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Abstract

This thesis describes how real-time realistic and convincing clouds
were implemented in the game engine Frostbite. The implemen-
tation is focused on rendering dense clouds close to the viewer
while still supporting the old system for high altitude clouds. The
new technique uses ray marching and a combination of Perlin and
Worley noises to render dynamic volumetric clouds. The clouds
are projected into a dome to simulate the shape of a planet’s at-
mosphere. The technique has the ability to render from different
viewpoints and the clouds can be viewed from both below, inside
and above the atmosphere. The final solution is able to render re-
alistic skies with many different cloud shapes at different altitudes
in real-time. This with completely dynamic lighting.
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1
Introduction

Real-time rendering of realistic and convincing cloud scenes has always been
a desired feature in computer graphics. Realistic and convincing cloud scenes
is not only the result of light scattering in participating media but also the
result of dynamic clouds that can evolve over time, cast shadows and interact
with its environment. Many cloud rendering techniques have been developed
over the years and are still being researched. Rendering realistic and convinc-
ing cloud scenes is still a difficult task as clouds are not only volumetric and
dynamic but also requires a complex light transport model.

The cloud system presented in this thesis is inspired by a recent technique
developed by Schneider and Vos [AN15]. The main additions and changes to
this technique is a different and unified height signal and control. The amount
of resources required has also been reduced.

1.1 Motivation

As the computing power increases so does the possibility to use new tech-
niques that previously were only suited for offline rendering to be used in
real-time. The area of cloud lighting and rendering is well-researched in com-
puter graphics. Many different techniques for rendering realistic clouds have
been developed over the years, but they are often not scalable enough to be
used in real-time rendering in a game context. One common solution is to use
impostors or panoramic textures that are applied to the sky. This can produce
realistic high definition clouds but it is a very static solution. Using it within a
framework featuring dynamic time of day and animations would be very diffi-
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1.2. GOAL CHAPTER 1. INTRODUCTION

cult. These two-dimensional solutions are also not well suited for clouds close
to the viewer as they will appear flat and not give a realistic representation
of clouds. However these techniques might be suitable for thin layered clouds
far away from the viewer.

1.2 Goal

The goal of this thesis was to investigate and implement a technique for ren-
dering realistic and convincing clouds in real-time. The rendering technique
should be able to produce a vast amount of clouds that are different in both
shape, type and density, while still being dynamic and evolve over time. Al-
though the focus of this technique is on dense clouds close to the viewer. It
should be easy to control for an artist via a weather system that can model
the clouds shape and behavior. The clouds should also be rendered into a
spherical atmosphere which would allow them to bend over the horizon. It
is also important that clouds can receive shadows from its environment, both
from the planet and from other clouds.

1.2.1 Approach

The approach was to investigate a different solution that can render more
interesting and complex cloud scenes. This was be done by studying recent
advances in volumetric rendering of clouds and see if and how they can be
improved and applied in a game context. The solution was evaluated both
by the time it takes to render and the amount of resources required. In or-
der to evaluate how realistic the clouds are actual photographs are used for
comparison.

1.3 Report Structure

This paper has the following structure. In Section 2 different cloud types,
lighting, their behavior and how they appear are described. Section 3 intro-
duces the reader to previous research of rendering clouds by other authors. In
Section 4 the implementation and modeling of these clouds are covered. In
Section 5 rendering is described. Section 6 covers optimizations needed for
achieving real-time performance. Section 7 presents results from this render-
ing technique with and without optimizations. This section also offers a visual
comparison between in-game rendering and photographs. In Section 8 is a dis-
cussion and conclusion of the results and limitations from this implementation.
Section 9 covers proposed future work. Finally in Appendix A is additional
visual results and in Appendix B is a description of exposed controls.
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2
Cloud Physics

Water vapor is invisible to the human eye and it is not until water condensates
in air that clouds appear. This section provides a short introduction to dif-
ferent cloud types and how they are named. It also covers behavior, physical
properties and simplifications made for modeling clouds. Finally it offers a
section about lighting and radiative transfer in participating media.

2.1 Types

Cloud can appear in many different shapes and variations. Most cloud types
are named after a combination of its attributes. Attributes that refers to the
altitude are Cirrus for high altitude and Alto for mid altitude. The attribute
Cumulus is used for clouds that have a puffy appearance. Clouds that have
the attribute Status appears as layers. The last common attribute is Nimbus
which is used for clouds with precipitation. In Figure 2.1 common cloud types
and their names are displayed.

