

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, October 2009

Shotcrete Simulator

For Education of Shotcrete Robot Operators
Master of Science Thesis in Computer Science

Petter Börjesson,

Mattias Thell

The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive

right to publish the Work electronically and in a non-commercial purpose make it accessible on the

Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not

contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a

company), acknowledge the third party about this agreement. If the Author has signed a copyright

agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained

any necessary permission from this third party to let Chalmers University of Technology and University

of Gothenburg store the Work electronically and make it accessible on the Internet.

Shotcrete Simulator

For Education of Shotcrete Robot Operators

Petter Börjesson,

Mattias Thell

© Petter Börjesson, June 2009

© Mattias Thell, June 2009

Examiner: Ulf Assarsson

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden September 2009

Abstract

Sprayed concrete, or shotcrete, is a commonly used technique for structural reinforcement. Until now,

there has been no effort in creating a virtual environment to educate personnel for this kind of work.

This thesis presents the work done in implementing a prototype for a virtual simulation environment to

be used in the education of personnel for shotcrete application. The prototype features an environment

in which the user can make use of shotcrete robot equipment to apply concrete to surfaces. It also

features several statistical tools for evaluation purposes. Since the final program cannnot be considered

a complete product, enhancements that need to be implemented to achieve such a goal is also

discussed.

Sammanfattning

Sprutbetong är en vanlig metod för förstärkning av till exempel tunnelbyggen. Fram till nu har ingen

insats gjorts för att skapa en virtuell miljö för att utbilda personal för denna typ av arbete. Den här

uppsatsen presenterar arbetet som gjorts för att skapa en prototyp för en virtuell träningsmiljö.

Prototypen innefattar en miljö i vilken användaren kan styra en sprutbetongrobot för att applicera

betong på ytor. Den innefattar även diverse verktyg för att evaluera resultatet. Eftersom denna

versionen av simulatorn inte kan ses som komplett, disukuteras även fortsatt utveckling.

Preface

This is a master thesis at Gothenburg University and Chalmers University of Technology,

department of Computer Science and Engineering. This work was done from February 2009 to June

2009. The thesis was requested from and done in collaboration with the Swedish company BESAB.

Mikael Johansson at the department of Construction and Engineering supervised the project and the

examiner at Chalmers University of Technology was Ulf Assarsson.

All the work done in for this thesis was performed by Petter Börjesson and Mattias Thell. The work was

done as a team and although small tasks were done individually all major parts of the thesis was done in

collaboration.

Contact information:

Petter Börjesson: petter.borjesson@gmail.com

Mattias Thell: mattias.thell@gmail.com

We would like to thank BESAB and especially Tommy Ellison who gave us this opportunity and helped us

during the project. We would also like to thank Mikael Johansson, Börje Westerdal and Mattias Roupé at

the department of Construction Engineering at Chalmers University of Technology for their help during

the work on this thesis.

Table of Contents

1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Previous Work .. 3

2 PROBLEM SPECIFICATION ... 4

2.1 Limitations .. 5

3 TECHNICAL REQUIREMENTS ... 7

3.1 Understanding the problem ... 7

3.2 Simulator parts ... 7

4 IMPLEMENTATION ... 10

4.1 Programming Languages and Libraries ... 10

4.2 Concrete Rendering ... 10

4.3 Adhesion .. 15

4.4 Tunnel Design ... 18

4.5 Shading Model .. 22

4.6 Particle Systems .. 28

4.7 Input .. 32

4.8 Quality Assessment ... 34

4.9 System Design ... 36

5 RESULTS AND DISCUSSION .. 37

5.1 Rendering ... 37

5.2 Particles .. 39

5.3 Simulation .. 40

5.4 Performance ... 41

6 FUTURE WORK .. 42

6.1 Thesis scope .. 42

6.2 High-end simulator scope .. 44

7 CONCLUSION .. 46

8 REFERENCES .. 47

1

1 Introduction

This master's thesis will describe the development of a first prototype of a simulation environment for

sprayed concrete reinforcement. Also known as shotcrete, this is a commonly used technique that is

applied to tunnel walls and other structural elements. The need for a simulation environment has grown

as the costs of educating personnel are very high. The final goal of such a simulation is to complement

real life training of personnel with a virtual environment in a time and cost efficient way.

1.1 Background

In the field of construction engineering, an important part is the ability to rapidly and effectively

strengthen existing structural elements using some kind of reinforcing material. Typically, the material

which is used for this is concrete. The primary method for applying this concrete is to pneumatically

project it onto a surface at high velocity. This method is called shotcrete reinforcement, or simply

shotcrete.

When applying concrete this way, it can be used to strengthen many kinds of surfaces, including

mountain faces, tunnel walls and even overhang areas like ceilings. Given this applicability, shotcrete

reinforcement is used in many kinds of construction work counting transportation tunnels, mining

operations, silos and bridges as some application areas. Shotcrete can also be used for repair work and

restoration.

Historically, shotcrete has been applied by skilled professionals operating a hand-held hose. In order to

maximize the efficiency of the procedure, the hose nozzle must be held in a precise manner, in ideal

conditions at a certain distance, perpendicularly to the surface, for a desired amount of concrete to stick

to the surface. Failure to meet the ideal conditions can result in greater amounts of rebound. That is,

concrete which does not stick to the surface but bounces back and is wasted. Some rebound is

unavoidable, but minimizing the amount of wasted concrete is important as a lot of waste quickly

becomes expensive. Typically, there are also prescriptions regarding desired thickness and other

properties on the applied concrete that need to be fulfilled.

In recent years however, the hand-held hoses have been gradually phased out in favor of robotically

controlled variants (1). The introduction of robotic gear brought with it a number of benefits. Not only

were health and safety of the operators improved but the equipment also reduced costs as the work

could be aided by computers (1). While the robot mechanics greatly improves the working conditions for

the operators, manual control of robots are still necessary to obtain satisfactory results in certain

situations.

2

Figure 1: Shotcrete robot in action. (Source: Meyco)

For the technology to be used effectively, education is needed, and it is estimated that the needs for

educated personnel will increase in the coming years (1). Currently in Sweden, there are no government

funded educational entities that teach shotcrete reinforcement and there are no set standards for

certification of robot operators. This places the responsibility of educating operators at individual

companies who require personnel. The education is often associated with great costs and the schooling

of a single shotcrete operator can reach sums of up to one million SEK (1). The education of an operator

is usually divided into a number of parts with extensive practical training as the primary method of

learning. This field training is most often performed together with an instructor with good practical

knowledge of shotcrete reinforcement at a real working site. The major factors for the cost of the

education are technical equipment and training on real work sites. Inevitably, students make mistakes

while learning to handle the equipment. Mistakes must be corrected, either by applying further layers,

or in the worst case, removal of a much too thick layer of concrete. In either case a lot of concrete is

wasted. This together with higher than normal rebound in the beginning combined with possible delays

at work sites make training very costly.

3

1.2 Previous Work

Before this project started, a pre-study on the problem of shotcrete simulations was written by

Westerdahl et. Al, 2007 (1). This report describes the underlying problem of shotcrete and why a digital

training simulator would be of great use for the industry. The authors also report on how shotcrete

works and what parameters that affect the result. The report also describes the different kinds of

shotcrete robot equipment that exist and how they work. Finally they give some basic ideas on how one

could go about implementing a simulator for this purpose and how to computationally visualize the

different components that are needed.

As shotcrete is widely used there has been research on how to calculate shotcrete behavior so that the

result of spraying a concrete mixture on a certain surface can be predicted. This is very useful as workers

can use these calculations to produce the most efficient concrete mixture for a specific project (2). One

method used to perform these calculations is called Distinct Element Modeling (DEM) which has been

proven to be able to calculate the behavior of shotcrete very accurately. Unfortunately, DEM is

computationally heavy which makes it unsuitable for use in a real-time simulation environment (1).

There are many fields in the industry of today that uses simulators to educate personnel for various

tasks. For example, simulators are used extensively to train aircraft pilots. As was shown in the pre

study, it should definitely be possible to construct a simulator for training of people working with

shotcrete. According to BESAB (3) representative Tommy Ellison, there has been surprisingly little work

on the area of training simulations for shotcrete personnel. Indeed, searches made for products of this

capacity have not yielded any result. This makes real time shotcrete simulations with focus on training

robot operators a fairly new field. As was found during the production of this thesis, no research on this

particular area has been conducted nor do such simulators exist.

4

2 Problem Specification

In the light of costly education and the increasing need for personnel, industrial needs necessitate

spending large amounts of money to meet the demand for skilled shotcrete robot operators. The

problem of expensive training could be alleviated by looking at virtual training environments to make

the education of personnel more effective. A computer simulation could be constructed to provide a

visual, as well as a physical, simulation of the shotcrete process with the goal of educating shotcrete

operators. The use of a computer program like this could serve as a complement to the education and

could greatly reduce costs and enable education of operators in an effective manner. Students operating

a computer simulation would not induce costs of concrete removal or delays on real work sites. Also,

many of the dangers and health risks associated with operating of robots at live construction sites could

be eliminated. This thesis covers the creation and analysis of a prototype of such a program.

The pre study highlights important domain properties that should be taken into consideration if and

when a simulation environment is built. The goals of this thesis are to expand on the ideas put forth in

the pre study and build the foundation of a proper simulation program. That is, this thesis will not

necessarily produce a fully operational educational simulation with all the aspects of such a program,

but rather lay the ground work and ascertain the likelihood that a shotcrete simulator is indeed possible.

A prototype, consisting of working systems for all of the more important parts, should be produced. To

this end, it is necessary to find proper rendering and simulation techniques to visualize concrete and the

environment drivers operate in.

There are several problems that need to be dealt with in order for the simulation environment to look

and feel realistic. Since the simulator is intended to be used for educational purposes, one highly

important part is that of realism. Realism, both in terms of visual and physical correctness, can be the

key factor in determining whether or not an operator can use the system for training purposes and

obtain satisfactory results. The visual representation must correlate with that which the operator

expects to find in real life and the physical calculations must also be good enough so the simulation

appears to be realistic.

This thesis will consider shotcrete reinforcement using robot mounted hoses only. The hand-held

variants, though physically identical in terms of shotcrete adhesion and behavior, feature a couple of

subtle but important differences. Robot mounted shotcrete equipment displaces the control of the

nozzle from the hands of a human to the end of a robotic arm which is operated by a control device

maneuvered by the operator. A basic such control device features various buttons and joysticks which

enable the operator to control the robot with great accuracy. The fact that the equipment is not used by

hand, but rather with a control device, fits the virtual environment much better than a hand-held

system. The representation of a hand-held device would put great constraints on the virtual simulation.

These constraints would likely be difficult, or outright impossible, to solve with the technology of today.

5

The most significant distinction is that directly operated equipment would need some kind of

representation in the virtual world, making a direct mapping of control very hard. It would be necessary

to implement some kind of interface between the two worlds which would decrease the realism of the

interaction. When using robots however, which already features an interface control device, the

interaction with the equipment can be made in much the same way as it would in a real environment.

If a simulation for shotcrete is to be constructed there are a few problems that need to be solved which

will be the focus of this thesis:

Concrete visualization

Concrete appear in two forms in the context of shotcrete application. These two forms are:

 - Fluid state, which is the wet mixture of concrete sprayed from the nozzle of the robot.

 - Solid state, which is stuck or hardened concrete that have been applied to a surface.

Both forms need to be visualized in the simulation and different approaches are needed in order to

obtain satisfactory results.

Adhesion calculations

When shotcrete hits a surface, some of it should stick to the surface and some of it might be rebounded.

The amount that sticks depends on a large number of factors, such as angle and the distance from the

surface. Calculations for these actions need to be computed and taken into account in the simulation.

Concrete data

The program needs to keep track of the result of concrete that has been used as well as the amount that

has stuck to some surface. Firstly, so that it is possible to visualize the concrete during simulations.

Secondly, it will also be used in order to be able to measure the result and gather various statistics about

the shotcrete process. This is needed for quality assessment which could be considered one of the most

important parts in a training simulation.

Operator control

Since the system is designed for a single desktop computer, a person cannot actually move around

through the environment like she would in real life. So, except for controlling the shotcrete robot it must

also be possible to control the virtual representation of the person operating the robot.

2.1 Limitations

During this project there will not be time to complete a fully fledged simulator ready for commercial

use. The primary objective of the thesis is to establish if it is indeed possible to use virtual simulation to

train operators of shotcrete robots. This means that the visualization and graphical representation of

6

the environment and the objects in it will be the most important part and that certain limitations apply

to the project.

The physical properties of concrete and how shotcrete behaves when hitting a surface, while important

in some aspects of the simulation, are not something that will be a priority. Instead of doing a truly

correct physical calculation, an approximation will be used at first and expanded upon if time allows it.

Even though this part of the simulator is not a priority it should be easy to switch to a more correct

simulation in the future.

During development of the program the focus will be to use it on a single screen Personal Computer and

considerations for future use in environments like CAVE (4) or virtual reality systems will not be taken

into account. That being said, potential future work will certainly allow such features to be built and it is

indeed probable, or desirable, that such facilities exist if and when a fully operational educational

environment is constructed.

The program aims to simulate the working conditions in a construction environment, and as such,

should provide an audial as well as a visual experience. However, graphical visualization and

representation will be the first priority. Development of audio systems will not be considered in this

thesis.

There are a few different manufacturers of shotcrete robots on the market today and they each have a

few different models available. In this first prototype a simple model will be used and there will be no

focus on trying to correctly simulate all different kinds of robot models.

