the sparkles in metallic paint is how much the
orientation tends to vary. A glittering flake is at its core just a perturbation
of the surface normal, so it is simply a matter of how much the surface
normal should be altered. The method proposed here requires that one has
previously got hold of one value representing the flake. In this
implementation, this value would be the one received from the PRNG

function used for generation the actual flakes.

Given that there exists some value x representing the flake, three new
random values can be calculated by using that value x as a seed for the
PRNG. Now, using the same seed three times would get three identical

outputs so some alterations are needed.

One variant is to use some offset for each PRNG call to get different values.
Another approach is to change the input value to the output value from the
previous PRNG call. Yet another variant is to use a larger texture for the
PRNG that has three rows instead of one, and make it possible to select
which row to use in the PRNG.

One potential problem with all of these approaches is that the number of
combinations is quite limited. This didn’t introduce any noticeable problem
in the implementation done in this thesis, but if more variation is needed a

dependency on position can be introduced. It was never tested but it
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should work well to use the position of the centre of the flake as input
instead of the other seed variants. How it can be retrieved is described in

Elimination of glitter flakes as a way to uniquely identify a flake.

After the three values have been generated, the actual flake normal can be
created. A parameter is introduced that decides how much the flake normal
may affect the surface normal. The flake normal is merged with the surface
normal later on by a simple addition followed by normalization, so if the

flake normal is set to 0,0,0 it will not affect the surface normal at all.

float3 flake_perturb(float flake_value, float strength)
{
float3 flake_values = PRNG(flake_value);
flake_values.y = PRNG(flake_values);
flake_valyes.z = PRNG(flake_values);

flake _values = (flake_values*2.0f) — 1.0f;
return flake_values*strength;

Filter glitter flakes

The sparkles, as mentioned earlier, are represented through a bump map.
In order to get sparkles from this bump map, a filter must be applied. This
filter should eliminate the perturbation normals that do not make a positive
contribution to the final colour. If the sparkles would have had a separate
lighting calculation, it would just be a matter of making the calculations
required and then add the result to the total specular value. But in this
implementation, the sparkles are integrated in the regular lighting
calculation by simply perturbing the face normal. Therefore, the
perturbation normals that will have a positive impact on the specular value
needs to be identified before doing said lighting calculations. There are
different ways to do this depending on what type of lighting model that is

used.
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If the Phong specular model is used, it all boils down to finding out if the
perturbed surface normal dot product with the half vector is larger than the
corresponding product for the surface normal. So, in order to find out if a
flake is actually making a positive contribution to the specular lighting, the

following check should be applied:

float3 strongestNormalPointLight
(
float3 normall, float3 normal2, float3 view_vector, float3 position,
float3 light_pos)
{
float3 light_vec =normalize(light_pos-position);
float3 half_vec = normalize(view_vector+light_vec);
float N1_dot_H = dot(normall, half _vec);
float N2_dot_H = dot(normal2, half_vec);

if(N1_dot_H > N2 _dot_H)
return normall;

else
return normal2;

In the Image Based Lighting (IBL) case, the calculations found in Phong
aren’t used. IBL is namely little more than finding the reflected vector and
use that to look up the lighting information. This means that the lighting
information is localized in the cube map, making it infeasible to retrieve
how the lighting changes as a function of the surface normal. The filter
used in this case needs to reflect two rays, one for the original surface and
one with the flake perturbation, and compare them. If the normal that has
been altered by the flakes get a higher value then it is sparkling and should
be kept.

There is one problem though, and that is that IBL is not restricted to just

one tone of colour. One point may have RGB values of [0,0,255] and
another [128,127,0]. So how should they be compared? It should be the one
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that has the largest value for any channel. The reason is that even if some
point has a large sum of RGB values it does not guarantee a strong signal.
These could, for example, be spread evenly across the channels, creating
some gray tone. Compared to some other RGB value with the same sum
but with only non-zero at one of the bands, the former would appear

darker.

