
Soft Shadow Volumes for Ray Tracing with Frustum Shooting

Thorsten Harter∗

Chalmers University of Technology
University Karlsruhe

Markus Osswald†

Chalmers University of Technology
University Karlsruhe

Ulf Assarsson‡

Supervisor
Chalmers University of Technology

Abstract

We present a new variant of the algorithm of [Laine et al.
2005] for rendering physically-based soft shadows in ray
tracing-based renderers. Our method replaces the inter-
nal acceleration data structure, a variant of the hemicube
[Cohen and Greenberg 1985], to store potential silhouette
edges. Instead we use a kd-tree [Havran 2000] and differ-
ent building, storing and accessing techniques. Compared
to the original algorithm, these changes lower the memory
consumption of the soft shadow calculation, but increase the
running time. We tested all our modifications for running
time, memory consumption and efficiency.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Shadowing; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and
Realism—Visible line/surface algorithms

Keywords: shadow algorithms, visibility determination

1 Introduction

In this paper we describe our attempt to replace the
hemicube in the soft shadow volume algorithm of [Laine
et al. 2005] with frustum shooting from the point to be
shaded to the rectangular area light source. We tested this
different approach to find the silhouette edges that affect vis-
ibility regarding computing time and memory consumption.

The basic idea is to use a space partitioning of the scene
not only for increasing ray tracing efficiency, but also for gen-
erating soft shadows. Space is divided recursively by planes
into non-overlapping regions, so that any point in space can
be identified to lie in exactly one of the regions. Those re-
gions form a hierarchy, a space-partitioning tree. We decided
to use a 3-dimensional kd-tree as data structure, which uses
only splitting planes perpendicular to the coordinate axes
to divide space. The advantage of this is that the resulting
regions form axis-aligned bounding boxes. Those are very
easy to handle, e.g. the intersection with each other, with
a ray or with the frustum planes. Each node of the tree is
assigned the position and the extensions of an axis-aligned

∗e-mail: thorsten.harter@web.de
†e-mail: markus osswald@web.de
‡e-mail: uffe@ce.chalmers.se

Figure 1: This image was rendered using our variant of the
soft shadow volume algorithm with frustum shooting.

bounding box and a list of all edges that are possible silhou-
ette edges from the light source and that are completely or
partly contained in this box. This replaces building penum-
bra wedges for all possible silhouette edges and storing them
into a hemicube-like data structure.

In Section 3.1 we describe how we build the kd-tree, in
particular how we decide where to place the splitting planes.
We tried two different methods and analysed their practica-
bility.

Section 3.2 explains how we shoot a frustum during shad-
ing to get a list of possible silhouette edges. The data struc-
ture of an edge contains the plane equations of the two adja-
cent triangles. This allows to test if it is an silhouette edge
from the point to be shaded. The reconstruction of the vis-
ibility function is done exactly as described in [Laine et al.
2005].

We compare five different versions of our new and the
original algorithm and analyse the differences in Section 4.
Only one version (0.6) uses less memory then the original
algorithm while still achieving acceptable rendering times.

2 Previous Work

This section concentrates mainly on the explanation of the
soft shadow volume algorithm presented by [Laine et al.
2005]. The method replaces the hundreds of shadow rays
commonly used in stochastic ray tracers with a single shadow
ray and a local reconstruction of the visibility function.
Compared to tracing shadow rays, this approach gives a clear

Figure 2: Determining silhouette edges from the light source.
The planes of two triangles connected to an edge define four
subspaces. If the light source lies entirely inside the – or ++
subspace, the edge cannot be a silhouette edge. Otherwise,
the edge is a potential silhouette edge, as in the case depicted
in the figure. Courtesy of [Laine et al. 2005]

speedup.

The algorithm can be divided into two different stages. In
the pre-processing stage, silhouette edge information is ex-
tracted from the whole scene and stored into a static acceler-
ation structure. This structure is a variant of the hemicube
[Cohen and Greenberg 1985]. The second stage describes
the shadow query for a point p in the scene. In this stage,
first a list of penumbra wedges of all potential silhouette
edges is created by projecting the point p on the surface of
the hemicube. A penumbra wedge is the bounding volume
of the penumbra region defined by a silhouette edge. After
that, the edges in the list are worked off by checking each
for being a silhouette edge from p. The ones that pass the
test are projected onto the area light source. Now only one
shadow ray from the area on the light source with the low-
est depth complexity is checked for occlusion to decide how
much of the light source is visible from point p.

