Automatic Surface Reduction and Normal Correction
in Large 3D Models

Master of Science Thesisin Computer Science and Enginerring

PER LINDSTRAND

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Goteborg, Sweden, January 2009

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Automatic Surface Reduction and Normal Correction in Large 3D Models

PER LINDSTRAND

© PER LINDSTRAND, January 2009.

Examiner: ULF ASSARSSON

Department of Computer Science and Engineering
Chamers University of Technology

SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden January 2009

Abstract

Traditionally virtual representations or models are created with different soft-
ware systems with different requirements. In order to build a car, designers and
engineers uses so called CAD (Computer-Aided Design) modeling software to
create parameterized surfaces for all parts of that particular car such as seats, but-
tons, engine, nuts and bolts. The result is a complete blueprint of the whole car and
all of its parts. This level of detail is needed to manufacture the car, but in order
to produce a poster featuring the aesthetic design of the same car, the electrical
wiring, for instance, inside the front door is of no visual importance. This requires
only a visually appealing (yet accurate) representation of the same car and would
normally require artists (rather than engineers) to create a schematic model of the
car. This process can be automated by using the blueprints of the car in order to
create a visually accurate model through a tessellation process. However, the tes-
sellated model would include all wires, nuts and bolts, which are mostly irrelevant
to the final product. Furthermore, the tessellation process often introduces errors
such as surfaces facing the wrong way, duplicate surfaces on top of each other, let
alone the abundance of unnecessary surfaces. In order to use the tessellated model
to efficiently produce computer generated images these issues must be addressed.

Sammanfattning

Traditionellt skapas virtuella representationer eller modeller med olika verk-
tyg med olika krav. For att bygga en bil anvéinder designers och ingenjorer sig
av sa kallade CAD-modelleringsmjukvara (Computer-Aided Design) for att skapa
parameteriserade ytor for alla delar av den aktuella bilen sdsom siten, knappar,
motor, skruvar och muttrar. Resultatet dr en komplett ritning av hela bilen och alla
dess delar. Denna detaljniva krivs for att bygga bilen, men for att gora en este-
tisk broschyrbild av densamma ir t ex elektriska komponenter och kablar, skruvar
och muttrar inuti en framdorr visuellt sett onddiga. Detta kriaver endast en visuellt
tilltalande (dock korrekt) representation av samma bil och kridver normalt att gra-
fiska artister (snarare dn ingenjorer) skapar en schematisk modell av bilen. Denna
processen kan automatiseras genom att anvinda ritningarna pa bilen for att skapa
en visuellt korrekt modell genom en tesselleringsprocess. Den tessellerade model-
len innefattar alla kablar, skruvar och muttrar som for det mesta &r irrelevant for
slutprodukten. Dessutom introducerar tesselleringsprocessen ofta fel som felvinda
ytor, duplicerade ytor, utdver mingden onddiga ytor. For att kunna anvinda den
tessellerade modellen for att effektivt producera datorgenererade bilder maste des-
sa problem hanteras.

Preface

This master’s thesis was written and performed by Per Lindstrand at the Department
of Computer Science and Engineering at Chalmers University of Technology on behalf
of Spark Vision AB during the fall of 2007 in Gothenburg, Sweden. The project work
has been performed at Spark Vision AB who have supplied both rooms and computers.
Supervisor was Johnny Widerlund at Spark Vision AB and examiner was UIf Assars-
son at the Department of Computer Science and Engineering.

The thesis is aimed at people with a good understanding of computer graphics and
are fairly familiar with computers, programming and algorithms.

Acknowledgements

I would like to thank my supervisor at Spark Vision AB Johnny Widerlund for all his
help and invaluable exchange of ideas. I would also like to thank my supervisor and
examiner UIf Assarsson at Chalmers University of Technology for his dedication and
immense patience. Great thanks to all the people at Spark Vision AB for all the help
that made this possible.

A special thanks to friends, family and girlfriend for their love, support and under-
standing.