By using these methods mentioned above, the perturbation normals that

have a negative impact can be filtered out.

Elimination of glitter flakes

The sparkle effect of metallic paint is a very important one indeed, and also
an effect that the user should be able to control quite well. Even though the
number of visible sparkles can be controlled indirectly by altering how
much the perturbation normal can affect the surface normal, one might still
end up with a sparkle cover that is too dense for a given scene. Another
issue has to do with the fact that the bump map is generated through the
direct use of PRNG. This function does namely suffer from gridding

patterns when used directly for rendering.

One way to counter both of the earlier mentioned problems is to eliminate
sparkling flakes according to some probability, which can be controlled by
the user of the shader. This is similar to the noise cut off that was used for
the Simplex noise in the earlier implementation as both aim to isolate single
flakes. The aim is that the user can be offered a parameter ranging from 0 to
1 that determines the probability that a glittering flake is visible. Provided
that Simplex noise has been implemented, there already exists a PRNG that

can be used in this task.

The choice of input coordinates and the interpretation of the result from
PRNG are the key issues in this implementation. PRNG gives a result
ranging from 0 to 1, so the flake can be set as visible if it gives a result from
0 to some threshold and invisible otherwise. The input values must be the

same for points within the same flake. This means that the current
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sampling position cannot be used. The reason is that this position does not

uniquely identify the flake but rather the current position.

One naive approach is to use the flake normal as input to the PRNG. The
flake normal is the same throughout the flake, so it would certainly work as
an identifier. It is, however, not a unique identifier for the flake but for the
flake type. If any flake that has some normal x gets discarded, all flakes
with flake normal x would also be eliminated. This has a very bad impact
on the distribution of the flakes, especially at high elimination rates. The
glitter would be in favour for certain angles from the observer and maybe

not exist in other angles.

If instead the centre, corner, or any other fixed spot on the flake can be
found, that position can be used as a unique identifier for the flake. This
can easily be calculated when creating the physical representation of the
flake. Instead of just keeping track on the width, a vector containing the
distance for each axis to the centre of the flake can be returned. This vector

can then used to get the centre of the flake.

Rendering figures with absolute pixel size

One of the problems with the flake sparkles is the small size. It must be
small as single sparkles should only be visible at close range. However, it
should not appear to get much bigger if viewed somewhat closer. This
creates a problem, either the flakes gets too big and cause visual problems
at close range, or they get to small and cause aliasing problems at relatively
close viewing distance. The solution proposed for this problem is to set the

size of the sparkles in pixels rather than model coordinates.
Firstly, the flakes are created with a starting size given as argument. This
starting size corresponds to the size in model space. It also corresponds to

the maximal size the flakes can take before overlapping each other.

Secondly, information about how much a pixel on the screen corresponds

to in model space needs to be retrieved. By having this information, the
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desired size in pixels can be multiplied with the ratio to get the necessary
size in model space. If the information about field of view or aspect ratio
setup is available, then a simple geometrical calculation can achieve this
information. This is however not necessary if the ddx and ddy functions
found in CgFX are used. These functions provide the derivative of the
input variable, which in practice is the difference of the given argument if
the pixel position was moved one step along the x or y axis respectively.
Using these functions, a new size can be calculated for the flake as

demonstrated in the code snippet below.

float3 new_sparkle_size(float pix_size, float3 position)
{
float3 pos_change_x = abs(ddx(position));
float3 pos_change_y = abs(ddy(position));
float3 max_change = max(pos_change_x,pos_change_y);

return max_change * pix_size;

Regardless of how the flakes are modelled, a function that can change the
width of any given flake is needed. It is trivial to do this for texture
coordinates, but a little more thought is necessary when doing it for PRNG.
This issue is handled in Width of a PRNG-patch.

The new width in model space, as mentioned before, is calculated by
simply multiplying the desired pixel width with the position units per pixel
ratio. There is one major drawback with this method: even if the size of
flakes changes dynamically with the height, the distance does not.