2.1 Acceleration structure

To understand the differences between our new method of
saving the potential silhouette edges in the pre-processing
stage and the method of using a variant of the hemicube
[Cohen and Greenberg 1985] needs a detailed view on the
old data structure. The relevant silhouette edges to store in
the hemicube must satisfy the criterion to be a silhouette
edge from at least one point on the light source. If this
criterion does not apply, then the edge can not be silhouette
edge from any point of the scene. For this, the area light
vertices have to be checked against the triangle planes of
the triangles connected to the edge as illustrated in Figure
2. If there is only one triangle connected to the edge it must
always be considered as a potential silhouette edge.

After constructing penumbra wedges for the potential
silhouette edges using a robust algorithm [Assarsson and
Akenine-Möller 2003], the hemicube footprint is conserva-
tively rasterised into the hemicube as illustrated in Figure
3. After rasterisation, each cell of the hemicube contains a
list of wedges whose footprint intersects the cell.

In practice, the memory consumption of the hemicube
may grow to an unacceptable level. To conserve memory
each face of the hemicube is represented by a multiresolution
grid.

Figure 3: 2D illustration of how the hemicube footprints
of penumbra wedges can be used for deciding whether the
corresponding silhouette edge may overlap the light source
from a given point. The intersection of the wedge and the
surface of the hemicube is the hemicube footprint of the
wedge. To determine if point p may be inside the wedge,
the point is projected onto the surface of the hemicube from
the center of the light source. If the projected point p’ is
inside the hemicube footprint of the wedge, point p may
be inside the wedge. Otherwise point p is guaranteed to
be outside the wedge, and consequently the silhouette edge
does not overlap the light source from p. Courtesy of [Laine
et al. 2005]

2.2 Finding silhouette edges from a point

In this part, the second stage including the execution of the
shadow query is explained in detail. The shadow query is
executed for a point p and it returns as result which light
samples are visible from that point. At first, p is projected
onto the surface of the hemicube to find out in which wedges
p is situated. A list of edges is created by collecting the
wedges from all levels of the multiresolution grid. After that,
it has to be decided which ones are silhouette edges from p
and overlap the light source. The first test is to check if the
edge is indeed inside the wedge, which corresponds to testing
that the edge E overlaps the light source from p. After that
it has to be checked if edge E is a silhouette edge from p by
testing the point against the triangle planes of the triangles
connected to edge E similar as illustrated in Figure 2. If
there is only one triangle connected to the edge, it is always
a silhouette edge.

Figure 4: Illustration of the depth complexity function. (a)
Two occluders are located between point p and the light
source. (b) The occluders projected on the light source from
p. (c) The depth complexity function tells the number of
surfaces that overlap a point on the light source. (d) The
visibility function is reconstructed from the depth complex-
ity function. Courtesy of [Laine et al. 2005]

2.3 Local reconstruction of the visibility function

The second part of the shadow query is to decide which sam-
ples are visible from point p. Therefore, the silhouette edges
from p are projected onto the area light source. These pro-
jected silhouette edges now represent relative changes of the
depth complexity function. The depth complexity function
of a point s on the light source is defined as the number of
surfaces a ray from p to s intersects (Figure 4). Point s is
only visible if the depth complexity of s is 0. It is now pos-
sible to calculate the depth complexity for each light sample
on the light source. After that, only one reference ray from a
light sample with the lowest depth complexity to p is needed.
If it is occluded, all other light samples are also occluded.
Otherwise the samples with the lowest depth complexity are
visible.

3 Frustum Shooting

In this section we will give a detailed description of our al-
gorithm and where it differs from the hemicube algorithm.
The pseudocode in Figure 5 gives a short overview.