The virtual environment itself will need to be based on some real world reference. In real situations

shotcrete can be used in many different environments. Simulating different scenarios will not be

considered in this project but instead a mountain tunnel will used as an environment. This is a common

setting for application of shotcrete and should suit the purposes of the application nicely. Also, since a

tunnel environment rarely has precisely flat or orthogonal walls, and features many surfaces that could

be considered difficult, such as ceilings and deformed rock walls, it should provide a sufficiently diverse

testing environment.

The program is meant to be aimed at educating personnel in shotcrete reinforcement, and as such must

feature certain requirements on the usability of the program. This means that the program will need

menus and GUI components to handle all the functionality of the program in an easy to use manner for

people with little or no computer background or education. These requirements will not be a priority

during the development of the prototype but will be considered.

7

3 Technical Requirements

To get an understanding of what is needed to realize the simulator described in the problem

specification an analysis was done from a technical point of view.

3.1 Understanding the problem

As stated previously, the goal of this project is foremost to ascertain the possibility to create a simulator

for shotcrete robot drivers. If such a simulator should be of any use the most important thing is that the

simulation both looks realistic enough and behaves as one would expect things to behave in real life. To

be able to fulfill these goals and perform an analysis of the problem, a good understanding of how the

shotcrete process works and what a working environment looks like is needed. Reference material in the

form of videos and pictures has been found which will be the primary source of information in this

respect. Also, experienced contact persons within the industry will be another valuable source of

information regarding all aspects of shotcrete reinforcement.

3.2 Simulator parts

If the goals of the project are to be fulfilled there are a few questions that need to be answered from a

technical point of view. What parts are needed for the system? How will they work and interact? What

data is needed and how should it be saved?

3.2.1 Storing of concrete data

Shotcrete reinforcement works by spraying a target surface with concrete. The area on this surface will

accumulate concrete and the thickness of the concrete layer will grow. Exactly how much concrete that

has been applied on a specific area is important and so this information needs to be saved in the system

in some way. This information needs to be available at each point of the surfaces of the simulated

environment. This is needed both to be able to correctly visualize the concrete as well as performing

quality measurements. The iterative way of work during shotcrete application means that it is not

sufficient to only save information about whether or not a surface has shotcrete applied to it. It is also

important that one can determine exactly how much concrete has been applied to each point of a

surface depending on the output from a shotcrete robot.

The question about concrete data also leads to the question of how the system represents geometry, in

this case in the form of a tunnel. Some mapping between data and geometry is needed as the geometry

needs to know how much concrete is applied to each point on its surface. How concrete data is saved

and how it is mapped to the geometry in the simulation will be one of the central parts of the system.

Both the geometry of the environment and the concrete data need to be saved in a manner so that it is

possible to render the data in a correct way. It should also be possible to use this data for statistical

calculations during evaluation of the shotcrete process.

8

3.2.2 Visualization of concrete

As stated in the problem specification, concrete can exist in one of two states during shotcrete

simulation. Either it is fluid in the form of concrete mixture while it is being shot onto the walls of a

tunnel or it is solid when it has hardened on tunnel surfaces. There is a distinct difference between

these states and the system will require different approaches to visualize them. When choosing

rendering method for the concrete and designing the system parts that will handle the rendering it is

important to think about how concrete behaves in these different states.

The rendering of solid concrete on walls will be tightly linked to the tunnel geometry and how concrete

data is stored. When looking at the result from shotcrete work on real work sites one can notice that

shotcrete tends to create a quite even surface with the occasional rounded shapes, similar to the rolling

hills of a landscape. To accurately render a realistic concrete surface in the simulation the rendering

method need to be able to give a realistic representation of actual depth in the concrete surface.

Rendering of the fluid state of the shotcrete ray is another problem. A shotcrete ray consists of many

fast moving, small concrete particles mixed with water and chemicals. This makes the ray slightly

transparent at the edges but opaque in the middle because of the amount of particles. In contrast to

solid surfaces, these kinds of fuzzy, transparent objects need a different set of requirements and some

method to represent a shotcrete ray need to be found. It is an important part for the simulation to look

realistic and a very common method in computer graphics to represent these kinds of objects is to use

particle systems (5).

3.2.3 Adhesion calculations

Adhesion, that is the ratio of concrete that is stuck on the surface and that which rebounds, also needs

to be calculated. This can be divided in to two problems. First there is the problem to correctly calculate

how much of the used concrete sticks to tunnel surfaces depending on variables such as angle to the

surface and the velocity of the concrete. These calculations will use a simple system to approximate the

result. The design of the system parts still has to be considered carefully so that the design allows for

future replacement of the approximate method to something more correct if it is needed. Secondly,

after the adhesion ratio has been calculated, the system must also take into consideration how this

concrete is applied to the surfaces of a tunnel. In most cases the tunnel walls will not be smooth or even

as the walls are often cut out of rock with explosives. During shotcrete process these small holes and

cracks will be filled with concrete which will result in a smooth surface. Because of this, concrete cannot

be applied evenly across a surface where the shotcrete ray hits because the roughness of the surface

need also be considered.

3.2.4 Controlling the operator avatar and robot

In order to simulate a shotcrete robot, some system to handle the movement and control of the

different parts of a robot must be designed. The system also needs to be able to receive input signals

from devices like a keyboard, mouse or another device which replicates the behavior of robotic

9

equipment. This must be connected to the simulation so that an operator can control the robot in a

natural manner in as close accordance to real life as possible.

In a real work environment the operator of shotcrete robots can walk around the site with the remote

control in hand, switching views by simply turning her head. This direct control over the field of vision is

not possible in a simulation on a simple personal computer. Some way to control the camera that

represents the operator’s position must be devised.

3.2.5 Quality assessment

An important aspect of a training simulation is that the trainee should be able to get feedback on how

well she performed. The system need to be able to display various statistical reports regarding the

shotcrete process. For example, how much concrete was used, how much concrete was wasted, how

much concrete has stuck to different parts of the tunnel surfaces, how thick the concrete layer is in

different parts of the tunnel, etc. All this information must be visualized either in text or in some direct

display on the walls so that the quality of the work can be evaluated.

10

4 Implementation

This chapter details the actual implementation of the various parts in the system. Choices and

compromises of different techniques are also described, as well as design choices made during the

implementation.

4.1 Programming Languages and Libraries

It was decided that, in order to accelerate the production, a higher level graphics library be used. The

library that was decided upon was Open Scene Graph (OSG) (6), an open source solution which utilizes

OpenGL (7) as the underlying API. Since OSG is written in C++, this was the logical choice in which to

write the bulk of the application code. Vertex and fragment shaders are written in the OpenGL Shading

Language (GLSL) (8).

4.2 Concrete Rendering

One of the major issues with a simulator in this domain is to determine which method of visualization

should be used to render the concrete on the walls of a tunnel. It is important that this looks as realistic

as possible so that drivers being educated in the simulator get a feeling of immersion and that the

environment is sufficiently close to real world scenarios to provide a good learning experience. There

exist many techniques to render surfaces in computer graphics and during the project several of these

were tested in an attempt to figure out what works well for this scenario and what does not.

4.2.1 Multi-texturing

Texture mapping (9) is a basic concept in computer graphics and one way of visualizing concrete would

be to use multiple textures during rendering. One possibility would be to use one texture for the stone

surface and another texture for the concrete. Using a programmable fragment shader, one would then

simply choose the type of texture which is suitable a particular time, depending on the surface

information. A blend between the textures can be used to create a smooth transition from an area

sprayed with concrete and one area without.

This technique is very simple to implement and it does not require much in terms of computational

power. On the other hand, it suffers from some serious problems that prevent it from being very useful

in the simulator presented here. The major problem being that even if lighting is computed for these

kinds of surfaces they will, inherently, still look flat. When concrete is sprayed on a spot on the wall this

spot should become increasingly extruded from the wall the more layers of concrete that are applied

and this effect is simply not possible to simulate with multi-texturing alone. Fortunately, there are many

ways to address this issue.

11

4.2.2 Normal mapping

One way to simulate unevenness of surfaces is to use normal mapping (10). This technique is very

similar to regular texture mapping; the difference is that light is computed using additional normal

information (which is usually stored in a texture of its own). Using this additional normal information

during lighting calculations, this can make a surface appear uneven.

This technique is a big improvement from multi-texturing as sprayed concrete is not a perfectly even

surface. Small bumps and extrusions in the surface can be simulated with normal maps. On graphical

hardware of today, it is also very cheap and provides a good way of simulating coarseness, if not large

dents and extrusions. To a small extent, it can also be used to make the concrete appear to be lying on

top of the stone walls but there are still no "real" bumps on the surfaces which becomes very visible

when looking at walls at a steep angle. This means that this is still not good enough to truly visualize

sprayed concrete. Some way of visualizing concrete accumulation on the walls is needed to get a result

realistic enough.

4.2.3 Vertex displacement mapping

A potentially good way of getting a good feeling that concrete is actually building up mass on the walls

would be to use this technique. Instead of operating on a texture and lighting basis, this technique uses

the underlying geometry to achieve uneven surfaces. Vertex displacement is executed during a vertex

shader pass and can be used to shift vertices in some way, thus deforming geometry (11) (12). This is

done by reading a value in the vertex shader, usually from a height map texture and modifying the

vertex position according to this value. This modification could be to shift the vertex position along the

vertex normal or one of the vertex components along one of the axis. It is obviously necessary to also

shade the surface of the geometry and add textures. As a complement to displacement mapping,

normal mapping would likely be used to achieve sufficiently realistic results.

Vertex displacement has a major advantage over the previous techniques as it actually deforms the

geometry. Because of this, sprayed concrete could actually extrude from the original surface. Also, since

this technique is shifting vertex positions instead of operating on just the pixel colors, it never produces

any artifacts due to steep viewing angles which can be a problem with other techniques. There are

however other problems with this technique. First of all, every surface would need to consist of a large

amount of tightly packed vertices which means that the geometric complexity is high. Even with a very

high number of vertices, it is hard to get a surface that is smooth enough to simulate concrete in the

way that is needed. Secondly, vertex displacement can be difficult in certain situations. For example,

when the original surface is flat, all vertices lie in the same plane and displacement along the orthogonal

axis can produce a very good result. However if displacement is done along the normal (or some

arbitrary axis) for each vertex it is possible for vertices to overshoot each other, creating a surface with

overlapping triangles. If the original surface is not flat, which would be very likely in a tunnel

environment, this problem is even harder to avoid. Restricting displacement to some max distance

12

might help to alleviate this problem but this also places restrictions on how far a concrete surface can be

extruded from the original wall.

4.2.4 Texture coordinate displacement

Texture displacement is a group of techniques that can greatly improve visual quality. It does not change

the geometry or affect vertex positions in any way. There are many different methods for doing this and

most work by shifting texture coordinates to achieve a parallax effect. All techniques described below

associate a height field with the surface. During rendering a ray is cast from the viewpoint through each

pixel. The distance the texture coordinates are shifted depends on where the ray intersects the height

field of the surface. Some techniques also enable self occlusion and self shadowing. The benefit of using

texture coordinate displacement methods is that the underlying surface complexity can be fairly low and

still give the appearance of a complex surface.

Parallax mapping (13) is an approximate technique used to achieve an illusion of parallax and depth. It

works by sampling the height map at each pixel and displacing the texture coordinate depending on the

angle between the incident view direction and the surface normal. While it is a very fast method for

achieving fairly good looking results, this technique cannot achieve occlusion or self shadowing. Because

of this, it was decided not to be used in the program.

Enabling occlusion and self shadowing was determined to be a great factor of realism in the simulation.

Realizing this, it was decided to take a closer look at sample based texture displacement techniques.

Taking a number of samples along the view ray into the height map texture essentially implements

discrete ray tracing through the data. Using this, a more accurate parallax effect can be achieved. It is

also straight forward to achieve the aforementioned self occlusion and shadowing.

There are many different algorithms for how to compute parallax occlusion. One method described in

(14) utilizes a 3D texture to store the closest distance to the height field for any point. When stepping

along the view ray this information can be used to determine how long each step should be. This

approach is good because it lessens the number of sample steps needed during ray traversal as well as

providing a more accurate way of knowing when the surface is hit, effectively making it less prone to

aliasing artifacts. On the other hand, a pre-computing pass is required to calculate the distances stored

in the texture. For the application of shotcrete rendering where dynamic height fields are used, re-

computing a 3D texture with correct distances is simply not efficient enough to be useful.

Another approach is to simply step along the view ray with a predetermined number of steps and

checking for intersections with the height field for each step (15) (16). When the height field has been

intersected, the parallax distance can be calculated. This requires no pre-computed data but in order to

avoid aliasing issues, the number of samples needed is fairly high. Aliasing issues are more likely to occur

when the viewing angle is steep in relation to the surface. In (15) this problem is alleviated by adjusting

the number of steps dynamically in the pixel shader depending on the viewing angle. To produce anti-

13

aliasing, this approach also saves both the stepping points around the intersection and interpolates

between these two texture coordinates.

This intersection and shifting of texture coordinates are done on a per pixel basis. Because of this, the

surfaces can handle fairly frequent changes in height and still produce a very smooth surface which fits

concrete rendering nicely. However, if the features in the height field suffer from high frequency

changes between adjacent texels, the result can look messy. Because of the discrete sampling of the

techniques, a highly varied height map might make the ray miss important features. That is, it can suffer

aliasing problems if the number of samples is not high enough to capture the frequency with which the

height field changes.