2.2 Behavior

When modeling clouds it is important to follow their physical behavior for
them to be realistic. Rendering clouds without taking physical behavior into
account will not yield convincing and realistic results [BNM+08]. Temperature
and pressure are key components of how clouds form and behave. As water
vapor rises with heat into the atmosphere, where it is colder, the water con-
densates and form into clouds. Air temperature decreases over altitude and
since saturation vapor pressure strongly decreases with temperature, dense
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2.2. BEHAVIOR CHAPTER 2. CLOUD PHYSICS
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Figure 2.1 – Common cloud types and their names

clouds are generally found at lower altitudes. Rain clouds appear darker than
others which is the result of larger droplet sizes. This is because larger droplets
absorbs more and scatter less light [Mh11].

Wind is another force that drives clouds and is caused by differences in pres-
sure at different parts of the atmosphere. Clouds can therefore have different
wind directions at different altitudes. Since our focus is low altitude clouds
close to the viewer we assume that all of these clouds move in the same wind
direction. This makes the behavior quite complex so a few simplifications were
done. Some of these simplifications are shown in the list below.

• Cloud density : The density inside a cloud increases over altitude but is
independent of where in the atmosphere the cloud appears.

• Wind direction: Since focus is on low altitude clouds we only take one
wind direction into account.

• Droplet size: In our cloud model we assume that clouds always have the
same droplet size and instead only the density varies.

• Precipitating clouds: Instead of modeling precipitating clouds with dif-
ferent droplet sizes we increase the absorption coefficient of these clouds.

• Atmosphere shape: We assume that atmosphere can be treated as a
perfect sphere instead of an oblate spheroid.

10



2.3. LIGHTING CHAPTER 2. CLOUD PHYSICS

• Direction to sun: We assume that the direction to the sun can be treated
as parallel within the atmosphere.

2.3 Lighting

This section covers light behaviour when traveling through participating me-
dia. Real world clouds do not have a surface that reflects light. Instead
light travels through them at which photons interact with particles which may
absorb or scatter them, which causes a change in radiance. There are four dif-
ferent ways radiance may change in participating media, these four different
ways are described in Figure 2.2. It can be due to absorption, in-scattering,
out-scattering or emission [Jar08].

Figure 2.2 – The four ways light can interact with participating
media. From left to right, Absorption, Out-scatter, In-scatter and

Emission

2.3.1 Absorption

Absorption coefficient σa is the probability that a photon is absorbed when
traveling through participating media. When a photon is absorbed it causes
a change in radiance by transforming light into heat. Reduced radiance due
to absorption at position x when a light ray of radiance L travels along ~ω is
given by Equation 2.1.

e−σa(x)dtL(x, ~ω) (2.1)

Rain clouds are generally darker because they absorb more light. This is
because rain clouds have a higher presence of larger water droplets, which are
more effective at absorbing light.
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2.3. LIGHTING CHAPTER 2. CLOUD PHYSICS

2.3.2 Scattering

Radiance may increase due to in-scattering or decrease due to out-scattering.
The coefficient σs is the probability that a photon will scatter when travel-
ing through participating media. Increased radiance due to in-scattering is
shown in Equation 2.2. In this equation P (x, ~ω) is a phase function, which
determines the out-scatter direction from the light direction ~ω. Many differ-
ent phase functions exists and are suitable for different types of participating
media. The phase function can scatter light uniform in all directions as the
isotropic or scatter light differently in forward and backward directions. A
phase function for clouds can be very complex as seen in Figure 2.3, which
was used in [BNM+08].

σs(x)Li(x, ~ω)

Li(x, ~ω) =

∫
Ω4π

P (x, ~ω)L(x, ~ω)d~ω
(2.2)

Figure 2.3 – Plot of a Mie phase function used for clouds
in [BNM+08]

Clouds are generally white because they scatter light independently of wave
length as oppose to atmospheric scattering which scatters blue wave lengths
more than others.

2.3.3 Extinction

Extinction coefficient σt is the probability that photons traveling through a
participating media interacts with it. The probability that a photon interacts
and therefore causes a reduction in radiance is the sum of the probabilities for
photons either being absorbed or out-scattered as described in Equation 2.3.