CONSTRUCT KD-TREE
1 build an AABB with the extents of the scene
2 add all triangles to the triangle list of the root node
3 for each edge E
4 if E is a potential silh. edge from the light source
5 add E to the edge list of the root node
6 end if
7 end for
8 while termination criteria not met
9 subdivide root node recursively (split boxes, triangle

lists and edge lists)

SHADOW-QUERY(point p)
10 clear depth complexity counters of light samples
11 intersect frustum from p to the area light with the

kd-tree
12 LE ← list of edges in the frustum
13 for each edge E in LE

14 if E is a silhouette edge from p
15 project E onto the surface of the light source
16 update depth complexity counters of light samples
17 end if
18 end for
19 cast a shadow ray to a light sample with lowest depth

complexity
20 if ray is blocked
21 return all light samples are hidden
22 else
23 return light samples with lowest depth

complexity are visible
24 end if

Figure 5: A short description of the changed soft shadow
volume algorithm. CONSTRUCT KD-TREE builds a space-
partitioning data structure which stores the edges in the
scene. SHADOW-QUERY finds relevant edges by shooting
a frustum which intersects the kd-tree.

Instead of storing penumbra wedges in the hemicube in
the preprocessing stage, we construct a kd-tree and store for

each node a list of edges which are contained in its axis-
aligned bounding box. Edges that can not be silhouette
edges from any of the area lights in the scene are discarded.
When the shadow query is executed, instead of projecting
the point p to be shaded on the hemicube, we shoot a frus-
tum from p to the four corners of the area light source. By
intersecting this frustum with the boxes of the kd-tree we
get a list LE of all the edges in the frustum. This list is
then processed as described in Section 2.3. In Section 3.1
the construction of the kd-tree is described and Section 3.2
explains how the frustum shooting is done.

3.1 Construction of the kd-tree

A kd-tree (short for k-dimensional-tree) is a space partition-
ing data structure. kd-trees are a special case of BSP trees.
While arbitrary splitting planes can be used in a BSP tree,
a kd-tree uses only splitting planes perpendicular to the co-
ordinate axes.

Figure 6: Visualisation of the simple subdivision algorithm
in 2 dimensions: Each box is split exactly in half until there
are no more than two triangles in a box. If a triangle is
intersected by a splitting line it is assigned to the lists of
both resulting boxes. The numbers at the lines indicate the
level of recursion. In this example eight subdivisions occur.
The resulting tree has a depth of five and nine leaves.

Figure 7: The surface area heuristics is supposed to isolate
geometry from empty space. Each box is split at the split-
ting position with minimum cost. Since this method always
chooses a splitting position at a triangle vertex, it decreases
the risk of intersecting a triangle and thus storing it in more
than one list. In this example five subdivisions occur. The
resulting tree has a depth of five and six leaves.

The root node of our kd-tree is assigned an axis-aligned
bounding box with the extents of the scene, a list of all
triangles and a list of all possible silhouette edges. For de-
ciding if an edge is a possible silhouette edge from the light
source we use the method explained in Figure 2. Depending
on the scene this allows us to discard a high percentage of
the edges and thus save memory and computing time. The
root node invokes the recursive subdivide method which
creates two child nodes. The axis-aligned bounding box is
split in two and each of the two child nodes is assigned to
one of the resulting boxes. Each triangle and edge in the list
of the parent node is tested against the splitting plane and
then assigned to the list of the proper node. If a triangle
or a edge intersects the splitting plane it will be assigned
to the lists of both nodes. Then, the two child nodes are
processed recursively until one of the termination criteria is
met.

We used the following two criteria:

1. number of triangles in the box < given number

2. size of the box < given number

By trying different values for these two termination criteria,
depth and size of the kd-tree can be changed. This allows
to find a good compromise between construction time of the
tree and rendering time.

There are different approaches to choose the splitting axis
and the position of the splitting plane on the axis. First we
used a very simple strategy: The box is split in half on the
axis on which it has its largest extension. A visualisation of
this is shown in Figure 6.

Then we tried something more sophisticated to determine
the position of the splitting plane. The surface area heuristic
as described in [Havran 2000] should help to isolate geometry
from empty space and thereby decrease intersection tests.
Figure 7 shows its application on a 2-dimensional example
and can be compared to the simple method shown in Figure
6.