To produce a good result and avoid aliasing artifacts the algorithm needs to take sufficiently many

samples while doing the intersection test with the height map. For each sample a texture lookup needs

to be made. Because of this, the technique can become computationally heavy.

4.2.5 Our Solution

After performing tests with different kinds of surface rendering techniques it was decided that parallax

occlusion mapping would be the best way to visualize the structure of applied shotcrete. The major

problems with the other texturing techniques being that simple texturing or normal mapping do not

achieve the desired extrusion of the surface. Vertex displacement was also tested but was deemed unfit

for the purposes of this program.

For the final concrete rendering in this project, a combination of parallax occlusion mapping and normal

mapping is used in accordance to (15). The parallax mapping handles the drawing of the rough features

of the concrete while normal mapping is used to give the wall a bit more structure at close distances.

The parallax rendering algorithm starts by transforming the view direction into tangent space and a

maximum texture offset distance is calculated. The tangent space vector is normalized and multiplied by

the calculated distance to create parallax offset vector. Using the known bump height and the angle

between the view vector and the surface normal, the parallax distance can be calculated with standard

trigonometric functions. The bump height is an artist controlled parameter which decides the maximum

possible extrusion of the surface.

Offset calculations of texture coordinates are done in two iterations as described in

iteration, a fixed number of steps

height field is found. When this intersection is encountered a second iteration is made with smaller

steps between the two points around the first intersection. This substantia

number of steps needed compared to other parallax occlusion algorithms. The

(17), uses 16 steps in the first iteration and 12 in the second. We have also found that these n

produce a good looking result without aliasing artifacts. Compared to the need for 50 or more steps as

needed with the naive approach this

As described previously, the updates of the height texture need to be carefully managed. As heights are

saved as textures with values from zero to one, extrusion is limited to some max distance. In this case

the problem manifests itself if the maximum height is rea

This will produce a noticeable seam as the transition from max height to a lower level does not become

smooth enough. Parallax mapping have some parameters that can be tweaked, the most prominent of

these is the bump height. A small bump height means a small extrusion from the polygon surface, which

Figure 2: Parallax distance calculation.

Offset calculations of texture coordinates are done in two iterations as described in

iteration, a fixed number of steps are taken along the parallax offset vector until an intersection with the

height field is found. When this intersection is encountered a second iteration is made with smaller

between the two points around the first intersection. This substantially narrows down the total

number of steps needed compared to other parallax occlusion algorithms. The algorithm, as described in

in the first iteration and 12 in the second. We have also found that these n

produce a good looking result without aliasing artifacts. Compared to the need for 50 or more steps as

needed with the naive approach this technique is much more efficient.

Figure 3: Parallax offset calculation.

the updates of the height texture need to be carefully managed. As heights are

saved as textures with values from zero to one, extrusion is limited to some max distance. In this case

itself if the maximum height is reached while dynamically updating the texture.

This will produce a noticeable seam as the transition from max height to a lower level does not become

smooth enough. Parallax mapping have some parameters that can be tweaked, the most prominent of

A small bump height means a small extrusion from the polygon surface, which

14

Offset calculations of texture coordinates are done in two iterations as described in (17). In the first

are taken along the parallax offset vector until an intersection with the

height field is found. When this intersection is encountered a second iteration is made with smaller sized

lly narrows down the total

algorithm, as described in

in the first iteration and 12 in the second. We have also found that these numbers

produce a good looking result without aliasing artifacts. Compared to the need for 50 or more steps as

the updates of the height texture need to be carefully managed. As heights are

saved as textures with values from zero to one, extrusion is limited to some max distance. In this case,

ched while dynamically updating the texture.

This will produce a noticeable seam as the transition from max height to a lower level does not become

smooth enough. Parallax mapping have some parameters that can be tweaked, the most prominent of

A small bump height means a small extrusion from the polygon surface, which

15

can reduce aliasing artifacts caused by having a sample based algorithm. A larger bump height will make

the altitude alterations more prominent but can lead to severe artifacts if set too high, unless the

number of steps is increased accordingly. Therefore, some balance between these two extremes and the

amount concrete which is applied must be found.

4.3 Adhesion

As concrete is projected onto a surface, one can distinguish between two major parts; the amount of

concrete that sticks to the surface and the amount which rebounds and is wasted. The ratio between

the stuck and wasted concrete is called adhesion. Obviously, to make the shotcrete process as efficient

and cost-effective as possible, the desire is to keep this ratio as high as possible.

4.3.1 Determining adhesion

The adhesion ratio is dependent on a number of different factors and can, given enough time and

processing power, be calculated with precise results. Depending on the level of physical correctness,

however, there are different means of calculation one can employ to achieve desirable results.

According to (1), some of the factors which govern the adhesion ratio are:

• Geometrical variation of the surface

• Nozzle angle to surface

• Nozzle distance to surface

• Viscosity of the concrete

• Radial angle of spread of the nozzle

• Thickness of the current layer of concrete on the surface

• Velocity of flow of the concrete

• Accelerant dose

Of these, the most important factor is the angle to the surface (18). A perpendicular angle to the surface

is preferred since rebound will be minimized and a proper compaction of concrete will be achieved.

Primarily, there exist two types of mixes of concrete used for shotcrete; dry- and wet mixes. When

using dry mixing, concrete powder is pumped through the hose and water added immediately before

the concrete leaves the nozzle. The water added is controlled by the operator. Wet mix shotcrete uses

concrete that have been prepared beforehand with water and concrete mixed together.

The cleanliness of the surface area is also an important factor (19). If a surface has been cleaned before

starting the shotcrete process, adhesion will be improved. Conversely, a dirty surface area can greatly

decrease adhesion.

The nature of the surface’s coarseness can also be meaningful. Since the contact area between the

concrete and surface will rise if the surface is coarse, this will improve adhesion.

16

The type of rock and mineral composition is a factor as well. Some types of rock have different textures

than others and will contribute to determine adhesion of the concrete.

An accelerant compound can be added to the concrete mix. This compound will accelerate the process

in which the concrete is hardened, which can have a major role in durability requirements and adhesion.

Typically, accelerant is used for shotcrete application on ceilings and overhang areas where the concrete

could otherwise fall of if not hardened quickly. Accelerant works fast and is usually added when the

concrete leaves the nozzle.

4.3.2 Numerical methods

There has been significant research on how to accurately simulate rock and fluid mechanics in the field

of engineering and tunneling. A common way of doing this is by applying numerical analysis (that is, to

compute an approximate but hopefully accurate result of a continuous problem by discretizing it).

Several different models have been developed for this purpose.

One commonly used method is called the Finite Element Model (FEM) which is a method used to find

approximate solutions to partial differential equations. It has been used to compute many rock

engineering problems with good results (20).

The Distinct Element Method (DEM) is another commonly used model which works by simulating many

deformable (or rigid), particles that interact during the simulation. The DEM method have been applied

specifically to shotcrete and yielded good results (2). Here, a particle composition consisting of an outer

shell of mortar and an inner coarse aggregate compound is used. The inter-particle interaction is

modeled using stiffness springs to accurately model elasticity, viscosity and shear.

Due to the heavy computational power required by these simulations, it is not considered as a viable

method in a real-time simulation (1). Because of this, another approximate solution is used in this thesis.

4.3.3 The Adhesion System

Since finding a very accurate solution to the adhesion problem is not viable in a real-time application,

other options must be explored. According to (18), the most significant factors in determining adhesion

are:

• Nozzle angle to surface

• Nozzle distance to surface

• Accelerant dose

• Area of application in tunnel

This serves the purposes of the application well, since these parameters can easily be found or

computed during the update of the tunnel. These are primarily the variables that are of concern in our

implementation. Using the results from

simple function based on the graph in Figure 4

computational simplicity and because it based on empirical analysis of the problem domain and

considered accurate enough in the current phase of development.

Figure

4.3.4 Design

Since it has been shown that several methods for computing adhesion are possible, with results that are

quite distinct in terms of correctness, the design of the system should reflect the different requirements

of these methods. While numerical approaches may be infeasible today

the use of such adhesion calculations in the future.

The implemented system defines an interface, AdhesionTest, which is responsible for calculating the

adhesion, given a set of variables. First of all, there exist a number

are used in the simulation, see appendix A

and define characteristics of the concrete used. Properties include geometric variation of the surface,

viscosity of the concrete, accelerate

handful of these, other variables are

the data structure that governs these properties can easily be e

implementation. Using the results from (18), the adhesion ratio is calculated approximately with a

function based on the graph in Figure 4. This simple approach was chosen due to its

computational simplicity and because it based on empirical analysis of the problem domain and

considered accurate enough in the current phase of development.

Figure 4: The major factors affecting adhesion. (18)

that several methods for computing adhesion are possible, with results that are

quite distinct in terms of correctness, the design of the system should reflect the different requirements

of these methods. While numerical approaches may be infeasible today, the system design should allow

adhesion calculations in the future.

The implemented system defines an interface, AdhesionTest, which is responsible for calculating the

adhesion, given a set of variables. First of all, there exist a number of environmental properties which

, see appendix A. These properties govern the general structure of the surface

and define characteristics of the concrete used. Properties include geometric variation of the surface,

the concrete, accelerate dose, and others. Although the simple implementation

handful of these, other variables are included in the system to accommodate future needs. If needed,

the data structure that governs these properties can easily be extended to allow for further simulation

17

, the adhesion ratio is calculated approximately with a

. This simple approach was chosen due to its

computational simplicity and because it based on empirical analysis of the problem domain and can be

that several methods for computing adhesion are possible, with results that are

quite distinct in terms of correctness, the design of the system should reflect the different requirements

the system design should allow

The implemented system defines an interface, AdhesionTest, which is responsible for calculating the

of environmental properties which

. These properties govern the general structure of the surface

and define characteristics of the concrete used. Properties include geometric variation of the surface,

simple implementation uses only a

included in the system to accommodate future needs. If needed,

xtended to allow for further simulation

18

requirements. As the simulation runs, certain variables are updated and fed to the adhesion test system.

These variables are;

• Surface angle

• Distance to the surface

• Thickness of the concrete already placed

Using the environmental and variable properties, the adhesion system has sufficient information to

compute the actual adhesion.

Inheriting the AdhesionTest interface, the application implements a simple adhesion test which

computes adhesion using basic parameters and approximates the result according to (18).

In order to make the system as general as possible, and make future implementations easy, a factory

class is used to create the actual adhesion test. Future tests need only extend the AdhesionTest base

class, and add a few lines of code into the factory class. The choice of the system can then be made via a

setting read from a file, for example. An overview of the adhesion system can be seen in Appendix A.

4.4 Tunnel Design

The rendering and adhesion systems have introduced a number of requirements for how the actual

tunnel must be designed. In order to create a functional system, these aspects need to be taken into

consideration. This section describes how concrete data is stored and how this data is updated.

4.4.1 Tunnel Geometry

For the simulation to be realistic, the environment in which an operator works need to be taken into

consideration and be depicted by an accurate graphical representation. Tunnel geometry must

somehow be obtained and rendered.

There exist 3D models which have been constructed by laser measurements from real world

environments. This is perhaps the most accurate way of representing a tunnel, but it is not without

drawbacks. A finely tessellated geometry mesh can in the worst case negatively affect the performance

of the program. This is unlikely to be a problem in this program due to the relative low amount of

geometry needed. Also, the OpenSceneGraph library provides tools for simplification of model meshes

which can potentially be used to great effect. However, these features were not used in this

implementation.

A second solution is to procedurally generate the tunnel mesh, which was the method used in the

project. The advantages of this technique are, in the case of tunnels, numerous. This way, the

tessellation of the mesh is easily adjustable which can be a contributing for doing tests of different

19

kinds. Because of the general homogeneity of the structure of a tunnel, generating a tunnel mesh

procedurally is fairly straight forward. Many tunnels can, if simplified to an extent, be viewed as a half

cylinder with a floor running between the two halves. This gives us the ability to use a second order

equation to generate the basic shape of the tunnel. An offset parameter is then used to displace the

vertices slightly to give the tunnel a more irregular and natural look.

4.4.2 Storing Concrete Data

A fundamental requirement for the program is the ability to store concrete information in some way.

When concrete gets shot at a surface, it needs to be stored and later updated, rendered and sampled

for statistical purposes. The most intuitive way of storing this information was to use textures to store

concrete data in the form of height maps. This means that concrete elevation information is represented

by a 2D, grayscale image.

Height maps are represented as regular textures, and as such, they are imposed the same problems and

restrictions. A texture is composed of a finite number of texels, depending on its resolution. When

applying a texture to a surface, an individual texel will cover a certain area of the geometry to which it

has been mapped. If the size of the geometry is increased, the texture needs to be stretched, meaning

that one texel will cover a larger area on the geometry.

To cover an entire tunnel with a single texture, the texture needs to have a very large resolution in order

to produce sufficiently good visual quality. Otherwise, it will be too stretched to provide enough detail

on every point of the surface. This approach is cumbersome and inefficient. A better solution would be

to let a single texture cover a reasonably small part of the tunnel. Since concrete data need to be unique

for each part of the tunnel, it means that the concrete data texture cannot be repeated over the tunnel

geometry as is possible with regular texturing mapping. Instead, many textures are needed to store

concrete data, each covering a smaller part of the tunnel geometry.