Contents

I__TIntroduction| 1
1.1 Assignment] 1
[Z Background|o 1
............................... 1
L4 Previous Workl. 1

2__Overviewl 2
BT Glossary|. 2
2.2 Graphics Hardware Acceleration] 2

3 Visibility 2
3.1 Local and Global Visibility| 2

. epth Masking| 4
3.3 Algorithm| 4

4 _Reduction 5
4 V. e 5
B2 Algorithm| 5
B3 Tmplementation]o 6

5 Correction 8
5.1 Theory|l. 8
B2 ATZOTMAM] - . o o oo v oo e 10
B3 Tmplementation] i 10

6 Results 11
[61 Performancel. 11
0.2 Correctionl e 13
6.3 Reduction] 13
6.4 Meeting the Demands|. 15

Z_Conclusionl 16
I DISCUSSIONl. « « « v o v v oot e 16
................................ 17

1 Introduction

1.1 Assignment

The assignment for this master’s thesis project was to create a set of tools for Spark
Vision’s Genesis and Ignite software systems to perform automatic surface reduction
and surface correction. The tools should run in reasonable time for very large models
(approximately 15 to 20 million triangles) and should meet the quality demands re-
quired by high resolution production images.

Specifically, reasonable time is cost-effective time and quality compared to manually
performing the task at hand. High resolution production images are 9+ megapixel and
printed on A4-A3 sized paper.

1.2 Background

The specialized visualization industry often uses technical designs and schematics such
as CAD data as a basis for the final production. The process involves transforming a
CAD model in a tessellation process [18] [20]. Tessellated CAD data often produce
irregular or complex data as a result of the tessellation process itself. Some of these
irregularities, such as cracks, cavities and incorrect normals can be and is often fixed lo-
cally by the tessellation software. However, overall surface orientation (surface normal
coherency) and visually unimportant surfaces are traditionally not handled, the latter
for obvious reasons.

In order to efficiently visualize large models (such as cars) created through a tessel-
lation process, the models often have to be reduced in size. The reduction, however,
should not affect the quality of the visualization, that is, it should not alter visually
defining surfaces. Furthermore, technical surfaces are often orientation independent,
as no real world materials are one-sided. The tessellated surfaces are therefore often
somewhat randomly oriented.

1.3 Prerequisites

To fully comprehend and utilize the theories presented in this thesis, a basic under-
standing of modern computer graphics, linear algebra and algorithmic theory is re-
quired. The author recommends reading [7], [9], [10] and [11] in order to learn about
or recapitulate the mentioned above subjects.

1.4 Previous Work

The academic work regarding surface reduction is very limited, there has been little
public work on the subject of permanent hidden surface removal. Perhaps due to the
fact that 3D models are often created and designed by graphics artists who usually
don’t create excessive amounts of hidden surfaces. Surface subdivision and merging
are common operations in 3D modeling software but the algorithms used are not de-
signed to be lossless.

There has been a lot of work done on the subject of Hidden Surface Removal (HSR)

and Visible Surface Determination (VSD), such algorithms are often applied in real-
time rendering applications (such as games and various visualization tools), some of
which contain ideas used in the algorithms developed in this thesis. The real-time hid-
den surface removal algorithms are primarily used to minimize rendering per frame
without modifying the content [12].

Most of the work within the area of surface correction focus heavily on optimally and
analytically correcting surfaces [15] [16] [17]. This often results in a lot of highly
complex calculations per surface, not suitable for larger models in terms of running
time and computational complexity. Basic forms of normal correction are often incor-
porated in tessellation software in order to produce coherent results whereas overall
surface orientation coherency is ignored.

The problems presented in this thesis are common to the industry concerned with tes-
sellated CAD visualization, which is highly competitive and as a result, permanent hid-
den surface removal and surface normal correction algorithms are developed privately
and not open to the public.

2 Overview
2.1 Glossary
The following terms are used throughout the thesis.

primitive Common graphics objects such as triangles or quadrilaterals.
surface A surface is a set of primitives.

model A model is a set of surfaces, most likely a purposeful collection such as a solid
geometric volume or a large coherent surface.

scene A scene is a space containing a set of models, surfaces or other objects.

2.2 Graphics Hardware Acceleration

Algorithms outlined in this thesis utilizes hardware accelerated occlusion queries. These
effectively yields fast ray tracing operations when combined with depth masking (see
Section3.2)), a similar technique is used in most occlusion culling schemes.

3 Visibility
3.1 Local and Global Visibility

Given that a model consists of a set of surfaces, we define visibility in the following
way.

global visibility A surface in a model is globally visible if an infinite ray from some
point on that surface can be constructed such that it does not intersect any other surface
in the model.

Corollary, a surface is hidden or occluded if such a ray does not exist. This property is
used in occlusion culling techniques [2] [3]. The algorithms presented in this thesis are
based on surface visibility tests or occlusion queries. These tests are derived from the
fact that a surface can be determined visible in this way.

local visibility A surface in a model is locally visible from a viewpoint p if a ray
between some point on that surface and p can be constructed such that it does not
intersect any other surface in the model.