For defining the splitting cost we first calculate the
surface area SA of a box, which determines the chance that
this box is hit by a ray:

SA = 2 ∗ (width ∗ height + height ∗ depth + depth ∗ width)

The cost of splitting a box at a particular position is
calculated by adding the costs of the two resulting boxes.
The following formula calculates the cost for splitting a box:

splitCost = traversalCost + (SA(lchild) ∗ prims(lchild) +
SA(rchild) ∗ prims(rchild))/intersectionCost

where:
traversalCost = 0.3
SA(node) = surface area of this node
prims(node) = number of primitives of this node
intersectionCost = SA(parent node)

To find the optimal split plane position, we determine the
minimum of splitCost for all possible splitting positions. We
are searching for the optimal position at the boundary of a
primitive, since the number of primitives does not change
between the boundaries of two primitives. Therefore we use
a list of the positions of all the vertices in the box on the
splitting axis. Despite this restriction it is an immense effort
to determine the surface area and number of primitives of
the resulting boxes for each splitting position candidate.

Besides the two previously mentioned termination criteria
there is now a third one.

3. splitCost < cost for leaving

If the cost for splitting a box is higher than leaving it as it
is, it will not be split. We used the number of primitives in
the box as cost for not splitting.

In Chapter 4 we will discuss the results we got from using
the two different approaches for building the kd-tree.

3.2 Intersection of Frustum and kd-tree

For every point p to be shaded and for every area light
source, we have to determine the edges which can be possible
silhouette edges.

Therefore, we intersect the frustum from p to the four
corners of the area light source with the boxes of the kd-
tree, as shown in Figure 8. We begin with the box of the
root node and then walk through the tree. If the box of an
inner node is intersected by the frustum, one child node is
put on a stack and the other child node is tested next. If the
box of a leave node is intersected or if a box is completely
contained in the frustum, the edge list of this node is added
to the list of possible silhouette edges LE and the next node
is taken from the stack. If the box is completely outside of
the frustum, we continue with the next node from the stack.
The pseudocode for this method is shown in Figure 9.

The point p is inside one of the boxes. Thus, there will be
at least one box which is intersected by or contained in the
frustum every time, but since not all boxes contain possible
silhouette edges the returned edge list LE may be empty.

For the box-frustum intersection test we used the algo-
rithm described by [Assarsson and Möller 2000]. For each of

Figure 8: The frustum from the point p to the rectangular
light source intersects the marked box. All the edges in this
box will be added to LE , although not all of them are inside
the frustum.

GET EDGES IN FRUSTUM(point p)
1 current node ← root node
2 while nodes left
3 while current node is inner node
4 get box of current node
5 execute box frustum intersection test
6 if box inside frustum
7 add edgelist of current node to LE

8 current node ← pop from stack
9 else

10 if box intersects frustum
11 current node ← get left child node
12 put right child node on stack
13 else //box outside frustum
14 if stack empty
15 return
16 else
17 current node ← pop from stack
18 end if
19 end if
20 end if
21 end while
22 //current node is leaf
23 execute box frustum intersection test
24 if box intersects frustum or box inside frustum
25 add edge list of current node to LE

26 end if
27 current node ← pop from stack
28 end while

Figure 9: This method walks through the kd-tree and adds
the edges of all the boxes that are inside the frustum or
intersected by the frustum to LE .

the five frustum planes we do a box-plane intersection test,
which can be done by testing the two end points of the di-
agonal most closely aligned with the plane’s normal, the so
called n- and p-vertices.

Finding the n- and p-vertices can be done in 3 comparisons
respectively:

for each axis
if planeNormal[axis] > 0

n-vertex[axis] ← min[axis]
else

n-vertex[axis] ← max[axis]

for each axis
if planeNormal[axis] > 0

p-vertex[axis] ← max[axis]
else

p-vertex[axis] ← min[axis]

where:
min[axis] = minimum coordinate of the box on axis
max[axis] = maximum coordinate of the box on axis

First the n-vertex is inserted in the plane equation and if
it is outside, the box is outside the plane. If it is inside, the
p-vertex is tested. If it is inside, the box is inside the plane,
otherwise it intersects the plane.