This leads to a natural segmentation of the tunnel. Each segment handles a part of the tunnel geometry

and references its own concrete data texture that covers all geometry of that segment. Rendering an

entire tunnel with many concrete textures covering small parts would not be possible due to a limited

number of texture units available on graphics hardware. Splitting the geometry into sections takes care

of this problem while making things easier to handle and make it more efficient. First, it becomes faster

to update concrete data as smaller parts of the tunnel can be updated at a time. Secondly, separating

the tunnel into segments makes it easier to render the tunnel as culling becomes more efficient.

The height information is based on a gray scale image. This limits the height differences in the range

from black to white, or zero to one. This means that no infinite amount of concrete can be stored in one

place, which needs to be taken into consideration. The scale of each update in relation to the height

field needs to be carefully balanced because if the height field fills up too quickly, the user experience

will be disrupted since no more concrete can be applied.

20

4.4.3 Updating Concrete Data

It was decided to decouple updates of the height map and the visualization of the shotcrete ray. This

implies that the ray of concrete that is sprayed on the wall is not actually responsible for updates that

occur in the concrete data. This separation seemed like the most reasonable approach which allows for

a good design and a satisfying visual experience. Letting the concrete particles have an actual impact

and affect on the surface would put significantly different demands on the system. It would be

necessary to somehow store the individual particles that were shot, as well as making them look like a

coherent mass of concrete when placed on the wall. This would not be efficient and it is not strictly

necessary for the simulation to look visually pleasing.

When concrete is shot, a ray is cast from the nozzle into the world. This ray is intersected with the

tunnel geometry and, if an intersection takes place, cartesian information (such as position, distance and

surface angle) is fed to the adhesion calculation system which computes the percentage of concrete that

sticks to the surface. The concrete is updated in a radius around the point of intersection, depending on

the spread of the ray as its distance to the surface is changed. The information can also be used to fetch

the tunnel segment which is to be updated. Using this information and the concrete adhesion ratio, the

corresponding height map texture can be updated.

As was discovered, colliding only a single ray against the tunnel geometry has a serious drawback. When

updating the height data in a radius around the intersection point, this does not accurately represent

the physical events. This solution assumes that all triangles in the radius of the beam lie in the same

plane as the triangle which was intersected. This might definitely not be the case since the tunnel

surface is bound to have imperfections and a generally uneven surface. To get a more distributed

application of concrete, a solution with several adjacent beams were implemented. Several beams with

a smaller individual radius are shot in a cone shape from the nozzle of the robot. This improves the

probability that adjacent areas are updated using the correct data.

21

Observations between these two methods were conducted. Comparisons were made in terms of visual

artifacts and it was noted that single ray method was only marginally less attractive than the multiple

ray method, but at a significantly reduced complexity. Therefore, a decision was made to stick with only

one ray.

Since the geometry of the tunnel is divided into several segments, there are some minor problems in

updating a height map if the point of update is too close to an edge of another segment. At first, this

problem was partially solved as a side effect from the above by shooting several rays in close proximity

to a central ray, in an area around it. This, however, was not at all an optimal solution. It did ease the

problem of updating neighboring segments, but it did not solve it. Furthermore, this solution proved to

be difficult when determining exactly how much concrete that was applied to a certain area since the

surrounding rays would influence the central one in unexpected ways. A far better solution was

implemented as a consequence of the single ray solution from above. This consists of simply checking

the bounds of a segment and updating the texels of concrete textures in neighboring segments if

required.

4.4.4 Performance Considerations

Updating the height maps can be a major bottleneck in the application if not handled carefully as it is

expensive to send data to the graphics card. The size of the texture which is updated is the most

important factor which contributes most to a difference in performance. The texture has two channels,

one for concrete height data and one is used for storing wetness information (see section 4.5.4). The

Ray

radius

Rays

Figure 5: Multiple rays. Figure 6: Single ray.

22

color information of a pixel is stored in 4 bytes, so a texture resolution of 5122 pixels means a memory

requirement of 2*4*512*512 ≈ 2MB. With a resolution of 1024
2
 the memory requirement is four times

higher. Setting the height texture resolution too low can cause artifacts to appear when rendering as

individual texels can be seen. It is therefore important to balance the visual quality versus the

performance. It was found that using a resolution of at least 512
2
 pixels is required to provide a visually

pleasing experience. A resolution of 256
2
 pixels can break the illusion of concrete as it is not high enough

to create a smooth enough concrete surface. A resolution of 1024
2
 is, however, a bit of a stretch seeing

as the added visual contribution is hardly noticeable, but the performance loss is.

All these texture resolution tests are dependent on how large a tunnel segment is in actual geometry. If

a segment size is doubled, the resolution of the concrete texture would also need to be doubled to still

provide the same visual quality. Therefore it is important to find a balance with tunnel segments that

have a suitable size and textures with a resolution that produces a good result while maintaining visual

quality. Hardware filtering of textures ensures that the concrete data is always rendered correctly with

good visual quality at any distance.

4.5 Shading Model

This section describes various shading techniques used throughout the simulator. The texture creation

process and evaluation is also deliberated. Performance consideration of shaders and algorithms are

also considered and examined.

4.5.1 Overall model

Geometry in this simulation exists in two basic forms, the tunnel geometry and the shotcrete robot. The

lighting model used in all shaders is the Phong lighting model (21). As the focus of the work has been to

visualize concrete, the tunnel geometry uses a few other more advanced effects as well.

When computing the color of a pixel in the shader used for the tunnel geometry, the parallax effect is

only computed for pixels within a certain distance from the camera. This saves a significant amount of

computational power since most of the pixels on the screen will often be far from the viewer so that the

parallax effect is not prominent enough to warrant a full run through the parallax occlusion code.

Instead, the original texture coordinates is used, computing only shadows on the surface. As tests

showed, still computing shadows on the surface is necessary to avoid sharp edges where shadows

suddenly would pop into existence.

The simulation uses two height fields during rendering. One is used for the stone surface of the tunnel

which is repeated along with the diffuse and normal map texture. The other is used for storing the

applied concrete. Using separate height fields is necessary to be able to use parallax occlusion mapping

on both types of surfaces while still being able to keep track of the amount of applied concrete. While

no concrete is applied it is trivial to use the stone height field while rendering the surface. On the other

23

hand, when concrete is applied, it is not possible to only use the concrete height field for parallax

computations. This would produce an undesirable visual appearance since it would look like the

concrete was applied directly to the polygonal surface, disregarding the stone surface. Still, both

surfaces need to benefit from parallax mapping to produce a realistic environment. So, while rendering

concrete surfaces, the height from both the stone and the concrete height field is used. This effectively

doubles the amount of samples the shader needs to take during parallax computation of concrete

covered surfaces. Given sufficiently capable graphics hardware, this is not a problem but it needs to be

considered should the system be applied to a low-end machine.

After correct texture coordinates have been calculated, the correct texture lookups are performed in

order obtain a color value and normal for both the stone and concrete materials. The parallax occlusion

mapping takes care of modeling the large features of the materials and the normal sampled from

texture is used in the lighting computation to simulate small features in the materials. With the correct

texture coordinates soft shadows can be computed and with all this information full lighting

computation can be done according to the Phong shading model for all light sources affecting the pixel.

4.5.2 Texturing

Textures are essential components in making surfaces look realistic and are a basic way of visualizing

materials in computer graphics. This section details the creation and application of textures in the

simulator.

4.5.2.1 Concrete

The environment in the simulator oftentimes makes the user view a large portion of the tunnel surface.

This puts a certain requirement on the textures of the tunnel in that they need to tile well. That is, the

textures should not exhibit edges or other distinct visual artifacts when put side by side. In a virtual

environment, a proper tiling of textures is often required but it is particularly important in the case of

this simulation.

When constructing a concrete texture, visual references were used as a base in order to achieve a

natural look. Actual photos of concrete were tried and tested only to be discarded in many cases. Most

times, these textures displayed many artifacts which made them unfit for use. Such artifacts often

manifested as distinct visual attributes which made the texture look very artificial when tiled. Also,

photographs often featured dust, scratches, lighting and dents in high frequencies which did not make

for a good look when put on a virtual surface.

Instead, attention was turned to the creation of concrete textures using a procedural approach.

Concrete has a quite even color though with slight variations. To model this, a cloud-like texture shifting

between two similar concrete-like colors produce a nice diffuse color for the concrete. This approach

tiles better and models reality in a better way. Producing a cloud-like image can be done with fractal

Brownian motion (fBm), in this case based on Perlin noise (22).

Figure

In the end, the textures that are used

different parameters and making the texture tile well.

concrete texture only required subtle shifts in color to look good. If the contrast between color shad

were too great, the result would be that the surface looked shadowed which

shadows are important for the human sense of under

confusing.

To achieve a proper coarseness of the concrete surface, a normal map was applied. Again, tests were

made in order to achieve good look. Different levels of bumps were tested and compared to actual

photos. In the end, the map that was used was created as a combination

was aesthetically pleasing.

Figure 8: Concrete normal map.

Figure 7: Perlin noise based fBm in black and white.

the textures that are used were created with image software as it was simpler to tweak

different parameters and making the texture tile well. Something that was discovered was that the

concrete texture only required subtle shifts in color to look good. If the contrast between color shad

were too great, the result would be that the surface looked shadowed which

shadows are important for the human sense of understanding spatial relationships

proper coarseness of the concrete surface, a normal map was applied. Again, tests were

made in order to achieve good look. Different levels of bumps were tested and compared to actual

photos. In the end, the map that was used was created as a combination of image references and what

: Concrete normal map. Figure 9: Concrete diffuse texture.

24

created with image software as it was simpler to tweak

Something that was discovered was that the

concrete texture only required subtle shifts in color to look good. If the contrast between color shades

were too great, the result would be that the surface looked shadowed which is not desirable. Since

standing spatial relationships (23), this was only

proper coarseness of the concrete surface, a normal map was applied. Again, tests were

made in order to achieve good look. Different levels of bumps were tested and compared to actual

of image references and what

: Concrete diffuse texture.

4.5.2.2 Stone

A procedural approach was also employed when creating textures for the stone surfaces. This, however,

was not as successful as for previous textures. The purely procedural textures that were created looked

very artificial and, while resembling stone, did not

textures were used to great effect. In order

retouched. The photo that was used as the starting point was that of gneiss which is a common type of

rock.

The usage of parallax mapping on surfaces requires that a height map be created.

that underwent several iterations and tests. To get a pleasing result, it was discovered that high

frequency changes in height made the

subtle shifts in height were added and a slight blur effect was added

The height map was also modified to simulate drill holes in the stone.

Figure 11: Stone components. From left to right: diffuse, normal and height map.

Figure 10: Rendered concrete.

procedural approach was also employed when creating textures for the stone surfaces. This, however,

was not as successful as for previous textures. The purely procedural textures that were created looked

very artificial and, while resembling stone, did not have the desired visual quality. Instead, photographic

textures were used to great effect. In order for the stone to tile well, the photos were manually

retouched. The photo that was used as the starting point was that of gneiss which is a common type of

The usage of parallax mapping on surfaces requires that a height map be created.

iterations and tests. To get a pleasing result, it was discovered that high

frequency changes in height made the stone surface look very edgy and sharp. To rectify this, more

subtle shifts in height were added and a slight blur effect was added to tone down frequent changes

The height map was also modified to simulate drill holes in the stone.

: Stone components. From left to right: diffuse, normal and height map.

25

procedural approach was also employed when creating textures for the stone surfaces. This, however,

was not as successful as for previous textures. The purely procedural textures that were created looked

have the desired visual quality. Instead, photographic

the photos were manually

retouched. The photo that was used as the starting point was that of gneiss which is a common type of

The usage of parallax mapping on surfaces requires that a height map be created. This was a process

iterations and tests. To get a pleasing result, it was discovered that high

look very edgy and sharp. To rectify this, more

to tone down frequent changes.

: Stone components. From left to right: diffuse, normal and height map.

4.5.3 Soft shadows

Another benefit of using parallax occlusion mapping is that the height fields used during those

computations can also be used to produce good looking soft shadows. This further improves on the

realistic feel from parallax mapping. Without the ability for the height field to cast shadows, the parallax

effect might even look at bit strange as one expect the different

In the real world, the abundance of soft shadows that exist around us is a result of having light sources

that cover an area. Infinitely small light sources are often used in simulations to keep things simple, but

to be physically correct it is impossible for such light sources to produce soft shadows. The method used

to calculate soft shadows for the

approximation of the real shadows but it does produce a believable result. Shadow in one pixel is done

much in the same way as the parallax occlusion computation. First, a vector is created from the pixel

towards the light source. This ray vector is then traced from the surface towar

checked for intersection with the height field. In the next step each sample height is compared to the

height of the pixel and an approximate shadow value is computed from the sample

amount of occlusion.

Figure 12: Rendered stone.

Another benefit of using parallax occlusion mapping is that the height fields used during those

n also be used to produce good looking soft shadows. This further improves on the

realistic feel from parallax mapping. Without the ability for the height field to cast shadows, the parallax

effect might even look at bit strange as one expect the different height in a object to cast shadows.

In the real world, the abundance of soft shadows that exist around us is a result of having light sources

that cover an area. Infinitely small light sources are often used in simulations to keep things simple, but

physically correct it is impossible for such light sources to produce soft shadows. The method used

to calculate soft shadows for the height fields is implemented as described in

adows but it does produce a believable result. Shadow in one pixel is done

much in the same way as the parallax occlusion computation. First, a vector is created from the pixel

towards the light source. This ray vector is then traced from the surface towar

checked for intersection with the height field. In the next step each sample height is compared to the

height of the pixel and an approximate shadow value is computed from the sample

26

Another benefit of using parallax occlusion mapping is that the height fields used during those

n also be used to produce good looking soft shadows. This further improves on the

realistic feel from parallax mapping. Without the ability for the height field to cast shadows, the parallax

ght in a object to cast shadows.