It is possible to perform this type of visibility test very fast using graphics hardware. An
interface for occlusion queries was defined in OpenGL 1.5 [1]. Ray intersections are
performed in the rendering pass using occlusion queries, these are issued per surface
during rendering of the scene. Depth testing ensures that only the closest intersections
are valid and used. In this application, each frame buffer fragment corresponds to a
ray intersecting the scene and if the whole scene is contained in the given view it can
approximate the local visibility of a surface.

In surface reduction, the classification of a surface as hidden is more detriment to the
visualization than visible. It is therefore preferable to consider surfaces visible than to
consider them hidden. The visibility test is constructed such that a surface is hidden if
and only if it is not visible in any visibility query. It is easier to show that a surface is
visible than it is to show that it is hidden. This follows from the definition of global
visibility where only a single ray intersection test is necessary to show that a surface is
visible while an infinite number of tests is necessary to show that a surface is hidden.

Global visibility is equivalent to an infinite number of local visibility queries. Global
visibility can be approximated by performing a number of approximated local visibil-
ity queries. The quality of the approximation is naturally dependent on the quality and
amount of queries. Higher resolution and more queries yields a better approximation.

The basic visibility query algorithm performs a number of approximated local visibility
queries using occlusion queries for each rendered surface. The result of the algorithm
is essentially a measure of how visible each surface is from a set of viewpoints (see
Figure[T).

The visibility of a surface can be expressed as a probability in terms of approximated
local visibility tests. Given an enclosing sphere around the scene, the surface area of
that sphere is a sample space while the combined area of all viewpoints from which
that surface is visible is the event space or event. Let the sphere surface area be U and
the area of all viewpoints from which the surface is visible be A. If A = U then the
surface is always visible and cannot be incorrectly classified. If A = 0 then the surface
is never visible and cannot be incorrectly classified. If A < U, the probability of a
given surface generating a result in a single visibility testis p = A/U where p € [0,1)
and the probability of that surface being incorrectly classified as hidden is

nli_)rr;oHp—>0 (D

that is, as the number of visibility test samples goes to infinity then the probability of a
visible surface being incorrectly considered hidden goes to zero.

Figure 1: A two-dimensional example of spherical sampling, sample positions are gen-
erated on an enclosing sphere around the model’s convex hull.

3.2 Depth Masking

Occlusion queries can be used to efficiently determine the visibility of a primitive [13].
This technique can be used to determine the visibility of a surface or a model as well
by batching or grouping sets of primitives together.

An occlusion query counts and returns the number of pixels (actually samples as de-
scribed in the specification) of a surface that passed the depth and stencil tests [13] [14].
As the name suggests this is designed and used to determine occlusion of surfaces.
However, the result from an occlusion query can be used to measure and quantify the
visibility of a surface as well, since these are essentially mutual qualities.

Rendering the scene to the depth buffer creates a depth map of the scene. This map can
be used as a reference for a masking occlusion query with a equality depth test. The
occlusion query result will correspond to the number of samples with a depth value
equal to that in the depth reference map. This yields an approximate visibility measure
for all rendered surfaces and will be correct for intersecting surfaces as well.

3.3 Algorithm

Given a set of surfaces o and a set of viewpoints &, for every surface s € ¢ and view-
point v € £ compute visibility measure ¢, (s) such that ¢, (s) > 0 if and only if s is
visible from v.

Algorithm (1| returns visibility measure ¢ given a set of surface o and a set of view-
points &.

Algorithm 1 VISIBILITY-QUERY
Require: Set of viewpoints £
Require: Set of surfaces o
¢ «— () {Occlusion result mapping for surfaces}
for all v such that v € £ do
Setup viewpoint v
Clear depth buffer
Use depth test function LESS
for all s such that s € o do
Render surface s
end for
Use depth test function EQUAL
for all s such that s € o do
r=occlusion—-query (s)
9(s) — B(s) +7
end for
end for
return ¢

4 Reduction

4.1 Theory

The number of surfaces in a model can be reduced by
(i) replacing two or more surfaces with one surface,
(ii) removing unnecessary surfaces.