This means that the closer the viewer gets, the more isolated the sparkles
will seem. The user needs to be aware that the starting size in model space
will have a great impact at far and close range. Not only does it affect how
far away the sparkles can be seen, it also directly affects the isolation of the
sparkles. Ideally, the user would only have to specify some height that the
glitter should begin to disappear. It would also be good if the sparkles
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increased in number at close range, filling in the gaps between the existing
sparkles. This is, however, not supported in this model.

Size at height h+x

- - I Size at height h
fig 4.20 Size of and distance between sparkles

The patches will have to fade out at some point, and it will be based on the
specified maximum model space size. For anti-aliasing, the fadeout
function mentioned in 4.1.6 Anti-aliasing of noise can be used. The
parameters to the fadeout function would in this case be:

fadeout(1,0, startingSize, posPerPix x flakeSize)

This result can then be multiplied with whatever the content of the patch is.

In the case of the sparkling flake, the content is a perturbation normal.

A sample on how this behaves can be seen in fig 4.21. Note that the glitter
remains about the same size up to the third picture. After that, the glitter
has reached its maximum size and begins to fade away due to anti aliasing

procedures.

fig 4.21 Sparkling flakes at different distances
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Width of a PRNG-patch

By using PRNG directly, one will get a patchwork of jagged squares and
triangles that covers the surface of the object. In the section Rendering figures
with absolute pixel size it is stated that there is a need to have access to the

width of a flake in order to be able to adjust its size. This section describes
how this can be done for PRNG.

The aim is that the width should be able to control with just one parameter.
One way to do this is to represent the patch in some, preferably simple,
geometrical form like a square or a circle. The desired width can then be
used to find the points in the PRNG patch that fits within that shape. In
order to make this comparison, the relative position of a point in a patch
needs be found. This can be done by determining how close the sampling
point is to result in another texture output value, which is shown in the

function below.

#define TEXTURE_RES 256 // Resolution of the texture

float PRNG_square(float3 pos, float size, sampler2D tex_sampler)
{

float PRNG_value = 0.0f;

float3 dists =0.0f;

pos = pos/(size*TEXTURE_RES);

for(int axis = 0; axis < 3; axis++)
{
// The distance to the next texture value for each axis
dists [axis]= frac(PRNG_value + pos [axis]) * (size*TEXTURER_RES);
PRNG_value = tex2D(tex_sampler,float2(pos [axis]+ PRNG_value,0)).r;
}
// Is the sample point within the flake borders?
if (abs(dists.x)> size | | abs(dists.y)> size || abs(dists.z)> size)
PRNG_value =-1.0f;

return PRNG_value;
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The output from the function above is either the actual random value or -1.
If -1 is returned, it means that the sampling point was outside the flake

square.

It is also mentioned in Elimination of glitter flakes that in order to get a
unique identifier for a flake, the actual distance per axis is necessary. To get
this, the above code can be modified so that the dists array is returned along
with the random value. This also means that the output vector has to be

enlarged to a float4.

Glitter strength

The strength of a sparkling flake, when compared to its immediate
surroundings, is highly dependent on the variation of the face normal and
the strength of the light source. With a high normal variation, the sparkling
flakes may be spotted along a greater area, and with a strong light source,
the difference in lighting from a glittering to non glittering spot is large. But
there are times when a strong light source isn’t desired but strong sparkles
are. Also, the user may want to have white glitter when the glitter is strong

rather than the materials specular colour tone.

For these occasions, a glitter boost can be introduced that artificially
enhances the specular strength at the glittering flakes. The strength of the
flake is enhanced by a simple linear interpolation between the specular
value and some target value, where the interpolation point controls the
amount of boost. The target value in the interpolation function represents
the strongest signal the sparkles can take. White is a good choice for this
value as it can emulate really strong sparkles, but RGB values where the
original difference between the bands is kept but with a larger band sum is
also a good alternative. The best variant is to let the user set the target
colour as it allows for a good amount of flexibility.