In the real world, the abundance of soft shadows that exist around us is a result of having light sources

that cover an area. Infinitely small light sources are often used in simulations to keep things simple, but

physically correct it is impossible for such light sources to produce soft shadows. The method used

is implemented as described in (15) and it is an

adows but it does produce a believable result. Shadow in one pixel is done

much in the same way as the parallax occlusion computation. First, a vector is created from the pixel

towards the light source. This ray vector is then traced from the surface toward the light source and

checked for intersection with the height field. In the next step each sample height is compared to the

height of the pixel and an approximate shadow value is computed from the sample with the highest

Just as the parallax effect, the shadows are also computed using the combined height field from stone

and concrete. When the concrete

from using the combined height field

give the surfaces covered with concrete a smoother look. With this computation, the roughness of the

stone height field will not contribute to the shadows

be the result. This in turn will make the concrete appear to fill out holes in the stone surface and

produce a smooth concrete surface.

4.5.4 Wet Concrete

The concrete mix that is projected from the hose nozzle

water. This is necessary in order for it to stick to the target surface. As the concrete hits the surface, it

should gradually dry and become solid. This effect is simulated in the program as follows.

The texture map which stores height information for the concrete information only requires one

channel of color information. This leaves an additional three channels unused, a fact that we exploit and

in one of these channels we store

information, a timestamp value is also stored. The texture is passed to the fragment shader which looks

up the information and uses it to shade the pixel in an appropriate

Figure 13: Soft shadow calculation.

Just as the parallax effect, the shadows are also computed using the combined height field from stone

and concrete. When the concrete height reaches a certain threshold, the shadow computations switch

m using the combined height field into only using the height field from the concrete. This is done to

give the surfaces covered with concrete a smoother look. With this computation, the roughness of the

stone height field will not contribute to the shadows seen on a concrete surface which would otherwise

be the result. This in turn will make the concrete appear to fill out holes in the stone surface and

produce a smooth concrete surface.

The concrete mix that is projected from the hose nozzle contains a mixture of concrete powder and

water. This is necessary in order for it to stick to the target surface. As the concrete hits the surface, it

should gradually dry and become solid. This effect is simulated in the program as follows.

map which stores height information for the concrete information only requires one

channel of color information. This leaves an additional three channels unused, a fact that we exploit and

one of these channels we store a time value. Each time the texture is updated with concrete

information, a timestamp value is also stored. The texture is passed to the fragment shader which looks

up the information and uses it to shade the pixel in an appropriate color, enabling it to look wet.

27

Just as the parallax effect, the shadows are also computed using the combined height field from stone

, the shadow computations switch

using the height field from the concrete. This is done to

give the surfaces covered with concrete a smoother look. With this computation, the roughness of the

seen on a concrete surface which would otherwise

be the result. This in turn will make the concrete appear to fill out holes in the stone surface and

contains a mixture of concrete powder and

water. This is necessary in order for it to stick to the target surface. As the concrete hits the surface, it

should gradually dry and become solid. This effect is simulated in the program as follows.

map which stores height information for the concrete information only requires one

channel of color information. This leaves an additional three channels unused, a fact that we exploit and

re is updated with concrete

information, a timestamp value is also stored. The texture is passed to the fragment shader which looks

color, enabling it to look wet.

Figure

The actual shading process is very simple and no actual physical simulation is done to produce a correct

result. If the concrete is wet, the diffuse color is darkened and the specular highlights ar

As the concrete dries, the effect fades away.

4.6 Particle Systems

In this project, the shotcrete ray and its associated effects are the kind of objects which can be hard to

render as standard geometry. Instead, particle systems fit very well t

rendering engine used, OSG, supplies a basic implementa

only supports square billboard particles, something which were deemed unfit for the purpos

simulation. Therefore, a new implementation of particle systems was done

The exact effects that are rendered as particle system are the following:

• Concrete shot from the nozzle of the robot

• Mist, or dust, that is produced as a result of high pressure impact on the surface

• Concrete particles that rebound

Each of these effects is implemented as

visually pleasant experience.

4.6.1 Implementation details

The particle system implementation for this project is fairly straight forward. Advanced effects, such as

interactions with the tunnel geometry, are not implemented since they were deemed unnecessary. An

overview of the particle system

Figure 14: Left, wet concrete. Right, dried concrete.

The actual shading process is very simple and no actual physical simulation is done to produce a correct

result. If the concrete is wet, the diffuse color is darkened and the specular highlights ar

As the concrete dries, the effect fades away.

In this project, the shotcrete ray and its associated effects are the kind of objects which can be hard to

render as standard geometry. Instead, particle systems fit very well to simulate these effects

rendering engine used, OSG, supplies a basic implementation of particle systems. Howev

particles, something which were deemed unfit for the purpos

a new implementation of particle systems was done.

The exact effects that are rendered as particle system are the following:

Concrete shot from the nozzle of the robot.

produced as a result of high pressure impact on the surface

particles that rebound when striking a surface.

implemented as a separate particle system. They are then combined to create a

lementation details

The particle system implementation for this project is fairly straight forward. Advanced effects, such as

interactions with the tunnel geometry, are not implemented since they were deemed unnecessary. An

overview of the particle system can be seen in Appendix A. The particle system class manages all living

28

The actual shading process is very simple and no actual physical simulation is done to produce a correct

result. If the concrete is wet, the diffuse color is darkened and the specular highlights are accentuated.

In this project, the shotcrete ray and its associated effects are the kind of objects which can be hard to

o simulate these effects (5). The

tion of particle systems. However, this system

particles, something which were deemed unfit for the purposes of this

produced as a result of high pressure impact on the surface.

separate particle system. They are then combined to create a

The particle system implementation for this project is fairly straight forward. Advanced effects, such as

interactions with the tunnel geometry, are not implemented since they were deemed unnecessary. An

. The particle system class manages all living

particles and keeps an emitter, which as the name suggests, emit

required. Each emitter is assigned a

be created. The template determines the properties and vi

The particle class can handle two type

Direction aligned particles will rotate and alig

rotation that always relates to the camera. The main reason to do this was so that it would be possible

to animate the texture coordinates of particles in the shotcrete ray along the velocity vector

becomes trivial if the particles are already aligned along the velocity vector. The animation will then only

consist of moving the Y texture coordinate according to time.

To be able to simulate particles that are affected by forces, such as gravity

have a force associated with it. This force is simply applied to the velocity of each particle alive in the

system during each update.

4.6.2 Texturing

A real-life shotcrete ray consists of a large amount of small concrete particles. T

of particle systems in itself, but it is not enough to achieve a pleasant look. In a first try, a tex

single fuzzy cloud image were used, but it was found that this did not achieve the desired, somewhat

chaotic, look of the large amount of particles that needed to be simulated. One approach to alleviate

this problem is to let one particle in the program simulate many real world shotcrete particl

what is used in (17). Here, each

particles. This helps to maintain the illusion of a great number of particles. At the same time, it keeps

the amount of geometry rendered to a minimum, something that can be imp

reasons.

Figure 15: Ray particle components. Diffuse texture and alpha channel.

If the particles in the system are moving very fast it can become troublesome during the update of the

system. Particles will move along their velocity vector during each update which can create visible gaps

between chunks of particles, especially if all particles have similar velocity.

particles and keeps an emitter, which as the name suggests, emits particles into the system when

ed. Each emitter is assigned a template particle which is used whenever a new par

be created. The template determines the properties and visual appearance of a particle.

The particle class can handle two types of particles; Camera aligned billboards

Direction aligned particles will rotate and align along their velocity vector, as opposed to a billboards

rotation that always relates to the camera. The main reason to do this was so that it would be possible

to animate the texture coordinates of particles in the shotcrete ray along the velocity vector

becomes trivial if the particles are already aligned along the velocity vector. The animation will then only

consist of moving the Y texture coordinate according to time.

To be able to simulate particles that are affected by forces, such as gravity, each particle system can

have a force associated with it. This force is simply applied to the velocity of each particle alive in the

life shotcrete ray consists of a large amount of small concrete particles. This is handled by the use

of particle systems in itself, but it is not enough to achieve a pleasant look. In a first try, a tex

image were used, but it was found that this did not achieve the desired, somewhat

the large amount of particles that needed to be simulated. One approach to alleviate

this problem is to let one particle in the program simulate many real world shotcrete particl

ach simulated particle is textured with an image representing many small

particles. This helps to maintain the illusion of a great number of particles. At the same time, it keeps

the amount of geometry rendered to a minimum, something that can be imp

: Ray particle components. Diffuse texture and alpha channel.

If the particles in the system are moving very fast it can become troublesome during the update of the

long their velocity vector during each update which can create visible gaps

articles, especially if all particles have similar velocity. To avoid this, the velocity of

29

particles into the system when

template particle which is used whenever a new particle needs to

sual appearance of a particle.

 and directional aligned.

n along their velocity vector, as opposed to a billboards

rotation that always relates to the camera. The main reason to do this was so that it would be possible

to animate the texture coordinates of particles in the shotcrete ray along the velocity vector. This

becomes trivial if the particles are already aligned along the velocity vector. The animation will then only

, each particle system can

have a force associated with it. This force is simply applied to the velocity of each particle alive in the

his is handled by the use

of particle systems in itself, but it is not enough to achieve a pleasant look. In a first try, a texture with a

image were used, but it was found that this did not achieve the desired, somewhat

the large amount of particles that needed to be simulated. One approach to alleviate

this problem is to let one particle in the program simulate many real world shotcrete particles, similar to

simulated particle is textured with an image representing many small

particles. This helps to maintain the illusion of a great number of particles. At the same time, it keeps

the amount of geometry rendered to a minimum, something that can be important for performance

: Ray particle components. Diffuse texture and alpha channel.

If the particles in the system are moving very fast it can become troublesome during the update of the

long their velocity vector during each update which can create visible gaps

To avoid this, the velocity of

the particles needs to be kept down at a reasonable rate. However, it

be perceived as moving at great velocities like their real life counterparts. To improve the sense of

speed, the texture is animated along the velocity vector of the particle as described above. As stated,

each particle is texture with an image consisting of many small particles. Yet another trick to enhance

the perception of speed is to blur the texture in such way so that it appears to be in motion. The result

of these tricks is that particles can move at a low eno

continuous but still convey a sense of high velocity. The combination of these effects will produce a

realistically looking shotcrete ray, seemingly consisting of a great amount of particles moving at very

high speed without producing immersion

4.6.3 Soft Particles

Particle systems are used to simplify implementation

Most particles are often implemented as billboards

2D plane. Billboards can often be used

break when the simple 2D image

manifested by sharp edges. This effect can be

However, this is computationally more expensive.

In order to remedy this, the sharp corner that the intersection create

soft so that the illusion of volume is maintained. One way of achieving this is by blending the particle

depending on the difference in depth between the particle itself and the world geomet

done per pixel.

In the simulation environment, we use this soft approach to render all particle systems. Smoke and dust

particles, which are rendered as big, slowly moving billboards, are significantly improved visually by

using this technique. The shotcrete ray, which often colli

benefit from this. Since the ray is composed of fast moving, small particles, the effect is not

noticeable.

Figure 16: Hard particles intersection geometry

the particles needs to be kept down at a reasonable rate. However, it is still desirable for the particles to

be perceived as moving at great velocities like their real life counterparts. To improve the sense of

speed, the texture is animated along the velocity vector of the particle as described above. As stated,

icle is texture with an image consisting of many small particles. Yet another trick to enhance

the perception of speed is to blur the texture in such way so that it appears to be in motion. The result

of these tricks is that particles can move at a low enough speed so that the shotcrete ray will stay

continuous but still convey a sense of high velocity. The combination of these effects will produce a

realistically looking shotcrete ray, seemingly consisting of a great amount of particles moving at very

speed without producing immersion-breaking visual artifacts.

used to simplify implementation of graphical objects in order to save performance.

Most particles are often implemented as billboards, which simulate 3D volumes

can often be used with great results. However, the illusion of volume can easily

when the simple 2D image is intersected with some geometry, giving birth t

s effect can be diminished by using a larger number of

computationally more expensive.