The term unnecessary is subject to application and in this thesis an unnecessary surface
does not contribute visually to the scene. Method (i) requires spatial analysis and
restructuring of neighboring surfaces, a computationally difficult operation [18] [19]
[20]. Given the generally large number of surfaces in the test data for this thesis,
method (i) is not a viable option. Method (ii) requires only visibility analysis, which
can be performed efficiently using the technique described previously in this thesis (see
Section3])

4.2 Algorithm

The visibility query algorithm defined in Section [3] (see Algorithm [I)) provides mean-
ingful information used to determine whether to remove surfaces. Using Algorithm
it is possible to statistically classify surfaces as either visible or invisible. The visibility
information can then be used to either keep or remove surfaces. This yields Algo-
rithm 2] the simple surface reduction. The visibility query algorithm is bounded by
the quality of the graphics driver implementation and graphics hardware itself. These

Algorithm 2 SIMPLE-SURFACE-REDUCTION
Require: Set of viewpoints £
Require: Set of surfaces o
¢ < VISIBILITY-QUERY (¢, 0)
for all s such that s € o do
if ¢(s) = 0 then
Remove surface s {Surface s is invisible}
end if
end for

limitations are apparent in simple surface reduction algorithm above. Two or more ad-
jacent surfaces with very small projected areas, typically a pixel or less, can produce
visibility measures of zero for all but one of the surfaces (see Figure [2).

Figure 2: An example of very small surfaces on a model.

In Algorithm [2] small surfaces might be classified as invisible and therefore removed,
which often results in numerous holes and cavities (see Figure EI) As mentioned, this
occurs when two or more small surfaces share the same pixels and hence only a subset
of them are considered visible.

This can be counteracted by grouping small adjacent surfaces and analyzing their com-
bined visibility measure using neighboring.

neighboring A neighboring is a spatial clustering of radially adjacent surfaces. Given
a surface s and a radius r, the neighboring of s is a set of all surfaces s’ such that
distance(s,s’) <.

Following the definition of neighboring we define Algorithm[3] An on-demand neigh-
boring technique can be trivially added to Algorithm 2] see algorithm 4]

4.3 Implementation

The surface reduction algorithm was implemented and integrated with Spark Vision
Genesis software suite using Microsoft Visual C++ and NVSG SDK (NVIDIA Scene

Figure 3: An example of artifacts caused by sample errors in the simple reduction
algorithm.

Algorithm 3 NEIGHBORING
Require: Surfaces s
Require: Set of surfaces o
Require: Radius r
ve{0
for all s’ such that s’ € o do
if distance(s, s’) < r then
Insert s’ into v
end if
end for
return v

Graph Software Development Kit) with the OpenGL renderer.

The tessellated CAD models’ surfaces are sets of triangle strips and triangle fansﬂ
Hence, the implementation treats such sets rather than primitives such as triangles or
quadrilaterals as single surfaces. This granularity limitation has no significant impact

'Common computer graphics primitives [5] [6].

Algorithm 4 NEIGHBORING-SURFACE-REDUCTION
Require: Set of viewpoints £
Require: Set of surfaces o
Require: Neighboring radius r
¢ < VISIBILITY-QUERY (§, 0)
for all s such that s € o do
if ¢(s) = 0 then
v < NEIGHBORING(s, 0,7)
if > ., #(s') =0 then
Remove surface s
end if
end if
end for

on the outcome of the algorithm since such surfaces tend to be logically (and spatially)
coherent.

The final implementation uses a neighboring technique in addition to simple visibil-
ity queries. The simplistic tool interface exposes only the most frequently used and
most comprehensible parameters to the user (see Figure).

sometry Reduction =
Parameters
MNumber of samples: 500
Visibility percentage: 5

[y

Sample percentage:
Neighbouring radius: 5
[[JEnable dome {half-sphere) sampling

Use neighbouring

Scenegraph Reductions
Remove inactive switch children: Apply

Remove inactive state variants: Apply

Remove empty geonodes: Apply

Run

Figure 4: Surface reduction tool interface in Spark Vision Genesis. Number of samples
is the number of view points generated for the reduction pass. Visibility percentage
is the surface visibility requirement. Sample percentage is the surface view count re-
quirement. Neighbouring radius sets the radius of the neighbouring sphere. Enable
dome uses a half-sphere or dome instead of a sphere for neighbouring. Use neighbour-
ing enables or disables neighbouring. The buttons below are convenience tools and not
part of the algorithm.

5 Correction

5.1 Theory

In lack of better terminology surface correction in this thesis refers to the process of
orienting surfaces in a model coherently and correctly. This problem occurs when
using single-sided, as opposed to two-sided, rendering in computer graphics. Given
an arbitrary model, it is impossible to determine a definite outside or inside of that
model [4] (see Figure[3)). Hence, any surface correction algorithm must rely on some
assumption regarding what should be considered inside and outside.