σt = σa + σs (2.3)

12



2.3. LIGHTING CHAPTER 2. CLOUD PHYSICS

2.3.4 Transmittance

Transmittance Tr is the amount of photos that travels unobstructed between
two points along a straight line. The transmittance can be calculated using
Beer–Lambert’s law as described in Equation 2.4.

Tr(x0, x1) = e
-
∫ x1
x0

σt(x)dx
(2.4)

2.3.5 Emission

Emission is the process of increased radiance due to other forms of energy has
transformed into light. Increased radiance because of emission at a point x
along a ray ~ω is denoted by Le(x, ~ω). Clouds do not emit light unless a light
source is placed inside it.

2.3.6 Radiative Transfer Equation

By combining the equations of the four ways light can interact with partici-
pating media, it is possible to derive the radiative transfer equation though
the law of conservation of energy. The radiative transfer equation is shown in
Equation 2.5 and describes the radiance at position x along a ray with direc-
tion ~ω within a participating medium [Cha60].

L(x, ~ω) =Tr(x, xs)L(xs, -~ω)+∫ s

0
Tr(x, xt)Le(xt, -~ω)dt+∫ s

0
Tr(x, xt)σs(xt)Li(xt, -~ω)dt

(2.5)
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3
Related Work

Techniques for rendering clouds are a well-researched area with many recent
new breakthroughs and ideas of how to render realistic clouds. Hunagel et al.
presented in [HH12] a comprehensive survey on research and development in
rendering and lighting of clouds. In this survey the authors compare different
techniques and weigh them against each other. Some techniques that are cov-
ered are billboards, splatting, volume slicing and ray marching. A table with
technique and suitable cloud type is presented, making it easy for the reader
to compare.

One recent technique is a cloud system developed by Schneider et al. [AN15]
that is going to be used in the game Horizon Zero Dawn. By using a combi-
nation of Worley and Perlin noise and ray marching, the authors manage to
render very realistic cumulus shaped clouds in real-time under dynamic light-
ing conditions.

Another recent rendering technique for clouds was developed by Egor Ysov
[Yus14]. This technique uses pre-computed lighting and particles to render
realistic cumulus clouds. But this technique depends on a feature called Pixel
Synchronization for providing volume aware blending which is only available
on Intel HD graphic cards [Sal13]. Volume aware blending could be imple-
mented using rasterizer ordered views which is a new feature in DirectX 12,
but since our implementation must work on all three platforms PC, PlaySta-
tion and Xbox this technique is not suitable for our use case.
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CHAPTER 3. RELATED WORK

Bouthors et al. propose in [BNL06] a technique for real-time realistic illu-
mination and shading of stratiform clouds. By using an advanced lighting
model were they account for all light paths and preserves anisotropic behavior
as well as using a physically based phase function they manage to render re-
alistic clouds in 18-40 fps. This technique is limited to a few cloud types and
is mostly suitable for stratiform clouds.

In [BNM+08], Bouthors et al. propose a technique for simulating interac-
tive multiple anisotropic scattering in clouds. With this technique using a
similar approach to [BNL06] they manage to also render very realistic lighting
of detailed cumulus typed clouds in 2-10 fps.
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4
Implementation

This section covers how our new technique was implemented and added to the
system. It also covers resources required, how they are used and how they are
generated.

4.1 Integration into Frostbite Sky Module

Frostbite has several different sky modules that can be used for rendering skies.
Our implementation is focused on a sky module called Sky Physical [BS14].
This section provides an overview to the new technique and how it is imple-
mented. First we described how our cloud module was added to the system.
The cloud module is responsible for maintaining results from our shader and
providing input to it. Then is an short overview of how the shader works.

4.1.1 Cloud Module

A system diagram of the previous technique for rendering clouds before this
implementation is shown in Figure 4.1. The clouds were rendered by applying
static textures called panoramic and cloud layers to the sky. This technique
can produce convincing skies but it is limited to distant clouds because clouds
close to the viewer will appear flat.

In order to produce realistic clouds close to the viewer a dynamic cloud render-
ing technique was needed. The static cloud texture solution was only suitable
for distant clouds under static lighting conditions. The new solution should
not only produce dynamic clouds but also improve the previous cloud lighting

16



4.1. INTEGRATION INTO FROSTBITE SKY MODULECHAPTER 4. IMPLEMENTATION

model by handling dynamic lighting conditions. Therefore a cloud module
was developed as shown in Figure 4.2. This module can be added by artists
if needed for a scene. The cloud module renders to a texture which is then
provided to the sky module. This texture is rendered once for every frame,
providing a dynamic solution for rendering clouds. Since the new implemen-
tation is focused on rendering clouds close to the viewer the old cloud layer
system can still be used for adding high altitude clouds.