In order to remedy this, the sharp corner that the intersection creates can be smoothed out, or made

so that the illusion of volume is maintained. One way of achieving this is by blending the particle

depending on the difference in depth between the particle itself and the world geomet

mulation environment, we use this soft approach to render all particle systems. Smoke and dust

particles, which are rendered as big, slowly moving billboards, are significantly improved visually by

using this technique. The shotcrete ray, which often collide with the rock surface it is aimed at, also

benefit from this. Since the ray is composed of fast moving, small particles, the effect is not

rticles intersection geometry Figure 17: Soft particles intersecting geometry

30

is still desirable for the particles to

be perceived as moving at great velocities like their real life counterparts. To improve the sense of

speed, the texture is animated along the velocity vector of the particle as described above. As stated,

icle is texture with an image consisting of many small particles. Yet another trick to enhance

the perception of speed is to blur the texture in such way so that it appears to be in motion. The result

ugh speed so that the shotcrete ray will stay

continuous but still convey a sense of high velocity. The combination of these effects will produce a

realistically looking shotcrete ray, seemingly consisting of a great amount of particles moving at very

of graphical objects in order to save performance.

s by projecting them to a

with great results. However, the illusion of volume can easily

is intersected with some geometry, giving birth to ugly artifacts

number of smaller particles.

s can be smoothed out, or made

so that the illusion of volume is maintained. One way of achieving this is by blending the particle

depending on the difference in depth between the particle itself and the world geometry (24). This is

mulation environment, we use this soft approach to render all particle systems. Smoke and dust

particles, which are rendered as big, slowly moving billboards, are significantly improved visually by

de with the rock surface it is aimed at, also

benefit from this. Since the ray is composed of fast moving, small particles, the effect is not as easily

: Soft particles intersecting geometry

31

4.6.3.1 Retrieving and Using Depth Information

In order to retrieve depth information, an auxiliary render target is used. The actual rendering consist of

two passes. The first pass draws the scene normally but without rendering particle systems. In the

shader stages, the (view space) depth of the world geometry is calculated and stored in the auxiliary

buffer. In a second pass, all particle systems are rendered. The pixel shader of these particles sample the

auxiliary buffer previously populated by depth information and calculates the appropriate blending by

comparing the depth in the buffer with its own depth value.

The downside of this approach is that all objects that make up the world geometry must have their

shaders modified to write the view space depth to a render target. The bright side is that the auxiliary

depth buffer can be sampled by other shaders when creating other types of effects, such as post

processing effects.

Another method that can be used utilizes the native depth buffer. This method requires no extra render

targets but instead recreates world (or view) space depth in the pixel shader of the particle systems. The

downside is that for each pixel of each particle, depth information must be reconstructed, which can

degrade performance when displaying many particles.

Tests that were made did also show that the standard 8 bit depth buffer is not precise enough and

particles suffer from heavy artifacts when precision is decreased. Therefore, 16 bit depth is used, which

in this case works fine. It is possible that a 32bit buffer would achieve even better results but our tests

showed that this did not produce any noticeable difference in results. It should be noted however, that

this application is not dependent on a high view range. This should be taken into consideration when

choosing the precision of the depth buffer as well as when setting the near and far clip planes.

4.6.3.2 Blending the billboard

Since depth testing is necessarily off when rendering alpha blended particles, all pixels of all particles

will have their fragment shaders run. Obviously, the number of instructions in these shaders can

significantly impact the performance of the program. Retrieving or calculating the depth value for a pixel

can be more or less advanced, but another bottleneck can be the way which the pixel is blended with

the background.

Comparisons between different techniques for blending were made with varying results on visual quality

and performance. Three different kinds of approaches for blending are suggested in (25). The first one

uses a simple and cheap scaled difference, which the authors say can lead to artifacts in some situations.

The second method uses a contrast function (as they call it) to achieve a smoother fade and reduce

artifacts. The third method uses another “smoothing curve” to reduce artifacts. This function, however,

can lead to some artifacts as well, the authors predict.

For the purposes of this simulation environment, our experiments sho

to be preferred (See equation below)

methods. Secondly, it does not suffer

be a significant cause of lost performance on the GPU sin

experiments showed a small loss in frame rate when the second and third options were used but

virtually no difference in visual quality. Therefore, the choice was made to stick with t

option. This is also the method used in

4.7 Input

Controlling a shotcrete robot is most often done through a remote con

most developers of shotcrete robots have different control setups, the princi

(1). The controls are in most cases connected through a Programmable Logic Controller (PLC) which is a

reprogrammable interface that controls input and

standard personal computer which indeed makes it possible tha

simulated environment.

For a fully functional simulator it is of course necessary to be able to use a real remote control but it is

not strictly necessary during this stage of development. During this early developmen

was made to find and employ an actual robot controller. Instead, a simple game pad was used as a

substitute. The game pad in question

analogue controls that provide the same degrees of freedom as real shotcrete robot remote controls.

Figure 18: Left, Logitach Dual Action

To capture input to the simulator the Object Orient

library for platform independent input handling. In this case

program runs on Windows where

For the purposes of this simulation environment, our experiments show that the first function of

(See equation below). First, it has a lower computational requirement than the other

it does not suffer from conditionally executed code, or branching. Branching could

be a significant cause of lost performance on the GPU since it is inherently parallel

experiments showed a small loss in frame rate when the second and third options were used but

virtually no difference in visual quality. Therefore, the choice was made to stick with t

s is also the method used in (24).

Controlling a shotcrete robot is most often done through a remote control with joysticks. Even though

most developers of shotcrete robots have different control setups, the principle of these are very similar

The controls are in most cases connected through a Programmable Logic Controller (PLC) which is a

reprogrammable interface that controls input and output data. The PLC can also be connected to a

standard personal computer which indeed makes it possible that this kind of device can be used in a

For a fully functional simulator it is of course necessary to be able to use a real remote control but it is

not strictly necessary during this stage of development. During this early developmen

was made to find and employ an actual robot controller. Instead, a simple game pad was used as a

substitute. The game pad in question was the Logitech Dual Action game pad

ls that provide the same degrees of freedom as real shotcrete robot remote controls.

: Left, Logitach Dual Action (Source: Logitech). Right, Meyco Potenza control device

ator the Object Oriented Input System (OIS) was used

library for platform independent input handling. In this case it uses DirectInput

indows where OIS is wrapped around the DirectX input system.

32

w that the first function of (25) is

it has a lower computational requirement than the other

from conditionally executed code, or branching. Branching could

it is inherently parallel (26). Indeed, our

experiments showed a small loss in frame rate when the second and third options were used but

virtually no difference in visual quality. Therefore, the choice was made to stick with the first, cheapest,

trol with joysticks. Even though

ple of these are very similar

The controls are in most cases connected through a Programmable Logic Controller (PLC) which is a

data. The PLC can also be connected to a

t this kind of device can be used in a

For a fully functional simulator it is of course necessary to be able to use a real remote control but it is

not strictly necessary during this stage of development. During this early development phase, no effort

was made to find and employ an actual robot controller. Instead, a simple game pad was used as a

Logitech Dual Action game pad (27), which has dual

ls that provide the same degrees of freedom as real shotcrete robot remote controls.

. Right, Meyco Potenza control device (Source: Meyco).

ed Input System (OIS) was used (28). This is a free

it uses DirectInput (29), as the simulation

ectX input system.

In order to decouple external input libraries as much as possible, the simulator manages its own internal

input messages and structure. The OIS messages are translated to the internal format and,

performance overhead, generality is kept high. Handling input this way is important since it allows for a

smooth transition to a new system in the case that this should be necessary. For example, in the future

it is likely that a proper control device will be required, in which case a switch to some PLC interface

would be necessary.

The robot is controlled using the two analog joysticks and some of the keys on the game pad. Preferably,

the control scheme should be intuitive

necessary. Controlling both the robot and the avatar of the operator at the same time presents a

problem with the control input.

them, this is done in separate modes.

controlling the avatar and controlling

way, the drawback is that the avatar and the robot cannot

4.7.1 Robot Design

When looking at shotcrete robots, there are basically two different types of equipment. One type of

robot is equipped with a cockpit in which the operator sits comfortably and controls the device. The

other version is operated from the outside, with a remote control. The

which are remotely controlled. Then again, adding support for static driver positions would be a fairly

simple addition.

Figure

To achieve a simulation as realistic as possible

shotcrete robot. Since getting a real robot into the simulation was not high priority, this did not happen

during this project. Instead, an approximated model was constructed and loaded into the simulator. The

model used was, although being a v

version. The modeled version features roughly the same number of joints and a similar structure as its

counterpart. Because of available material, the robot

Potenza (30).

In order to decouple external input libraries as much as possible, the simulator manages its own internal

input messages and structure. The OIS messages are translated to the internal format and,

performance overhead, generality is kept high. Handling input this way is important since it allows for a

smooth transition to a new system in the case that this should be necessary. For example, in the future

l device will be required, in which case a switch to some PLC interface

The robot is controlled using the two analog joysticks and some of the keys on the game pad. Preferably,

the control scheme should be intuitive but at the same time provide the level of control that is

Controlling both the robot and the avatar of the operator at the same time presents a

problem with the control input. Since there are not enough keys on the game pad to control

this is done in separate modes. Using a key on the game pad, the operator can swap between

controlling the robot. While this setup solves the problem in a fairly intuitive

that the avatar and the robot cannot move at the same time.

When looking at shotcrete robots, there are basically two different types of equipment. One type of

robot is equipped with a cockpit in which the operator sits comfortably and controls the device. The

perated from the outside, with a remote control. The simulation is

which are remotely controlled. Then again, adding support for static driver positions would be a fairly

Figure 19: Left, Robot model. Right, Meyco Potenza.

achieve a simulation as realistic as possible, the ideal situation would be to acquire a

shotcrete robot. Since getting a real robot into the simulation was not high priority, this did not happen

an approximated model was constructed and loaded into the simulator. The

model used was, although being a very simple prototype, constructed to be similar to a real world

version. The modeled version features roughly the same number of joints and a similar structure as its

counterpart. Because of available material, the robot used in the simulation is modeled a

33

In order to decouple external input libraries as much as possible, the simulator manages its own internal

input messages and structure. The OIS messages are translated to the internal format and, at a slight

performance overhead, generality is kept high. Handling input this way is important since it allows for a

smooth transition to a new system in the case that this should be necessary. For example, in the future

l device will be required, in which case a switch to some PLC interface

The robot is controlled using the two analog joysticks and some of the keys on the game pad. Preferably,

at the same time provide the level of control that is

Controlling both the robot and the avatar of the operator at the same time presents a

Since there are not enough keys on the game pad to control both of

the operator can swap between

While this setup solves the problem in a fairly intuitive

move at the same time.

When looking at shotcrete robots, there are basically two different types of equipment. One type of

robot is equipped with a cockpit in which the operator sits comfortably and controls the device. The

simulation is focused on robots

which are remotely controlled. Then again, adding support for static driver positions would be a fairly

ituation would be to acquire a real model of a

shotcrete robot. Since getting a real robot into the simulation was not high priority, this did not happen

an approximated model was constructed and loaded into the simulator. The

ery simple prototype, constructed to be similar to a real world

version. The modeled version features roughly the same number of joints and a similar structure as its

in the simulation is modeled after the Meyco

34

4.8 Quality Assessment

An essential aspect of a training simulation is the ability to get feedback from the system in various

ways. One important feature of the system is to be able to grade how well a shotcrete session was

performed by the trainee. What was the result of the task? What was performed well? What could be

done better? If something did go wrong or were badly performed, what was it, how can it be improved

and what should the trainee do to fix it? After a simulation session has been run, the system needs to be

able to answer questions like these.

The system can provide feedback to answer the questions above. This can either be shown after a

session or during the simulation to continuously update the trainee on how well she is doing. Another

form of help the system can provide is to automate or provide tools to help the trainee perform certain

tasks. These tools can be used in the beginning of training and be gradually removed as students

become more proficient at the task at hand.

The mark of skilled shotcrete robot driver is the ability to apply the right amount of concrete in an even

layer over a surface without rebound and waste becoming too great. Because of this, it is very important

that the shotcrete simulation has the ability to accurately report results of how well the driver

performed so that it is known how much concrete was wasted and how thick and evenly distributed the

concrete is. This simulation provides tools both to help the trainee during simulations as well as the

ability to thoroughly inspect the result of the simulation after a session is completed.

4.8.1 Statistics

During the simulation, various forms of statistics are gathered. Information stored consists of the

amount of concrete used, how much of it that sticks to surfaces and how much of it that goes to waste.

Users are able to show a table displaying these values at any time during the simulation. This makes

them useful both during the simulation, as an aid to see how well a trainee is doing, as well as after a

training pass to see the total amounts that were used and wasted.

4.8.2 Training Tools

The statistics mentioned above collects values over the entire training session. However, it could also be

interesting to find out how well a trainee is doing over a short period of time, in order to get immediate

feedback. Users have the option to enable a graph that continuously displays the percentage of used

concrete that stuck to tunnel surfaces.

Another training aid that is available is the addition of a laser sight that sits on the nozzle of the robot

arm. This helping hand is featured to help the operator point the nozzle in the right direction. To make

tests and education more realistic, this feature can be turned off.

4.8.3 Inspection Tools

Not only is it important to know the adhesion ratio during the shotcrete process, but it is also important

to know the thickness of the concrete that has been placed on the wall surface. Currently there are two

ways of displaying concrete information, with color coded surfaces and with numerical displays.

4.8.3.1 Color Coding

The first option is to color tunnel surfaces in various colors depending on how much concrete has been

applied to them. This can be used to display differen

different display modes for coloring surfaces. The first compares the current concrete amount against a

desired depth value and colors the surfaces according to the difference to the nominal value. Three bas

colors are used and shades between these indicate the current depth relationship. The color scale starts

at red, indicating that the thickness is below the nominal value. It then fades to green, which indicates a

desired thickness. A blue color indicates

The second color scheme uses the average height of concrete in the whole tunnel and displays how

much the current height varies from that average value. The colors fade from green when the thickness

is equal to the average and, as before, showing red and blue indicating less and greater thickness,

respectively.

Figure 20: Concrete rendered normally and with color encoded height.