Figure 5: An example of a Klein bottle which has no inside or outside, it is impossible
to determine which way its surface should face.

closed A closed set of primitives is a convex or concave volume with no holes or
openings.

Given the ambiguous nature of general surface orientation, a fundamental assumption
or axiom is needed to derive a meaningful algorithm. Assuming a model consisting
of a closed set of one-sided surfaces will be perceived exclusively from the outside of
its convex hull, every visible (not occluded) surface is front-facing. Suppose there is
a surface that is not front-facing. There is no surface occluding the backface of that
surface from the outside of the model. This means that there must be a hole in the
model, which is a contradiction since the model is closed.

A surface orientation is defined by the principal normal or average normal of that sur-
face. A plane or a triangle will have a single normal while a quadrilateral may have
two in which case the average of those two is the principal normal and hence orienta-
tion of that surface. Let the general surface orientation v for a surface consisting of N

triangles be defined as
1

where n; is the normal of the ¢th triangle.

A surface with center s and general orientation v, is considered erroneously oriented
in viewpoint v if it is visible from v and
v-(v—s
¥ <0 3)
o= sl2
that is, the general surface orientation is such that it is directed away from viewpoint
v. The surface is visible but back-facing and therefore considered erroneously oriented

with respect to v.

The condition in Equation [3| will not be accurate for very large, curved surfaces where
the normals differ greatly across the surface as shown in Figure [6| Though a more
fine-grained surface definition would remedy this.

Surface

Surface Normal

Camera

Figure 6: Errors introduced by general surface orientation and surface center for large
curved surfaces. Although the surface (thick line) is visible and correctly oriented, the
principal surface normal (arrow) is pointing away from the view vector (dashed line)
between the surface center and the camera.

5.2 Algorithm

Given a set of surfaces o and a set of viewpoints &, for every surface s € 0 and v € £
if visibility result ¢(s) > 0 and is s is back-facing from v then s is considered to be
erroneously oriented. Let 7)(s) denote the number of times s has been determined er-
roneously oriented.

Algorithm[3]is an extended version of Algorithm|I]that returns, in addition to visibility
information ¢, orientation statistics 7 given a set of surfaces o and a set of viewpoints

&

5.3 Implementation

The surface correction algorithm was implemented and integrated with Spark Vision
Genesis software suite using Microsoft Visual C++ and NVSG SDK (NVIDIA Scene
Graph Software Development Kit) with the OpenGL renderer.

The tessellated CAD models’ surfaces are sets of triangle strips and triangle fanﬂ
Hence, the implementation treats such sets rather than primitives such as triangles or
quadrilaterals as single surfaces. This granularity limitation has no significant impact

2Common computer graphics primitives [5] [6].

10

Algorithm S VISIBILITY-QUERY-WITH-ORIENTATION
Require: Set of viewpoints £
Require: Set of surfaces o
¢ — ({Visibility result mapping for surfaces}
n < 0 {Orientation result mapping for surfaces}
for all v such that v € £ do
Setup viewpoint v
Clear depth buffer
Use depth test function LESS
for all s such that s € o do
Render surface s
end for
Use depth test function EQUAL
for all s such that s € o do
o=occlusion—-query (s)
6(s) — (s) + 0
if ¢(s) > 0 and s is back-facing from viewpoint v then
n(s) —n(s)+1
end if
end for
end for
return ¢, n

on the outcome of the algorithm since such sets tend to be logically (and spatially) co-
herent.

The implementation uses a generalized visibility query internally as a foundation to
generate information needed for the high-level evaluation. The algorithm itself is sim-
ply a modified visibility query and the implementation reflects that by only augmenting
the results from a visibility query.

The interface to the surface correction tool is shown in Figure[7} This interface contains
a few simple related tools as well that were developed in the process. The automatic
“flip” uses the surface correction algorithm discussed in this section.

6 Results

6.1 Performance

In terms of running time, both algorithms require little computational overhead apart
from rendering the scene due to hardware accelerated occlusion queries. The resolution
of the frame buffer affects the outcome of both the reduction and correction algorithms,
since both algorithms rely on visibility queries which in turn uses the depth buffer. A
low resolution is more likely to produce erroneous or unwanted results. Therefore,
running either algorithm using spatially large models in a low resolution will most
likely produce less desirable results.

The whole is greater than the sum of its parts.

11

Common Properties

Visibility Percentage: &0
(visibleftotal=x)

Allowed Angle Deviation: | gq
(flip if 180-x<a<1804+x)

Automatic Flip

Mumber of Samples: 100

Flip whole geonodes only

l Auto-Flip In ” Auto-Flip Out

’ Flip Away From Me ” Flip Towards Me

l
l
’ Flip it!]
l

’ Flip some of it!