Often the variation of normals is enough and the boost is not needed. The

boost should be used with care as it is very artificial and can introduce

unnatural looking material if used recklessly.
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Adapting glitter

In the Rendering figures with absolute pixel size section, it was mentioned that
one drawback with the resizing of sparkles is that the sparkles get more
and more isolated as the viewing distance decreases. Another way to view
this behaviour is that the flakes come closer together with increasing
viewing distance. If flakes are not being eliminated, the sparkles will at
some point become so close to each other that it looks more like a complete
flake cover than just sparkles. This can actually be a good thing; it means
that the glitter model can go from sparkles to then help in the general
colour variations caused by the flakes at long range.

There is one problem though, namely the glitter elimination. While it is
good at close range to get rid of superfluous sparkles and gridding
patterns, it is prohibitive for simulating colour variation when viewed from
a distance as it makes the flake cover less dense. It is therefore desirable to
have some way to dynamically change the elimination rate as a function of
viewing distance. By offering this function, the user can choose to let the
glitter help in the general flake appearance by eliminating less flakes at

long range and thus get better cover.

The fadeout function described in 4.1.6 Anti-aliasing of noise is primarily
made to avoid aliasing problems. It can, however, be used for other
purposes, including this particular one. By setting the average value to 0,
the signal to the probability of elimination and the feature size to 1, the
elimination rate will increase when the viewing distance decreases and
vice-versa. Expressed as a function call, it would look like this:
fadeout(elimProb, 0,1, posPerPix * flakeSize)
One advantage of this method is that the interpolation will accommodate

for different sizes of flakes.

4.3.5 Passive flakes

Passive flakes are those flakes that don’t emit a strong sparkle but still gives

the surface a variation in colour. Unlike the sparkling flakes, it is not at all a
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given that using perturbation of surface normal is the correct approach. The
colour variations can namely also be achieved by altering the specular

value directly.

The case going for the perturbation of surface normals is that it more
accurately emulates the nature of the flakes. It also is gives more life to the
surface as it will change appearance depending on viewing direction.
Provided that methods similar to the ones proposed in 4.3.4 Sparkling flakes
is to be used, the lack of native support of level of detail is a severe
drawback in this particular application. Also, the sparkling flakes already
accommodates for the noticeable viewing dependent variations caused by
the flakes.

In the case of specular map alteration, one of the major advantages is,
depending if fBm is used, native support for level of detail. It is also
potentially very easy to control as the alteration of the colour is predictable
with its isotropic behaviour. This approach is also complemented well with
the sparkling flakes as the latter will take care of the viewing direction

dependent effects.

Both of these models have been tested and the model with the specular
map alteration proved to be the better for its flexibility and level of detail.
But, this result relies on that the sparkling flakes are used. A model with
flake perturbation functions better as a standalone model when compared

to the specular map alteration approach.

Another important aspect to consider is how the generation of the flakes
physical shape is done. Three types were considered and are handled
below.

PRNG
The PRNG method can be used directly when generating these passive

flakes. By using the current model position as input and the output to alter
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the specular map, one can get high frequent variations of the colour across

the surface.

One big advantage of this method is that it is relatively cheap when
compared to the alternatives. It looks slightly worse in close range when
compared to e.g. Simplex noise as the jaggedness and gridding tend to give
it away at a relative early stage. The major problem is that PRNG lacks the
flexibility of fBm as the latter can both do high frequent variations and
accommodate for level of detail by adding more octaves. So this model was

omitted due to lack of flexibility.

Simplex noise

If the level of detail or flake contribution from quite some range is not a
priority, usual Simplex noise is an alternative to consider. A quite high
frequency is needed to simulate the flakes, which it also does quite well.
This approach does suffer from too large flakes at close range, but this is
not such a terrible drawback as the shader probably shouldn’t be used at

such close range anyway.

Due to the fact that fBm can act as usual Simplex noise by just setting the

number of octaves makes this model unnecessary restrictive.

fBm

Fractional Brownian motion is an interesting choice because of its built-in
level of detail. By having several octaves, the flake contribution can be
observed quite some distance away. It should, however, have much more
impact at close range than at a distance where the contribution should be
quite small. This suggests that each fractal step should not have the same

impact and favouring those with higher frequency.