With this method we test the box against the for side
planes of the frustum and the plane of the area light. If the

box is outside one of the five planes it is outside the frustum.
If it is inside all five planes, it is inside the frustum, otherwise
it intersects the frustum.

After all edges in the frustum have been found, every edge
is tested if it is a possible silhouette edge from the point to
be shaded. The resulting edge list is then processed exactly
as described for the original algorithm in Chapter 2.

Figure 10: The negative far point (n-vertex) and positive far
point (p-vertex) of a bounding box corresponding to plane
π and its normal. Courtesy of [Assarsson and Möller 2000]

4 Results

Comparison method We compared our implementation
against the original one of the soft shadow volumes algo-
rithm using a variant of the hemicube [Cohen and Greenberg
1985] based on our own implementation of a raytracer using
a kd-tree to store and fast access the scene primitives. We
tested different versions and methods against the original
implementation:

Version 0.4 gets the potential triangles in the frustum
from the kd-tree leaves which contain all triangles of
the scene and then constructs edges out of the trian-
gles.

Version 0.5 first constructs all edges of the scene before
building the kd-tree and stores them in the leaves of
the kd-tree. It gets the edges in the frustum from the
leaves.

Version 0.51 stores the edges also in non-leaves which ac-
celerates the tree traversal, but increases the memory
consumption.

Version 0.6 stores only possible silhouette edges in the kd-
tree and uses a faster box-frustum intersection. The
edges found in the frustum (pseudocode in Figure 9)
are no longer stored in an array. Instead we use a set
with hash table to accelerate insert and find operations.

Version 0.61 stores the potential edges also in non-leaves
which accelerates the tree traversal, but increases the
memory consumption.

Scenes and setup We tested our variant of the soft shadow
volumes algorithm in five scenes, shown in Figure 11. The
Grids scene is a geometrically simple scene (262 triangles),
but it has big penumbra regions. Another characteristic of
the scene is that all silhouette edges are single edges, which

Scene Resolution # Triangles kd-Tree Depth # Leaves

Grids 800x600 262 17 163
Objects 800x600 4.520 23 4.738
Temple 800x600 39.599 23 16.323
Cubes 800x600 108.000 23 90.452
Ball 800x600 229.088 22 137.750

Table 1: Details of test scenes

No Shadow Hemi. Frust. 0.4 Frust. 0.5 Frust. 0.51 Frust. 0.6 Frust. 0.61

Grids
Build Tree 0 s 0 s 0 s 0 s 0 s 0 s 0 s
Area Lights 0 s 0 s 0 s 0 s 0 s 0 s 0 s
Rendering 2 s 7 s 28 s 22 s 22 s 23 s 23 s
Sum 2 s 7 s 28 s 22 s 22 s 23 s 23 s
Comparison 0.3 1.0 4.0 3.1 3.1 3.3 3.3
Memory (MB) - 1.2 0.7 0.7 0.9 0.7 1.0
Non-Silh. - 0% - - 100% 0% 0%

Objects
Build Tree 0 s 0 s 0 s 0 s 0 s 0 s 0 s
Area Lights 0 s 1 s 0 s 0 s 0 s 0 s 0 s
Rendering 2 s 6 s 28 s 22 s 22 s 23 s 23 s
Sum 2 s 7 s 28 s 22 s 22 s 23 s 23 s
Comparison 0.3 1.0 4.0 3.1 3.1 3.3 3.3
Memory (MB) - 1.6 0.8 2.2 5.2 1.0 1.4
Non-Silh. - 60% - - 93% 76% 76%

Temple
Build Tree 1 s 1 s 0 s 2 s 1 s 1 s 1 s
Area Lights 0 s 1 s 0 s 0 s 0 s 0 s 0 s
Rendering 2 s 9 s 334 s 468 s 396 s 58 s 72 s
Sum 3 s 11 s 334 s 470 s 397 s 59 s 73 s
Comparison 0.3 1.0 30.4 42.7 36.1 5.4 6.6
Memory (MB) - 6 0 11 38 2 7
Non-Silh. - 51% - - 91% 50% 50%