Figure 7: Surface correction tool interface in Spark Vision Genesis. Visibility percent-
age is the surface visibility requirement. Allowed angle deviation is the angle difference
allowed between the view direction and the surface’s average normal. Number of sam-
ples is the number of view points generated for the automated correction passes. Flip
whole geonodes only is a platform specific optimization for the algorithm where col-
lections of triangles or triangle strips are corrected instead of individual ones. Auto-flip
in corrects surfaces in such a way that they face inwards. Auto-flip out corrects surfaces
in such a way that they face outwards. Flip away from me performs a single correction
pass and turns visible surfaces away from the viewer. Flip towards me performs a sin-
gle correction pass and turns visible surfaces towards the viewer. The buttons below
are convenience tools and not part of the algorithm.

The graphics hardware, monitor and operating system limit the resolution at which the
algorithms can be run. There are several feasible solutions to address this resolution
limitation:

(i) use large off-screen depth buffer instead of the frame buffer;

(i1) use a tiling approach by rendering subsets of some desired resolution in multiple
passes;

(iii) dissect the model or scene and apply the algorithm on smaller parts.
Due to the nature of the input data on which these algorithms are used, given in the

assignment specification, the dissecting approach is used as the models are constructed
from smaller parts.

12

6.2 Correction

Qualifying the correction result is hard since it is a subjective matter how coherently the
surfaces of a model are oriented. Visual results are presented in Figure[9)in comparison
to Figure[§]

Figure 8: Before surface correction where blue/bright surfaces are front-facing (cor-
rect) and brown/dark surfaces are back-facing (incorrect).

Figure 9: After surface correction where blue/bright surfaces are front-facing (correct)
and brown/dark surfaces are back-facing (incorrect).

The correction algorithm relies on visibility and orientation statistics which requires
a more sophisticated neighboring or grouping scheme. Neighboring surfaces do not
necessarily have the same or even similar orientation. In fact, as seen in the right-
most image in Figure([8]the small surfaces around the icon differ greatly with respect to
orientation. A neighboring scheme for this situation must consult topology information
in order to perform a proper grouping of neighboring surfaces.

6.3 Reduction

Table[T] shows performance results of the reduction algorithm.

Technique Samples Vertices Faces
Original N/A 7693056 2315492
No neighboring 500 1209968 429407
Neighboring 750 1563424 523603
Neighboring 500 1549488 517797
Neighboring 250 1532304 511513
Neighboring 100 1503744 500 342

Table 1: Reduction algorithm results.

13

The algorithm not using any neighboring technique will naturally remove more sur-
faces, specifically small surfaces which often results in previously mentioned artifacts
such as holes and cavities. As expected, more samples will marginally increase the
final number of surfaces since the probability of a surface yielding occlusion query
samples increases. In practice, this is highly model dependent but generally, a higher
number of samples will remove less surfaces and produce a more correct result.

Figure 11: After surface reduction without neighboring.

In terms of running time, the neighboring extension has an insignificant (less than one
percent) performance penalty using a visibility map. The map contains grouping infor-
mation for small surface clusters.

14

Figure 12: After surface reduction with neighboring.

6.4 Meeting the Demands

In terms of visual demands, both algorithms performs well. Specifically, the reduction
algorithm (with the neighboring extension) removes surfaces conservatively in order to
prevent unwanted reduction.

Figure 13: A comparison of (left image) reduction without neighboring and (right im-
age) reduction with neighboring.

The correction algorithm successfully corrects a vast majority of the surfaces, although

15

some manual correction is still needed, mostly small or tucked away surfaces. A prim-
itive neighboring was added which improved accuracy on small surfaces, it is however
not a general solution and hence not discussed in-depth in this thesis.

Requirements of handling unpredictable data (namely surfaces generated through a
tessellation process) is targeted with very generalized algorithms with practically non-
existent assumptions. The input, however, is assumed to be meaningful in the sense
that it is expected to be a somewhat coherent volume of surfaces. That is, the model
construction is such that it has an inside and an outside.

A path and hemisphere extension was added to the reduction algorithm to be used in
special cases. The path extensions will generate samples following a given path instead
of generating random sample positions on an enclosing sphere around the model. The
hemisphere extension will restrict the spherical sample position generator to a hemi-
sphere, which can be used to increase performance on partial models occluded by flat
or planar surfaces.