One setting that fulfils these requirements is amplitude and frequency
multipliers of 2.7 and 2.4 respectively. This setting not only makes the
higher frequencies more prominent, they are also reached quite fast with a

slightly higher frequency multiplier than normal.
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Given that the main advantage with fBm is level of detail, this model can
become somewhat redundant if the method described in Adapting glitter
under 4.3.4 Sparkling flakes is used. It will, however, make a good
contribution to the visual appearance when the glitter gets more isolated as
the viewing distance shrinks. Furthermore, it is a very good complement if
the user chooses to not use the adapting glitter function. In the end, the fBm
method was used to emulate the passive flakes due to aforementioned

positive properties.

The passive flakes generated by fBm can be seen in fig 4.23. Note how much
the colour fluctuates compared to fig 4.22. By combining the sparkles in fig
4.24 and the passive flakes, an even more varied appearance is achieved,

which can be seen in fig 4.25

fig 4.22 No flakes ﬁg 4.23 Passive flakes

;fig 4.25 Sparkling flakes lfig 4.24 Passive and sparkling flakes
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4.4 Tempered glass

4.4.1 Material Description

Tempered glass is stronger than normal glass, but it also has the property
that it breaks into tiny fragments when shattered. This is why there must be
tempered glass in car windows (except the windshield, which uses
laminated glass) rather than regular glass. If normal glass would be used,
the glass would, in a collision, shatter into large chunks that become a
serious threat to the passengers of the colliding car.

Depending on how the tempering is done, the glass may get slightly bent in
certain ways. During the tempering process, it may namely be transported
around by rollers. These rollers will bend the glass, creating a periodically
wavy surface [17]. This results in a wavy reflection when faraway objects
are reflected in the glass. The reason that it needs to reflect some object far
away, is because the waves have such low amplitude that the difference in
reflection will only be noticeable if the light has to travel a far distance. [18]

fig 4.26 Note the distortion in the reflection of the glass, especially at the windows on the right

442 Implementation

One important thing to note is that these waves in the glass appear
periodically [17]. This means that a simple periodic function, like cosine,
might do without having to use Simplex noise to alter the surface normals.
Simplex noise should not just be omitted by default however, so a variant
using noise is handled below along with a variant that only uses a simple

cosine function.
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Usual Simplex noise should be used instead of fBm due to the fact that the
bumps should be quite distinct and not smoothed out. By using the noise
gradient to determine how the face normal should be altered, the Simplex
noise can be used directly for bump mapping. Simplex noise offers ways to
let the user decide the frequency and amplitude, both very important in
this particular application. Furthermore, as the simplex noise is used
directly here, the frequency and amplitude parameters are the only ones

that the user can alter.

This variant, however, does not yield a convincing result. The glass looks
bumpy, which is not desirable in this case as wave pattern is more suitable.
By lowering the frequency the bumps can be avoided, but it will also not

vary the normals frequently enough to create the desired effect.

The other variant, using a simple sine function, works better. It is based on
the assumption that the waves can be modelled as a sine function. It offers
control of frequency, direction and amplitude of the waves, giving quite
good control over it. The function that calculates the new position on the

wave, given some surface normal, looks like this:
position = sin(dot(position,direction) * frequency)) * amplitude;

As it should be used in bump mapping, the derivate is needed of the

former function, which is the following:

float3 wave_gradient = normal * direction * frequency * amplitude *
cos(dot(position,direction) * frequency);

This model is almost the simplest possible for a
wave shape that uses a sine curve while still
offering quite a bit of control. Even though this
gives quite good results, there hasn’t been that

much time spent studying this variation. So

there are certainly room for improvements. -
fig 4.27 Bent glass
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4.5 General variations

One separate shader was created to be applicable for general materials,
providing quite general methods to introduce variations in the material.