4.8.3.2 Numerical Display

Another way of displaying information

information on the tunnel surfaces. Instead of taking a sample at exactly one point on the surface, a

display label gather statistics in a radius surrounding it. The data sampled can be used in d

There are currently two display modes supported in the simulation. One mode displays the surrounding

local average of a point. The other mode gathers the average thickness globally and displays the

difference in depth compared to the local a

Not only is it important to know the adhesion ratio during the shotcrete process, but it is also important

to know the thickness of the concrete that has been placed on the wall surface. Currently there are two

splaying concrete information, with color coded surfaces and with numerical displays.

The first option is to color tunnel surfaces in various colors depending on how much concrete has been

applied to them. This can be used to display different pieces of information. Currently there are two

different display modes for coloring surfaces. The first compares the current concrete amount against a

desired depth value and colors the surfaces according to the difference to the nominal value. Three bas

used and shades between these indicate the current depth relationship. The color scale starts

at red, indicating that the thickness is below the nominal value. It then fades to green, which indicates a

desired thickness. A blue color indicates that the concrete thickness is too high.

The second color scheme uses the average height of concrete in the whole tunnel and displays how

much the current height varies from that average value. The colors fade from green when the thickness

average and, as before, showing red and blue indicating less and greater thickness,

: Concrete rendered normally and with color encoded height.

Another way of displaying information about concrete thickness is by placing labels with numerical

information on the tunnel surfaces. Instead of taking a sample at exactly one point on the surface, a

display label gather statistics in a radius surrounding it. The data sampled can be used in d

There are currently two display modes supported in the simulation. One mode displays the surrounding

local average of a point. The other mode gathers the average thickness globally and displays the

difference in depth compared to the local average.

35

Not only is it important to know the adhesion ratio during the shotcrete process, but it is also important

to know the thickness of the concrete that has been placed on the wall surface. Currently there are two

splaying concrete information, with color coded surfaces and with numerical displays.

The first option is to color tunnel surfaces in various colors depending on how much concrete has been

t pieces of information. Currently there are two

different display modes for coloring surfaces. The first compares the current concrete amount against a

desired depth value and colors the surfaces according to the difference to the nominal value. Three base

used and shades between these indicate the current depth relationship. The color scale starts

at red, indicating that the thickness is below the nominal value. It then fades to green, which indicates a

The second color scheme uses the average height of concrete in the whole tunnel and displays how

much the current height varies from that average value. The colors fade from green when the thickness

average and, as before, showing red and blue indicating less and greater thickness,

: Concrete rendered normally and with color encoded height.

about concrete thickness is by placing labels with numerical

information on the tunnel surfaces. Instead of taking a sample at exactly one point on the surface, a

display label gather statistics in a radius surrounding it. The data sampled can be used in different ways.

There are currently two display modes supported in the simulation. One mode displays the surrounding

local average of a point. The other mode gathers the average thickness globally and displays the

36

4.9 System Design

The rendering framework that was chosen to work with is OpenSceneGraph which, as the name

suggests, is a structured scene graph. That is, the 3D scene consists of a tree structure with nodes that

each is responsible for rendering and transforming different objects. For example, the robot consists of a

base node and several child nodes that make up parts such as the arm and the body.

Using a scene graph has certain advantages that were exploited when structuring the rendering system

for the simulator. Particle systems need to be drawn lastly in order for them to be displayed correctly.

Conveniently, two separate node trees were constructed for this purpose. The first node tree stores all

opaque geometry, such as the tunnel and the robot that should be drawn first. The second node is

responsible for particle systems only. During the render loop, these nodes get drawn in order which

separates the rendering in an easy way. It is also trivial to add or remove geometry in either of these

nodes.

In order to manage objects that need to be initialized, updated and destroyed, there exists an interface

called Entity. An entity is simply an object that can be updated and rendered. Objects which need this

kind of functionality extend this interface and are maintained and cared for by a manager. As a standard

way of managing updatable objects, this is a clean and easy approach. Objects that serve as Entities in

the simulation include among others, the robot, tunnel, and shotcrete ray.

At the center of the program, a class called World binds all the parts together, which means that it

handles the initialization, updating and shutdown of the simulation. It also maintains references to input

handlers, statistical tools and the OSG render system, among other things.

5 Results and Discussion

This chapter details the result and problems of various aspects of the project. Comparisons are made

between parts of the simulator and

requirements are also discussed.

5.1 Rendering

During rendering, stone and concrete

used in the parallax occlusion algorithm determines the visual quality of the effect. At greater distances

from the camera, fewer steps are needed to produc

visual quality is degraded if not enough steps are

what a stone surface looks like at

iterations of the parallax algorithm

Figure 21: Par

and Discussion

This chapter details the result and problems of various aspects of the project. Comparisons are made

and their real world counterparts. Performance issues and hardware

requirements are also discussed.

concrete materials use parallax occlusion mapping. The number of steps

lgorithm determines the visual quality of the effect. At greater distances

, fewer steps are needed to produce a good looking result but at

if not enough steps are used during calculations. The following images display

at a close distance with different number of steps in the first and second

of the parallax algorithm, respectively.

: Parallax mapping with different number of steps. (First - Second)
Top left: 4 – 2

Top right: 8 – 4
Bottom left: 12 – 6

Bottom right: 16 – 12

37

This chapter details the result and problems of various aspects of the project. Comparisons are made

real world counterparts. Performance issues and hardware

parallax occlusion mapping. The number of steps

lgorithm determines the visual quality of the effect. At greater distances

e a good looking result but at close distances the

used during calculations. The following images display

a close distance with different number of steps in the first and second

Second)

To get an understanding of the visual result

used in the simulation compared with how things might look in real work environments.

The final stone surface is a combination of parallax occlusion mapping, normal mapping and soft

shadows. The resulting stone surface looks fairly realistic

Figure 22: Left, rendered stone. Right,

Visualization of concrete uses the same techniques as the stone. This produces a smooth concrete

surface that has many of the chara

Figure 23: Left, rendered concrete. Right, rea

Overall, parallax occlusion mapping is a technique that works very well to a

surfaces. However, there have been some problems associated with this technique. One problem

parallax occlusion mapping is that it is computationally

pixels that are within a certain distance from the camera. When this is done

created where the surface toggles

a region was introduced over the seam where the final pixel color is

values. The first color value is calculated with parallax occlusion mapping and the second without.

To get an understanding of the visual result, below follows some pictures from the different materials

ulation compared with how things might look in real work environments.

The final stone surface is a combination of parallax occlusion mapping, normal mapping and soft

shadows. The resulting stone surface looks fairly realistic as can be seen below.

: Left, rendered stone. Right, photograph of a tunnel wall (Source: SKB-Äspölaboratoriet

Visualization of concrete uses the same techniques as the stone. This produces a smooth concrete

surface that has many of the characteristics of real concrete as can be seen in the comparison below.

: Left, rendered concrete. Right, real construction site. (Source: Me

parallax occlusion mapping is a technique that works very well to accurately simulate uneven

been some problems associated with this technique. One problem

that it is computationally expensive. To counter this

rtain distance from the camera. When this is done

toggles from using parallax occlusion mapping to not using

a region was introduced over the seam where the final pixel color is a blend between

values. The first color value is calculated with parallax occlusion mapping and the second without.

38

follows some pictures from the different materials

ulation compared with how things might look in real work environments.

The final stone surface is a combination of parallax occlusion mapping, normal mapping and soft

Äspölaboratoriet).

Visualization of concrete uses the same techniques as the stone. This produces a smooth concrete

cteristics of real concrete as can be seen in the comparison below.

l construction site. (Source: Meyco)

ccurately simulate uneven

been some problems associated with this technique. One problem with

o counter this, it is only used for

rtain distance from the camera. When this is done, a noticeable seam is

mapping to not using it. To prevent this,

between two different color

values. The first color value is calculated with parallax occlusion mapping and the second without. This

works well in the way that it can totally e

heavy shader code is run more than once for

As the tunnel geometry is divided into segments with its own concrete data texture

problems with the parallax effect close to the edges of the segments. More sp

when texture values are needed from coordinates that lie outside the current segment.

solved by passing concrete data textures from all neighboring segments to the shader. Although

potentially solving the problem,

shader. Instead, the concrete data texture uses mirroring as wrapping mode. This produces an

acceptable result and eliminates most artifacts this problem introduces.

edges between segments, are sometimes visible

5.2 Particles

As the high pressure shotcrete ray hits a surface, mist and smoke form as a bi

simulated using a particle system and the soft particles technique

produce edges or artifacts, mist particles can be large, slowly moving objects of small quantity which put

little strain on the system. Currently there ca

enough to produce the desired

particles to produce a realistic result. After testing different combinations of values

keep a maximum of 5000 ray particles alive in the simulation at a

rebounding particles has not been solved mostly due to lack of knowledge of how rebound looks and

behaves in reality.

works well in the way that it can totally eliminate the seam. However, this means

run more than once for these pixels which causes a slight drop in performance

As the tunnel geometry is divided into segments with its own concrete data texture

problems with the parallax effect close to the edges of the segments. More specifically

when texture values are needed from coordinates that lie outside the current segment.

solved by passing concrete data textures from all neighboring segments to the shader. Although

potentially solving the problem, it would decrease performance and increase the complexity of the

shader. Instead, the concrete data texture uses mirroring as wrapping mode. This produces an

acceptable result and eliminates most artifacts this problem introduces. Some

, are sometimes visible as can be seen in the picture below.

Figure 24: Tunnel segment edge.

As the high pressure shotcrete ray hits a surface, mist and smoke form as a bi

simulated using a particle system and the soft particles technique. Since this technique does not

produce edges or artifacts, mist particles can be large, slowly moving objects of small quantity which put

Currently there can be a maximum of 10 mist particles alive at a time

 effect. The shotcrete ray, on the other hand, needs to use many more

result. After testing different combinations of values

5000 ray particles alive in the simulation at a time. The issue of simulating

rebounding particles has not been solved mostly due to lack of knowledge of how rebound looks and

39

liminate the seam. However, this means that computationally

causes a slight drop in performance.

As the tunnel geometry is divided into segments with its own concrete data texture, there are some

ecifically, problems arise

when texture values are needed from coordinates that lie outside the current segment. This could be

solved by passing concrete data textures from all neighboring segments to the shader. Although

t would decrease performance and increase the complexity of the

shader. Instead, the concrete data texture uses mirroring as wrapping mode. This produces an

 artifacts, in the form of

as can be seen in the picture below.

As the high pressure shotcrete ray hits a surface, mist and smoke form as a bi-product. This effect is

Since this technique does not

produce edges or artifacts, mist particles can be large, slowly moving objects of small quantity which put

n be a maximum of 10 mist particles alive at a time which is

needs to use many more

result. After testing different combinations of values, it was decided to

. The issue of simulating

rebounding particles has not been solved mostly due to lack of knowledge of how rebound looks and

Below, a comparison between the simulated shotcrete ray

5.3 Simulation

Currently, the simulation does not

used. This model is a sufficiently accurate representation to be of use in the current prototype.

Even though the adhesion system does not perfor

approximation works very well in giving a satisfying result. The approximation is built on the basic

etween the simulated shotcrete ray and real shotcrete rays can be seen.

Figure 25: Real shotcrete rays. (Source: Meyco)

Figure 26: Rendered shotcrete rays.

, the simulation does not use a real robot model. Instead, a temporary approximate

This model is a sufficiently accurate representation to be of use in the current prototype.

Even though the adhesion system does not perform a totally correct physical

approximation works very well in giving a satisfying result. The approximation is built on the basic

40

and real shotcrete rays can be seen.

. Instead, a temporary approximated model is

This model is a sufficiently accurate representation to be of use in the current prototype.

physical calculation, the

approximation works very well in giving a satisfying result. The approximation is built on the basic

41

principles of concrete adhesion and it gives a result quite close to what one would expect of real

concrete. This makes it suitable for this prototype as well as a viable option for future simulations.

The original plan was to visit a real work site to experience the environment first hand. Regrettably, no

such field study was possible since these kinds of work sites are quite rare and not always easily

accessible. This shortcoming made it harder to grasp the concept of shotcrete reinforcement in its

entirety. Instead, the primary source of information was videos and pictures.

Overall the simulation performs well and the parts of the simulator that have been implemented both

look and behave as one would expect. The prototype has been shown to company representatives from

BESAB, which are experienced in shotcrete operations. The feedback received has been positive and this

is an indication that the simulator prototype is on the right track on the road to a proper training

simulator.

5.4 Performance

The most computationally heavy subsystem of the simulation is the rendering of the tunnel wall and the

concrete layer on top of it. Since most of the computations in this step are done through vertex and

fragment shader, this puts the heaviest load of computation on the graphics card. This is good news

since it is indeed to this purpose it should be used. The shaders rely quite heavily on dynamic branching

and iterations, features that were not supported on earlier graphics cards. These features were first

introduced in Shader Model (SM) 3.0 (31) and the shader requires graphics cards to support this in

hardware. SM 3.0 was first introduced for the GeForce 6 series (or equivalent) and this could be

considered the absolute minimum hardware requirement on which our simulation can be run. Although,

according to our tests using a GeForce 6800 card, the frame rate in these tests could barely be

considered interactive and the conclusion to this is that this card is not sufficient to run the simulation.

Running the program on a machine using GeForce 8800 GTX significantly improves performance and

runs the simulation at an acceptable frame rate. It is recommended to use an equivalent graphics card

or a card from later series.

Overall the simulation does not require much of the CPU. There are only two parts of the simulation that

currently take noticeable CPU time. First, updates of the height textures and sampling of these for

statistical purposes are done purely on the CPU. Secondly, the particle systems are currently handled by

the CPU. This can place quite a load on the CPU but according to tests made, a processor with a clock

speed of 2 Ghz is more than sufficient to handle this.