The implementation of the algorithms has almost full parameterization of almost all
the steps, allowing the user to fully control the algorithms’ performance and tweak
their behavior depending on the input.

7 Conclusion

7.1 Discussion

Both implementations of the surface reduction and surface correction algorithms have
met the original demands and are used in production. The statistical approach yielded
very simple high-performance algorithms that work well in practice. Analytical, as
opposed to statistical, methods and algorithms reviewed were focused on surface sub-
division rather than reduction. They were soon ruled out as an approach due to the size
of the input data.

The work presented in this thesis is aimed at a practical application, as opposed to
a purely theoretical (proof-of-concept) approach. Algorithm and tools were developed,
tested and improved iteratively. There was no need to integrate the tools as the exist-
ing software was used as a development environment. The template mechanisms of
C++ allowed a policy based implementation parameterized over element granularity
(model, surface, triangle) without any performance penalty. Although the granularity
obviously implies memory and rendering penalties. Using the intermediate mode of
OpenGL allowed quick prototyping and profiling.

The visibility algorithm was as a natural step in the surface reduction algorithm design
process and was originally designed as such. However, the simplicity and versatility of
the algorithm enabled it to be used more generally and eventually as the foundation for
both the reduction and correction algorithms.

To reduce sensitivity to holes in the visibility algorithm, a primitive visible percent-

age mechanism was implemented to complement the original visibility measure. The
potential visibility measure used the occlusion query method without a depth test which

16

reflected the potential or maximum number of samples a surface could possibly yield.
Let 7 denote the visibility measure and w denote the potential visibility measure, then
the visible percentage or visible fraction A can be defined as A = 7/w. The algorithms
could, for instance, add the requirement A\ > 0.5, in other words that at least half of the
surface should be visible. However, the visible percentage scheme fails to accommo-
date surfaces which are intentionally partially hidden such that the visible percentage
is always less than the requirement.

7.2 Summary

This thesis has presented two algorithms addressing the problem of surface reduction
and surface correction. The focus has been on performance and fidelity. Both algo-
rithms have pros and cons, the statistical approach of the supporting visibility algorithm
infers statistical errors. Holes and cavities still present a problem for both algorithms.
The conservative visibility test is sensitive to holes which propagates to the governing
algorithm. In the surface reduction algorithm, holes tend to classify otherwise hidden
surfaces as visible. In the surface correction algorithm, holes tend to cause incor-
rect orientation following erroneous visibility statistics. For instance, a surface seen
through a hole will be corrected if it is back-facing with respect to the current view-
point.

The statistical visibility algorithm was the foundation for both tools presented and can
perhaps be used for others as well. An extension to the reduction algorithm or perhaps
a separate tool to solve the problem of duplicate surfaces might be derived from the
same principle.

7.3 Future Work

The statistical method used for the surface correction algorithm might be too crude and
is, as a result of the orientation evaluation, not eligible for neighboring techniques. The
orientation of a surface is not a simple or boolean property, it is not subject to neigh-
boring or grouping in the same way as visibility. However, an orientation analysis of
neighboring surfaces might work well as a complementary post-processing step to the
current surface correction algorithm.

The surface correction algorithm might be modified to use a propagation technique
in order to correct neglected surfaces. As shown in images above, perhaps most no-
tably Figure [[4] the surface correction algorithm neglects small surfaces as it has no
neighboring or grouping technique. By propagating the surface corrections using a
post-processing neighboring step, even these surfaces might be fully corrected as well.

The surface reduction and surface correction implementations both assume some sort
of meaningful data, albeit scrambled. This implies that the models should have an out-
side and an inside and are fairly interconnected, as opposed to being constructed from
fully disjoint surfaces. This requirement is currently forced by the underlying software
platform but should be relaxed or at least optional.

A common and important problem is double surfaces, these are two or more surface

duplicates, erroneously generated or created during the model tessellation or design.
Using the depth buffer method to identify surfaces cannot handle surface duplicates

17

Figure 14: Incorrect surfaces still present after running the surface correction algo-
rithm.

properly. It might be possible to add a preparation step and remove duplicate surface
using a modified version of the reduction algorithm by removing surfaces on a first-
served basis.

18

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

MARK SEGAL, KURT AKELEY, The OpenGL Graphics System: A Speci-
fication (Version 1.5), Silicon Graphics Inc, 2003.

K. HILLESLAND, B. SALOMON, A. LASTRA, D. MANOCHA, Fast and
Simple Occlusion Culling using Hardware-Based Depth Queries, Univer-
sity of North Carolina at Chapel Hill.