Cubes
Build Tree 3 s 4 s 3 s 7 s 5 s 4 s 4 s
Area Lights 0 s 0 s 0 s 0 s 0 s 0 s 0 s
Rendering 7 s 13 s 243 s 169 s 156 s 57 s 57 s
Sum 10 s 17 s 246 s 176 s 161 s 61 s 61 s
Comparison 0.6 1.0 14.5 10.4 9.5 3.6 3.6
Memory (MB) - 7 0 30 95 4 10
Non-Silh. - 0% - - 87% 7% 7%

Ball
Build Tree 5 s 5 s 4 s 17 s 7 s 8 s 6 s
Area Lights 0 s 3 s 0 s 0 s 0 s 0 s 0 s
Rendering 15 s 51 s 563 s 232 s 235 s 176 s 421 s
Sum 20 s 59 s 567 s 249 s 242 s 184 s 427 s
Comparison 0.3 1.0 9.6 4.2 4.1 3.1 7.2
Memory (MB) - 34 0 65 208 19 61
Non-Silh. - 26% - - 74% 29% 29%

Table 2: This table shows the test results for the five different test scenes. The measured times are the time to build the
kd-tree, to build the area lights including building the hemicube and the time for rendering the image. The Memory row
specifies how much memory is needed for the soft shadow calculation. The non-silhouette ratio is an indicator for the number
of edges which are found in the hemicube/frustum as potential silhouette edges but are discarded. This happens when the
result of the silhouette test similar to the test in Figure 2 of the point to be shaded against the planes of the adjacent triangles
of this edges is negative.

(a) Grids (b) Objects (c) Temple

(d) Cubes (e) Ball

Figure 11: Test scenes

Scene Method Frust 0.51 Frust. 0.6 Frust 0.61

Grids

shadow query 19 s 20 s 19 s
edge validation 0.5 s 2.2 s 2.2 s
cast reference ray 2.6 s 2.6 s 2.5 s
box/frustum intersection 9.7 s 6.0 s 5.9 s
add edges 3.1 s 5.7 s 5.8 s
added edges (106) - 14.2 14.2

Objects

shadow query 34 s 21 s 20 s
edge validation 0.8 s 1.0 s 1.0 s
cast reference ray 2.5 s 2.5 s 2.5 s
box/frustum intersection 21.0 s 12.4 s 12.0 s
add edges 6.6 s 2.5 s 2.5 s
added edges (106) - 7.08 7.03

Temple

shadow query 393 s 56 s 69 s
edge validation 1.7 s 5.0 s 7.2 s
cast reference ray 1.6 s 1.6 s 1.5 s
box/frustum intersection 25 s 14 s 14 s
add edges 358 s 25 s 43 s
added edges (106) - 23.3 20.5

Cubes

shadow query 149 s 51 s 50 s
edge validation 2.0 s 2.3 s 2.2 s
cast reference ray 4.3 s 4.3 s 4.2 s
box/frustum intersection 45 s 33 s 32 s
add edges 86 s 6.4 s 6.3 s
added edges (106) - 13.5 13.3

Ball

shadow query 219 s 159 s 405 s
edge validation 5.6 s 16 s 18 s
cast reference ray 18 s 19 s 18 s
box/frustum intersection 93 s 56 s 55 s
add edges 80 s 53 s 299 s
added edges (106) - 95.4 95.2

Table 3: Running time of the most important shadow query methods in detail

(a) Version 0.6, Athlon XP (b) Version 0.6, Athlon 64

(c) Version 0.61, Athlon XP (d) Version 0.61, Athlon 64

Figure 12: Comparison of the computing times for the box-frustum intersection method and the add edges method on two
different processors. The time for the box-frustum intersection method corresponds approximately to the number of triangles
in the scene. The time for the add edges method corresponds in most cases to the total number of edges that have been added
but depending on the used processor it differs greatly from the expected result.

means that they are only connected to one triangle. The
Objects scene is a little bit more complex (4.5k triangles)
and contains single edges as well as double edges. Temple
(40k triangles) and Cubes (108k triangles) slowly increase
the number of triangles to store in the acceleration data
structure. The most complex scene is Ball (230k triangles).
It consists of a huge number of objects which all throw a soft
shadow.