Cloud Layer Textures Panoramic Texture

Sky Module

Apply to sky
Apply to sky

Figure 4.1 – Diagram showing how clouds were rendered before

Cloud Module

Volumetric Cloud Texture Cloud Layer Textures Panoramic Texture

Sky Module

Render

Apply to sky

Apply to sky Apply to sky

Figure 4.2 – Diagram showing how cloud module was added

4.1.2 Cloud Shader

We also created a single shader to use with our cloud module. This shader
is dispatched from our cloud module and uses ray marching together with
different noise textures to render volumetric clouds. The following Section 4.2
covers these noises and the shader is covered in detail in Section 5.

17



4.2. NOISE GENERATION CHAPTER 4. IMPLEMENTATION

4.2 Noise Generation

This section covers the different noises that are used to create the cloud shapes
and how these are generated. A combination of both Perlin and Worley noises
are used to create clouds shapes. We pre-generate these noises in two different
three-dimensional textures on the CPU and then use them in the shader.

4.2.1 Perlin Noise

In 1985 Ken Perlin presented a technique for generating natural appearing
noise [Per85]. Since then this technique has been widely used generating
noise for many natural phonemes including clouds. We generated a tiling three
dimensional texture using a program developed Stefan Gustavson [Gus05]. In
Figure 4.3 is a three dimensional tiling texture with this noise mapped to a
cube.

Figure 4.3 – Tiling 3D Perlin noise applied to a cube

4.2.2 Worley Noise

Stewen Worley described a technique for generation cellular noise in [Wor96].
In Figure 4.4 is a cube with three-dimensional tiling Worley noise. We use
this noise type to create both wispy and billowing shaped clouds. By invert-
ing Worley noise it is possible to control the appearance between wispy and
billowing and vice versa. The algorithm for creating a texture with this noise
can be quite simple. A naive approach would be to generate a set of points
called feature points and then shade every texel by its distance to the closest
feature point. Generating the noise this way would be very slow especially in
three dimensions. Therefore the naive approach was optimized as described

18



4.2. NOISE GENERATION CHAPTER 4. IMPLEMENTATION

in the steps below.

1. Subdivide a cuboid into equally sized cells.

2. For each cell, randomly place a feature point inside it. There must be
exactly one feature point per cell.

3. For each point inside the cuboid color it by the Euclidean distance to the
closest feature point. This distance is found by evaluating the feature
point inside the surrounding 26 cells and the feature point inside the
current cell. By wrapping cells at the edges the texture will be tileable
in all three dimensions.

Figure 4.4 – Tiling 3D Worley noise applied to a cube

Since we place exactly one feature point inside each cell this ensures that there
will not be any large dark areas which could be the case if feature points were
randomly positioned. In Figure 4.4 a cube with size 1283 and a cell size of 16
is used which yields exactly 8 feature points in any direction in the cube. The
result is cellular noise that looks random without having any large dark areas
due to feature point being too far apart.

This algorithm can generate different octaves of Worley noise by changing
the cell size. An octave is half or double of the current frequency and appears
at the interval 2n. For example generating Worley noise with 4 octaves and a
cell size of 2 as starting frequency makes the following three octaves to be 4,
8, 16.

19



4.3. CLOUD TEXTURES CHAPTER 4. IMPLEMENTATION

4.3 Cloud Textures

The noises are pre-generated and stored in two different three dimensional
tiling textures as described in Table 4.1. In Figure 4.5 is an example of both
the shape and detail texture. The first three dimensional texture is used to
create the base shape of the clouds. It has four channels, one with Perlin noise
and three with different octaves of Worley. Our clouds will repeat less in the
y axis and therefore the size in this axis is smaller in order to reduce texture
size. The second three dimensional texture is used for adding details and has
three channels with different octaves of Worley noise.