Radermacher et al. [3] research on what people perceive as realistic images
revealed that a rough surface on objects can add more realism to the picture
as a whole. With this in mind, some simple methods that introduce
disturbances in surfaces and materials in general were implemented. These
are not ground breaking in any way, but highlight some different ways to

give a material more life.

4.5.1 Roughness

The very same implementation of the Oren-Nayar diffuse model that the
auto carpet shader uses is also used in this one. This diffuse model
provides an easy way to make an object look rougher. For more

information on this parameter, consult 4.2.5 Roughness.

4.5.2 Small variations

Several materials, including some plastics, may appear quite monotone in
their colour at first glance. But by looking closer on the material in
question, some small variations can be seen. There might be small spots
where the colour seems darker or brighter, there might be tiny bumps, or
both.

With the ability to calculate the partial derivate analytically, the bumps and
colour variation can be received for the price of just one Simplex noise
function call. This makes it quite suitable to use for colour variation and

bump mapping.

The colour variation uses the actual noise value to determine how much the

colour deviate at a given point. At any given point, the colour can take any
col 1-col

value within the range of [col ———F—F,col + —] This ensures that,
variation variation
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as long the variation variable is set to a value in between zero and one, the

result should not go outside [0,1].

In the implementation done in this thesis, the
colour variation only affects the specular
value. The reason was at the beginning to
make the bumps look more highlighted so
that they would seem to receive more light
than the valleys. However, an error in the
implementation had flipped the sign of the

noise, which resulted in a higher specular

value for the valleys. fig 4.28 Specular variation off

It turned out that it actually helped to
produce an effect of bump embossing and a
bit of fake subsurface scattering. The higher
specular value makes the wvalleys look
thinner than the bumps. So, with these
combined, it looks like the surface actually is

a thin skin where it is thicker at the bumps.

4.5.3 Dents

Some materials and surfaces, especially those with a soft core like pillows
and cushioned seats, tend to have low frequency height differences along
the surface. Take e.g. the seat of a car, where one might find quite large
bumps after have being used as a place to sit. Another example is a sheet of
some soft material that has been stretched over a surface but where the
sheet is slightly larger than the surface, meaning that there will appear
some bumps along the way due to the excess of material. On other

materials, large dents may appear after have received some beating.
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To handle these situations, a general fBm function is introduced. It is based
on fBm where the quality can be specified by setting the number of octaves.
The amplitude and frequencies multipliers are also exposed so that the

appearance of the bumps can be controlled more thoroughly.

Another parameter determines how often
there should be bumps. This is done by
eliminating some gradients in the Simplex
noise function internally according to some
given probability. Dropped gradients will
no longer add to the noise values.
Therefore, given high enough probability

of a drop, areas with little to no bumps will

appear. It looks quite good up to about 0.7

fig 4.30 Dents with 70% drop

in drop rate; after that the bumps indeed

get even more isolated but also unnatural looking.
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5 Result

5.1 Visual realism

This is an area that is hard to be objective in as realism lies very much in
the eye of the beholder. There are several pictures scattered throughout this
thesis and also in Appendix A so that the visual result can be seen, but there

are a number of findings that is of particular interest.

The introduction of flakes in the metallic paint does indeed give more life
to the paint shader. This is not only true for the flake model in this thesis,
but also for those presented in 3. Previous Work. This model, however,
handles strong sparkles as well as colour variations in a way that avoids
tiling issues and provides means to let sparkles appear from a further

distance while still maintaining a small physical size.

The carpet shader performs very well at close/medium and upward ranges,
giving a rugged and lively look. By simulating some threading in the carpet
through generation of separate diffuse and specular maps, the appearance
of an actual carpet is enhanced. It does, however, lack realism in very close

range where the illusion of a carpet is almost completely gone.