The memory footprint of the program is low. Most of the memory consumption is due to saving

textures with concrete data. The total memory requirement in the final prototype is just barely over

100Mb according to test runs. This is largely dependent on the size of the tunnel or, more importantly,

42

how many segments the tunnel is divided into. As each tunnel segment has its own concrete data

texture the memory requirements increase with each added segment.

6 Future Work

This section details future implementation needs and considerations that need to be done, should the

project be further developed. Considered are implementation requirements both when looking at the

scope of this thesis as well as requirements for a full scale simulator.

6.1 Thesis scope

In the scope of the thesis project there are still things that need to be updated, implemented and

considered should the simulator be used in a real setting. Improvements to the adhesion system, a

usable interface and extended educational tools are some features that are important in a production

environment.

6.1.1 Environment and Equipment

To increase the realism and believability as well as the potential educational quality of the simulator, it

would be desirable to have computerized models of tunnels loaded. If such opportunities exist,

operating in a model of a real work site could potentially be used as a reference point before starting

the shotcrete process on site, saving both time and money.

An additional improvement would be to use a factual, proper model of a shotcrete robot. As the current

model is only a crude approximation, it does not operate in the full extent to which a real robot does.

For the sake of immersion, having virtual replicas of real equipment would be a certain improvement.

6.1.2 Educational Tools

This thesis project's main goal has been to ascertain the possibility building an educational shotcrete

system. As such, not much time has been spent producing scenarios or mission for students to undergo.

This would likely be an important addition to a complete system. Such missions might include to apply

concrete to an area

• With a certain margin of error in terms of deviation from a nominal height.

• As quickly as possible.

• Using a maximum amount of concrete.

• Only producing a certain amount of rebound.

If specific training scenarios like the above are desired is not known at the time but the possibility to

include them in a future simulator exists.

43

6.1.3 Adhesion system improvements

A more accurate model for calculating adhesion could be of great use as well. Realism is important in a

simulator, which includes that of physics. The current implementation uses a very simple approximation

which might not be considered good enough. Numerical approaches, such as the Distinct Element

Model, that can produce very realistic results, can potentially be used when computer hardware has

evolved to a high enough level. If this process is suitable for parallelization it might be possible to utilize

the pure computational strength of recent graphics hardware to compute these numerical calculations

in real-time using, for example, CUDA (32).

6.1.4 Graphical Improvements

While the result of the graphical parts of the application is acceptable, there is also room for

improvements on certain points. The particle systems currently reside on the CPU side of the application

which is inefficient since a lot of data has to be pushed to the GPU each frame. Because of this, the

simulation could see improvements in frame rate by moving the management of the particle systems to

reside entirely on the GPU. This is possible and efficient on recent graphics hardware which supports

geometry shaders and stream out functionality.

Another graphical aspect of the simulation that needs improvement is that objects should be able to

cast shadows. At the moment the robot does not cast shadows in the world and because of this it

becomes harder for users to estimate where the robot is positioned. Without shadows it is harder for

humans to determine spatial relationships between objects. Some form of shadows will need to be

implemented in a final version of the simulator.

6.1.5 Interface and usability

For the simulator to be of any use in a production environment there is a lot of work to be done on the

user interface and the overall usability of the system. Currently, many features are hard to activate and

gain access to, something that needs to be addressed by the use of menus, buttons and informational

displays. A graphical user interface should also allow users to control the different viewing modes,

restart the simulation and perform other tasks.

6.1.6 Performance

The simulation currently runs at a decent frame rate in all situations on a standard PC. It is important to

notice that not much time have been spent on trying to optimize the different parts of the simulator.

Because of this there is likely room for improved performance both for the code running on the CPU as

well as for the shaders running on the GPU.

44

6.2 High-end simulator scope

To reach the ultimate goal of a full scale simulator there are many things that need to be added or

improved. The most important ones are adding support for real robot remote controls and visualization

on some sort of VR or CAVE environment.

During shotcrete training, one of the goals is for the driver to become familiar with the controls and how

the robot responds. In this first version of the simulator the user have a simple game pad with which to

control the robot. While this can be used as a first step in the training process, the need for real control

equipment is paramount if the simulator should be of proper use. For this to be realized, the first step is

obviously to acquire a proper control device and have it connected to the simulation. If multiple robot

types are to be supported, several different control units are likely needed. This process could

potentially be costly both in terms of hardware and on the side of software development.

Another challenge is to migrate the simulation from a system with a regular computer screen to an

advanced high-end visualization system. There exist many systems for this purpose, each with their own

capabilities and requirements. Stereoscopic imaging can be used in order to achieve an increased

illusion of depth when viewing an inherently two-dimensional image. This is often accomplished by

combining a multiply projected image with a pair of stereoscopic (polarized) glasses.

A CAVE environment features an enclosed room (usually of cubic form), where projectors are directed at

the walls of the room, potentially creating an immersive experience. This can give the user the

experience of enhanced reality where she can actually walk (albeit quite limited) around and turn

around in different directions to get a different look of the virtual environment. This environment can

also be used in combination with a pair of stereoscopic glasses.

Research need to be made in order to determine what system would be appropriate for a shotcrete

simulation. Depending on what system is used it might impact the simulation in different ways. The

basic rendering system will most likely need little to no change in most cases. On the other hand, other

areas might need to be reworked. For example, the method by which the operator moves around the

environment might not be suitable for all systems. Requirements and potential of different visualization

systems differ from each case, making it hard to speculate what might need to be changed, if anything.

Versatility in education may also be important, in which case a need for different kinds of robots is

desired. Different kinds of robots are indeed possible implementations in a future system. These could

likely be created in-house, from detailed blueprints or specifications, assuming that such are available.

Another possibility is to acquire complete 3D models form individual manufacturers. The downside of

this would likely be that these would differ in terms of detail and format.

Another form of versatility would be to enable the use of an array of different work sites. Such places

could be tunnels of different shapes and sizes, construction sites and other locales. It is possible that the

45

addition of multiple locations would enhance the quality of the educational experience. This way,

operators could run the simulator with an environment similar to that in which they are scheduled to

work, for example. Different environments could also feature various types of surfaces, having dissimilar

conditions for adhesion.

46

7 Conclusion

During this thesis project a prototype of a shotcrete simulation for educational purposes has been

produced. This simulator fulfills the goals stated in the project specification as well as the requirements

for a simple simulator as described in (1).

The simulator prototype uses parallax occlusion mapping as the primary method of visualizing stone and

concrete materials in a realistic manner. It also shows that simple approximations of concrete adhesion

are sufficient to provide a pleasant experience. Overall, the graphical quality of the simulator can be

considered to be realistic enough to be of use in education of shotcrete robot operators.

The work here shows that it is indeed viable to build a full scale simulation environment for education of

shotcrete robot operators as described in (1). Further work is needed to reach this goal but the

prototype produced in this project is a first step in this direction.

47

8 References

1. B. Westerdahl, M. Johansson, M. Roupé. Simulator för träning av robotförare vid

sprutbetongsförstärkning, Förstudie. Göteborg : Visualiseringsstudion Chalmers, SveBeFo Rapport K27,

2007.

2. U. C. Puri I, T. Uomoto. Numerical modeling - A new tool for understanding shotcrete. Tokyo : Dept. of

Civil Engineering, Institute of Industrial Science - The University of Tokyo, 1998.

3. BESAB. BESAB. [Online] [Cited: 06 18, 2009.] http://www.besab.com/.

4. C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon and J. C. Hart. The CAVE: Audio Visual

Experience Automatic Virtual Environment. s.l. : Communications of the ACM, vol. 35(6), 1992.

5. W. T. Reeves. Particle systems - a technique for modeling a class of fuzzy objects. s.l. : Association for

Computing Machinery, 1983.

6. OSG Community. osg. OpenSceneGraph. [Online] OSG Community, 2007. [Cited: 06 17, 2009.]

http://www.openscenegraph.org.

7. M. Segal, K. Akeley. The OpenGL Graphics System: A Specification (Version 2.1). Mountain View, CA. :

Silicon Graphics, Inc., 2006.

8. J. Kessenich, D. Baldwin, R. Rost. The OpenGL Shading Language. Madison, Alabama : 3Dlabs, Inc.

Ltd., 2006.

9. P. S. Heckbert. Survey of Texture Mapping. s.l. : IEEE Computer Graphics and Applications, 1986.

10. W. Heidrich, H-P. Seidel. Realistic, Hardware-accelerated Shading and Lighting. s.l. : SIGGRAPH

Proceedings, 1999.

11. Y. Kryachko. Using Vertex Texture Displacement for Realistic Water Rendering. s.l. : Maddox Games.

12. T. Jenks. Terrain Mesh Displacement using Vertex Textures. Terrain Mesh Displacement using Vertex

Textures. [Online] October 2005. [Cited: May 29, 2009.] http://www.jenkz.org/articles/vertextex.htm.

13. T. KANEKO, T. TAKAHEI, M. INAMI, N. KAWAKAMI,Y. YANAGIDA, T. MAEDA, S. TACHII. Detailed

Shape Representation with Parallax Mapping. Tokyo : School of Information Science and Technology,

The University of Tokyo, 2001.

14. W. Donnelly, University of Waterloo. Per-Pixel displacement mapping with distance functions. s.l. :

Nvidia Corporation, 2005.

48

15. N. Tatarchuk, ATI Research. Practical parallax occlusion mapping with approximate soft shadows for

detailed surface rendering. s.l. : Association for Computing Machinery, 2006.

16. M. McGuire, M. McGuire. Steep parallax mapping. [Online] 2005.

17. R. Geiss, M. Thompson. Nvidia demo: Cascades. s.l. : Nvidia Corporation, 2006.

18. Melbye, T. Sprayed Concrete for Rock Support. s.l. : MBT International Underground Construction

Group, 1994.

19. P. Vedin. Sprutbetongsförstärkning, Förslag till förbättringar i produktionskedjan. Luleå : Luleå

Tekniska Universitet, Institutionen för sammhällsbyggnad, 2006.

20. L. Jinga, J.A. Hudson. CivilZone review paper, Numerical methods in rock mechanics. Welwyn Garden

City, AL8 6SG, UK : Royal Institute of Technology, Imperial College and Rock Engineering Consultants, 7

The Quadrangle, 2002.

21. T. B. Phong. Illumination for Computer Generated Pictures. s.l. : Communications of the ACM, vol 18,

no 6, 1975.

22. D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, S. Worley. Texturing and modeling, a procedural

approach.

23. P. Mamassian, D. C. Knill, D. Kersten. The Perception of Cast Shadow. s.l. : Trends in Cognitive

Science, Elsevier Sciences LTD., 1998.

24. T. Ilmonen, T. Takala, J. Laitine. Soft Edges and Burning Things: Enhanced Real-Time Rendering of

Particle Systems. s.l. : Helsinki Univ. of Technology, Telecommunications Software and Multimedia

Laboratory.

25. T. Lorach. Soft Particles. s.l. : Nvidia Corporation, 2007.

26. Y. Uralsky. Efficient Soft-Edged Shadows Using Pixel Shader Branching. s.l. : Nvidia Corporation.

27. Logitech. Dual Action Gamepad. Logitech. [Online] 2009. [Cited: May 29, 2009.]

http://www.logitech.com/index.cfm/gaming/pc_gaming/gamepads/devices/288&cl=gb,en.

28. P. Castaneda. Object Oriented Input System. Wrecked Games. [Online] Wrecked Games, 2005.

[Cited: 06 17, 2009.] http://www.wreckedgames.com/forum/index.php/board,6.0.html.

29. Microsoft Corporation. DirectInput. MSDN Library. [Online] Microsoft Corporation. [Cited: 06 17,

2009.]

49

30. BASF, Meyco. Meyco Potenza. Meyco - Expanding Horizons Underground. [Online] BASF, Meyco.

[Cited: 06 17, 2009.] http://www.meyco.basf.com/en/meyco_solutions/equipment/equipment-

range/Pages/potenza.aspx.

31. A. Rege. Shader Model 3.0. s.l. : Nvidia Corporation, 2004.

32. Nvidia Corporation. NVIDIA CUDA - Programming Guide 2.2. Santa Clara, CA : Nvidia Corporation,

2009.

1

Appendix A – Implementation Diagrams

1. Adhesion Overview

Adhesion Test Suite

Environment Data

Geometric Variation

Concrete Viscosity

Accelerator Agent

…

Variable Data

Surface Angle

Distance

Surface Thickness

…

Simulation

Adhesion Result

2

2. Adhesion System Overview

Application

AdhesionFactory

+createAdhesionTest(): AdhesionTest

Advanced

Adhesion Test

+calculateAdhesion(): float

Simple

Adhesion Test

+calculateAdhesion(): float

Adhesion Controller

+updateAdhesion()

-mTest: AdhesionTest

<Abstract>

AdhesionTest

+calculateAdhesion(): float

3

3. Particle System Overview

Particle System

+drawImplementation(renderInfo): void

+InjectParticle(Particle p): void

-mParticles: std::vector<Particle>

-mEmitter: Emitter

-mForce: Force

<Abstract>

Emitter

+EmitParticles(float elapsed): void

-EmitParticleImplementation(): void = 0

-mParticleTemplate: Particle

Force

+ApplyForce(Particle p): void

OSG::Drawable

Particle

+Render(Matrix modelView): void

RayEmitter MistEmitter ReboundEmitter