In all scenes, we deactivated the ray casting recursion for
specular materials to concentrate on the calculation of the
soft shadows. The scenes are all of the same size so that
the penumbra regions of similar area light sources are sized
equal.

The performance measurements were run on a 2.0GHz
Athlon64 3200+ in 32bit mode with 1 GB of memory. As
output resolution we choose 800x600 to compromise between
having useful results and keeping the execution time man-
ageable.

As characteristics for the kd-tree we chose as termination
criteria for the subdivision algorithm less than ten trian-
gles in a box or size of a box less than 0.5% of the size of
the biggest, the scene box. We tried several other settings
and came to the conclusion that this settings are the best
compromise between speed and memory consumption. For
determining the splitting position, we had to use the simple
split-in-half strategy. The surface area heuristics speed up
rendering time by 5 - 10%, but the time for constructing the
kd-tree grew exponentially and the method was therefore
not applicable for bigger scenes. Table 1 gives details about
each scene and its kd-tree.

Performance analysis Table 2 lists the performance mea-
surements from our test scenes. Generally, we had to realise

that we could not achieve the performance of the original
implementation. The best result was obtained with Version
0.6 in the Ball scene where our modification was only 3.1
times slower than the original algorithm. Positive was that
we lowered the memory consumption for the soft shadow
calculation of this scene by 44%.

Version 0.4: Our first approach yielded a very bad re-
sult. In the simple scenes, the runtime is acceptable. How-
ever, if the scenes become more complex, meaning that the
kd-tree contains more leaves, the fact that the edges al-
ways have to be extracted from the triangles leads to a huge
penalty. The only positive aspect of this version is that we do
not use any extra memory for the edges because the triangles
are already stored in the kd-tree for the ray intersection.

Version 0.5: Because of this bad result, we decided to
shift the extraction of the edges and generation of the planes
of the connected triangles to the kd-tree buildup. This has
the consequence that we now also have to save the edges in
the nodes of the kd-tree which leads to a memory consump-
tion that is higher than that of the hemicube. As expected,
the runtime decreased: e.g. for the Cubes scene from 14.5
times to 10.4 times the runtime of the hemicube implemen-
tation. The only thing left to do when finding a node whose
box intersects the frustum is to add the edges of this node to
an array and to check for the array for double added edges.
A surprising result is that in the Temple scene the runtime
increases by about 35%.

Version 0.51: To speed up the collecting of the edges in
the frustum we decided not to delete the edge lists in the
non-leaf nodes of the kd-tree. This has the effect that we
do not have to collect the edge lists of the child leaves of a
node that is completely inside the frustum. Another posi-
tive consequence is that we now have less double added edges

because it is not unusual that in the subdivision method an
edge is added to both child nodes. A negative effect is that
we increased the memory consumption by up to 3.5 times.
But the results of the runtime measurements could not ver-
ify our assumption. If there was a speedup it was so small
that it could not justify the increased memory consump-
tion. We also activated the statistics of the soft shadow
volumes library and added some new outputs to analyse
the efficiency of our algorithm. The non-silhouette ratio is
an indicator for the number of edges which are found in
the hemicube/frustum as potential silhouette edges but are
discarded. This happens when the result of the silhouette
test in Figure 2 is negative (i.e., testing the point to be
shaded against the edge’s adjacent triangle planes). The
non-silhouette ratio for version 0.51 is with about 70% to
90% much higher than the ratio of the hemicube implemen-
tation. For the Grids scene the non-silhouette ratio is 100%,
because each edge pair in the scene has two adjacent trian-
gles that lie in one plane. Therefore, it will definitely fail the
silhouette test. All silhouette edges of this scene are single
edges. It is obvious that the reason for this inefficient behav-
iour of our algorithm is the missing pre-selection of potential
silhouette edges of the scene.

Version 0.6 and Version 0.61: To enhance our im-
plementation we added a pre-selection of potential silhou-
ette edges to the extraction of the edges from the triangles.
That means that for every edge the vertices of the rectan-
gular area light source are checked against the planes of the
adjacent triangles as illustrated in Figure 2. Now the kd-
tree only contains edges which can be a silhouette edge from
some point in the scene. As a result the memory consump-
tion sank below that of the original implementation using
the hemicube. The non-silhouette ratio is now close to that
of the hemicube implementation. The running time is the
lowest we could achieve with our approaches.