General application of simple noise functions on different material does
indeed, if used correctly, make the material appear more realistic. Often, a
very small noise contribution does the trick. There was nothing new in the
general noise shader really; it was just means to show how much just some

noise can do for a material.
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5.2 Artist control

All of the shaders are highly configurable from the artist point of view.
There are several parameters for each material and, in several cases, quite a
few for each variation, which makes it possible to get quite different
appearance with respect to the variations on each material. These
parameters, however, are based on quite technical aspects, such as
amplitude and frequencies of curves, rather than real material properties.
The reason for this is that it enables high amount of control for the artist by
letting them change quite low level parameters. It would, however, be nice
to have another variant with less number of parameters that has a more to

do with actual material properties.

One variation that is particular tricky to deal with is the metallic flakes with
automatic resize support. It requires two parameters to determine the flake
size and they function quite differently. While one controls the maximum
pixel size of the glitter, the other determines the maximum size in model
space. One could choose to view the latter as a distance of some sort; the
larger it is the further the flakes will be apart at each specific viewing
distance. This is somewhat cumbersome, just using one parameter for the

size would be desirable.

The auto carpet and the general material shader are probably the easiest to
handle while still being very configurable. It is quite clear what the
parameters do and the outcome is predictable as they don’t have
parameters that are interdependent in the same way as the flake size is in

the paint shader.
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5.3 Performance

As mentioned in 1.2 Limitations, there were no robust tests done on how the
variations affected the performance. But the variations have been made so
that quality can be traded for faster rendering by the use of different
parameters. Examples of this are that the number of octaves in fBm can be

set and that any effect can be turned on or off.

It is easy to see that the most demanding function to run is that of Simplex
noise. This can be seen in just the number of calculations and texture
lookups needed. So there is much to be gained in rendering speed by using

an optimized Simplex noise function.

A simple modification can also do away the GPU calculation of the noise
and replace it with a pre-generated three dimensional noise texture. This
would, however, mean that the benefits of procedural generation will be
lost. Another way to optimize is to try to find better models that e.g. make

use of fBm with fewer steps than required in some variations in this thesis.
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6 Future Work

6.1 Procedural generated 2D representation of
threads

Even though the proposed model for threads in a carpet does give very
good visual results at close/medium range and upwards, it is not good at
all at very close range. So, a model that can handle carpets at micro level

reasonably well could become more flexible than the current one.

6.2 Procedural generated scratches on a surface

After a while, surfaces and materials may get some scratches on them
through wear and tear. This variation was considered to be covered in this
thesis, but got omitted because the cars, for which these shaders was aimed

at, should appear very new without any wear and tear.

It would, however, by quite interesting to see how some random scratch
patterns can be generated on the GPU. There is some research done on the

rendering of scratches, but less so on the generation of scratch patterns.

6.3 Better multilevel model of flake glitter

The flake sparkles in this thesis adjusts itself depending on the viewing
distance by resizing themselves. The model doesn’t, however, adjust the
distance between the glitters. This makes the flakes get more isolated when
the viewing distance shrinks. Therefore, it would be good to have a model
that can increase the number of sparkles as the viewing distance shrinks to

fill in the gaps.
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Appendix A.Sample Images

Metallic paint
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Auto-Carpet
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General
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Appendix B. Variation parameters

Here is a list over the different parameters that can be used for the different

variations.

Metallic Paint

Orange Peel Strength

Sets how much the orange peel can affect the surface normal. Goes from 0

to 1. Appears in 4.3.2 Orange Peel.

Orange Peel Size

The size of the orange peel. Appears in 4.3.2 Orange Peel.

Flake sparkle pixel size

Sets the maximum pixel size of the sparkle. Appears in 4.3.4 Sparkling flakes.

Flake sparkle physical size

Sets the maximum model space size of the sparkle. Appears in 4.3.4

Sparkling flakes.

Flake sparkle variation

Determines how much the flake normal can affect the surface normal.

Appears in 4.3.4 Sparkling flakes.

Flake Sparkle Boost

Gives the sparkle a specular colour boost. Appears in 4.3.4 Sparkling flakes.

Flake Sparkle Elimination

Eliminates sparkling flakes according to a probability set between 0 and 1.