D. STANEKER, D. BARTZ, M. MEISSNER, Improving Occlusion Query
Efficiency with Occupancy Maps, University of Tiibingen, Germany, 2003.

WEISSTEIN, ERIC W., Klein Bottle, From MathWorld — A Wolfram Web
Resource, |http://mathworld.wolfram.com/KleinBottle.
htmll

WIKIPEDIA, Triangle Strip, From Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Triangle_strip.

WIKIPEDIA, Triangle Fan, From Wikipedia, the free encyclopedia, http:
//en.wikipedia.org/wiki/Triangle_fan.

DONALD HEARN, M. PAULINE BAKER, Computer Graphics (C Ver-
sion), Second Edition, International Edition, Prentice-Hall International
Inc., University of Illinois.

JOHNNY WIDERLUND, Increasing Realism in Real-Time Visual Simula-
tions using Hardware Accelerated Progressive Radiosity, Department of
Computer Science, Gothenburg University, 1999.

DENNIS G. ZILL, MICHAEL R. CULLEN, Advanced Engineering Mathe-
matics, Second Edition, Jones and Bartlett Publishers, 2000.

MICHAEL T. GOODRICH, ROBERTO TAMASSIA, Data Structures and Al-
gorithms in Java, Second Edition, John Wiley & Sons Inc., 2001.

JON KLEINBERG, EVA TARDOS, Algorithm Design, Cornell University,
Pearson Education Inc., 2006.

WIKIPEDIA, Hidden surface determination, From Wikipedia, the
free encyclopedia, http://en.wikipedia.org/wiki/Hidden_
surface_determination.

SGI, ARB Occlusion Query, OpenGL Extension Registry,
http://oss.sgi.com/projects/ogl-sample/registry/
ARB/occlusion_query.txtl

MASON W00, JACKIE NEIDER, ToM DAVIS, OpenGL Programming
Guide Second Edition, Silicon Graphics Inc., 1997.

VELEBA, D., FELKEL, P., Survey of Errors in Surface Representation
and their Detection and Correction, Czech Technical University, Faculty
of Electrical Engineering.

19

http://mathworld.wolfram.com/KleinBottle.html
http://mathworld.wolfram.com/KleinBottle.html
http://en.wikipedia.org/wiki/Triangle_strip
http://en.wikipedia.org/wiki/Triangle_fan
http://en.wikipedia.org/wiki/Triangle_fan
http://en.wikipedia.org/wiki/Hidden_surface_determination
http://en.wikipedia.org/wiki/Hidden_surface_determination
http://oss.sgi.com/projects/ogl-sample/registry/ARB/occlusion_query.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/occlusion_query.txt

[16]

[17]

[18]

[19]

[20]

[21]

MARTIN CVETANOV MARINOV, Automatic Generation of Structure-
Preserving Models for Computer-Aided Geometric Design, Aachen, Techn.
Hochsch., Diss., 2006.

G. SUSSNER, G. GREINER, S. AUGUSTINIACK, Interactive examination
of surface quality on car bodies, Computer Graphics Group, University of
Erlangen, 2003.

WIKIPEDIA, Polygon triangulation, From Wikipedia, the free en-
cyclopedia, http://en.wikipedia.org/wiki/Polygon_
triangulation.

MARTIN FRANC, VACLAV SKALA, Parallel Triangular Mesh Reduc-
tion, Proceedings of ALGORITHMY, Conference on Scientific Comput-
ing, 2000.

STAN MELAX, A Simple, Fast, and Effective Polygon Reduction Algorithm,
Game Developer Magazine, 1998.

WIKIPEDIA, Tessellation, From Wikipedia, the free encyclopedia, http:
//en.wikipedia.org/wiki/Tessellation.

20

http://en.wikipedia.org/wiki/Polygon_triangulation
http://en.wikipedia.org/wiki/Polygon_triangulation
http://en.wikipedia.org/wiki/Tessellation
http://en.wikipedia.org/wiki/Tessellation

	Master of Science Thesis in Computer Science and Enginerring
	PER LINDSTRAnd

	Introduction
	Assignment
	Background
	Prerequisites
	Previous Work

	Overview
	Glossary
	Graphics Hardware Acceleration

	Visibility
	Local and Global Visibility
	Depth Masking
	Algorithm

	Reduction
	Theory
	Algorithm
	Implementation

	Correction
	Theory
	Algorithm
	Implementation

	Results
	Performance
	Correction
	Reduction
	Meeting the Demands

	Conclusion
	Discussion
	Summary
	Future Work