The modification from version 0.6 to 0.61 is completely
analog to that of the version 0.5 to 0.51. Except for the
Temple and the Ball scene the running times hardly change.
The increasing memory consumption listed in Table 2 is out
of all proportion to the number of added edges listed in Table
3. Hence, we regard version 0.6 as our best result.

Table 3 and Figure 12 show anomalies in the computing
time of the add edges method, which transforms edges from
world to light coordinates and inserts them into a set. In
some cases the measured time was ten times higher than ex-
pected. Those results were reproducible. The only possible
explanation we can think of is that cache thrashing occurs
in those special cases.

Generally, we noticed that with this test scenes and this
setup we got the best test results for the comparison with the
hemicube implementation. If we enlarge the penumbra area
by changing the distance to the area light source or the size
of the light source the test results become worse. In some
cases while the hemicube implementation had a runtime of a
few seconds we waited in vain for any progress while running
our implementation for several minutes.

5 Discussion and Future Work

Our alternative approach for the generation of soft shadows
does not achieve the performance of the original algorithm.
Even in the best suited test scenes the computing time is
3-times as long. The positive aspect is that the memory
consumption has been reduced somehow.

The use of a kd-tree as the data structure for storing the
edges is problematic since an unfavourable subdivision of the

scene can result in longer computing times. Maybe another
subdivision algorithm than the unflexible divide-in-half and
the impracticable surface area heuristic algorithm could lead
to better results. Since both ray tracing and soft shadow
generation depend on the same kd-tree and therefore on the
same spatial subdivision, it can be hard to find the optimal
parameters. A kd-tree with small boxes that leads to short
rendering times for the unshadowed scene might not be op-
timal for the scene with soft shadows, because many edges
are stored in more than one box and will thus be processed
several times.

Depending on the scene and on the processor on which
the algorithm was running, the resulting computing times
were in some cases surprising. In particular the method that
transforms the edges that where found in the frustum from
world coordinates to light coordinates and inserts them into
the set showed a behaviour that we cannot explain. We can
only assume that an optimisation of memory usage could
lead to a better cache behaviour and further improve the
performance.

Acknowledgements

Temple scene by Bruno Lomio, http://www.3dgrafix.net.

References

Akenine-Möller, T., and Assarsson, U. 2002. Approx-
imate soft shadows on arbitrary surfaces using penumbra
wedges. In EGRW ’02: Proceedings of the 13th Euro-
graphics workshop on Rendering, Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland, 297–306.

Assarsson, U., and Akenine-Möller, T. 2003. A
geometry-based soft shadow volume algorithm using
graphics hardware. ACM Trans. Graph. 22, 3, 511–520.

Assarsson, U., and Möller, T. 2000. Optimized view
frustum culling algorithms for bounding boxes. J. Graph.
Tools 5, 1, 9–22.

Assarsson, U., Dougherty, M., Mounier, M.,
and Akenine-Möller, T. 2003. An optimized
soft shadow volume algorithm with real-time perfor-
mance. In HWWS ’03: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 33–40.

Cohen, M. F., and Greenberg, D. P. 1985. The hemi-
cube: a radiosity solution for complex environments. In
SIGGRAPH ’85: Proceedings of the 12th annual confer-
ence on Computer graphics and interactive techniques,
ACM Press, New York, NY, USA, 31–40.

Havran, V. 2000. Heuristic Ray Shooting Algorithms. Ph.d.
thesis, Department of Computer Science and Engineering,
Faculty of Electrical Engineering, Czech Technical Univer-
sity in Prague.

Laine, S., and Aila, T. 2005. Hierarchical penumbra
casting. Computer Graphics Forum 24, 3, 313–322.

Laine, S., Aila, T., Assarsson, U., Lehtinen, J., and
Akenine-Möller, T. 2005. Soft shadow volumes for ray
tracing. ACM Trans. Graph. 24, 3, 1156–1165.