Appears in 4.3.4 Sparkling flakes.
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Smart Flake Sparkle

Automatically adjust the elimination rate of sparkling flakes as a function
of viewing distance. Binary value, on or off. Appears in 4.3.4 Sparkling
flakes.

Passive Flake Size

Size of flakes that don’t emit strong sparkles. Appears in 4.3.5 Passive flakes.

Passive Flake Strength

How much the passive flakes are allowed to alter the specular colour.

Appears in 4.3.5 Passive flakes.

Passive Flake Detail

Sets the number of octaves that should be used for the passive flakes.

Appears in 4.3.5 Passive flakes.

Auto-carpet

Diffuse thread size

Size of the threads that should build up the diffuse map. Appears in 4.2.2
Rendering the threads.

Diffuse thread strength

Sets how much the diffuse colour can be altered by the diffuse threads.

Appears in 4.2.2 Rendering the threads.

Diffuse thread bump strength

Parameter to determine how much the surface normal should be affected
by the diffuse thread normal. Value ranges from 0 to 1. Appears in 4.2.2
Rendering the threads.
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Specular thread size

Size of the threads that should build up the specular map. Appears in 4.2.2
Rendering the threads.

Specular thread strength

Sets how much the specular colour can be altered by the specular threads.

Appears in 4.2.2 Rendering the threads.

Dark area size

Sets the size of the dark areas of the carpet. Appears in 4.2.4 Dark areas.

Dark area strength

Sets how much the dark areas can affect the diffuse and specular values.

Appears in 4.2.4 Dark areas.

Seams propagation

Determines the direction of the seams. It is a vector with three elements; the
first two is the x and y of the propagation vector. The third is used as a flag
to determine the pattern shape: 0: no seams, 1: lines, 2: grid. Appears in
4.2.3 Seams.

Seam distance

Sets the distance between neighbouring seams. Appears in 4.2.3 Seams.

Seams amplitude

Sets the amplitude difference between seam and non-seam. Affects the
diffuse and specular map but not the surface normal. Value ranges from 0

to 1. Appears in 4.2.3 Seams.

Seams bump strength

Sets how much the seam normal may affect the surface normal. Value

ranges from 0 to 1. Appears in 4.2.3 Seams.
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Seam crossover size

The size of the areas where threads leans over the seams. Appears in 4.2.3

Seams.

Seam crossover strength

Determines how much of an effect these crossings will have on the
specular, diffuse and surface normal. Value ranges from 0 to 1. Appears in
4.2.3 Seams.

Roughness

The micro facet roughness of the surface. Appears in 4.2.5 Roughness.

Fake rim light

Sets how much rim light the surface should get. Appears in 4.2.6 Fake rim
light.

Glass

Wave frequency

The frequency of the waves on the glass. Appears in 4.4.2 Implementation.

Wave amplitude

The amplitude of the waves on the glass. Appears in 4.4.2 Implementation.

Wave propagation vector

Sets the direction of propagation of the waves. Appears in 4.4.2

Implementation.
General

Roughness

The micro facet roughness of the surface. Appears in 4.5.1 Roughness.
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Small blemish size

The size of the blemish. Appears in 4.5.2 Small variations.

Small blemish bump strength

How much the blemishes can affect the surface normal. Value ranges from

0 to 1. Appears in 4.5.2 Small variations.

Small blemish colour strength

How much the blemishes can affect the specular map. Value ranges from 0

to 1. Appears in 4.5.2 Small variations.

Dent strength

Sets the how much the dents can affect the surface normal. Value ranges

from 0 to 1. Appears in 4.5.3 Dents.

Dent size

The size of the dents. Appears in 4.5.3 Dents.
Dent cover

How much the surface should be covered with dents. In practice this is
done by dropping noise gradients. Value ranges from 0 to 1. Appears in
4.5.3 Dents.

Dent detail

Determines how many octaves that should be used for the dents. Discrete

value. Appears in 4.5.3 Dents.
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