Table 4.1 – Noise textures used to create the cloud shapes

Texture Size R G B A

Shape 128x32x128 Perlin Worley Worley Worley

Detail 32x32x32 Worley Worley Worley -

Figure 4.5 – The two cloud textures with channels as described in
Tabel 4.1. Left: Shape. Right: Detail

4.4 Weather Texture

Clouds are controlled by a repeating two dimensional texture with three chan-
nels called the weather texture. This texture is repeated over the entire scene
and is also scaled to avoid noticeable patterns of cloud presence and shapes.
The coverage which is also used as density is controlled by the red channel
in this texture. It is also possible to manipulate the coverage by for example
modifying it based on the distance to the viewer. Which makes it possible to
either increase or decrease clouds presence at the horizon. The green channel
controls the height of the clouds. A value of 0 will make the cloud have a

20



4.4. WEATHER TEXTURE CHAPTER 4. IMPLEMENTATION

height of 0 and therefore not be visible. If the height value is 1 this cloud will
have maximum height value. The blue channel that controls at which altitude
clouds should appear. A value of 0 will yield a start altitude equal to the
start of the atmosphere and a value of 1 makes the cloud appear at maximum
cloud layer altitude. These two maximum values are exposed as settings in our
module and can easily be controlled at run-time. In Table 4.2 is a description
of the different channels in the weather texture.

In Figure 4.6 is an example of a weather texture used during the implementa-
tion. The overall yellow tone is due to the coverage and height having similar
values. The blue which controls altitude is set to zero except for four differ-
ent clouds. Therefore clouds using this weather texture will appear at five
different altitudes.

Table 4.2 – Channel description of the weather texture

R G B A

Coverage Height Altitude -

Figure 4.6 – Example of a weather textures and resulting clouds.
Left: Weather texture. Right: In-game render using this weather

texture.

4.4.1 Precipitation

Larger water droplets absorbs more light and have a higher presence at the base
of clouds. Since we assume uniform droplet size it is not possible to achieve
this by only changing the absorption coefficient. This is even more complicated
since density also increases over altitude which makes the bottom part of a

21



4.5. SHAPE DEFINITION CHAPTER 4. IMPLEMENTATION

cloud absorb less than the top, which is opposite of what is expected. Therefore
our rain clouds are darkened by a gradient which is multiplied with light
contribution. With this simplification all clouds can have the same absorption
coefficient while the technique is still being able to produce rain and non-rain
clouds.

4.4.2 Wind

In the real world clouds can move in different directions at different altitudes.
Our technique is limited to a single wind direction applied as an offset to the
weather texture. But since we still support the old cloud layer system each
layer can have wind applied in different directions. It is therefore possible
to have high altitude clouds move in a different direction than low altitude
clouds.

4.5 Shape Definition

This section covers how cloud shapes are defined from noises described in
Section 4.2. The base cloud shapes are defined by the first three-dimensional
texture. The Worley noise channels are summed and multiplied with the Perlin
noise channel.

4.5.1 Density Modifiers

All clouds are modeled using the same approach and the density is indepen-
dent of where in the atmosphere it appears. First the coverage value from
weather texture in 4.4 is used as initial density. Then a height signal covered
in Section 5.4 is applied. This height signal lowers density at both the top and
the bottom at the cloud. Then the two three-dimensional textures are used to
erode density from the height signal. Thereafter a height gradient is applied
which lowers density at the bottom. The height gradient is implemented as a
linear increase over altitude. The final density before any lighting calculations
are done must be in the range (0, 1]. Densities that are zero or less after the
erosion can be discarded since they will not contribute to any cloud shape.
Densities larger than one are clamped to one in order to increase robustness
and make lighting more balanced.

4.5.2 Detailed Edges

Defining a cloud shape from only the shape texture is not enough to get de-
tailed clouds. Therefore the smaller detail texture is used to erode clouds
at the edges. The erosion is performed by subtracting noise from the detail
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4.5. SHAPE DEFINITION CHAPTER 4. IMPLEMENTATION

texture with Worley noise. By inverting Worley noise it is possible to change
between wispy and billowing edges or use a combination of both.

The amount of erosion is determined by the density, lower densities are eroded
more. Strength of erosion is implemented as a threshold value which only
erodes densities lower than this value. Algorithm 4.1 describes the order of
how the density is calculated.

Algorithm 4.1 – How density is calculated

weather = getWeather ( p o s i t i o n . xz )
dens i ty = weather . r
dens i ty ∗= HeightS igna l ( weather . gb , p o s i t i o n )
dens i ty ∗= getCloudShape ( p o s i t i o n )
dens i ty −= getCloudDeta i l ( p o s i t i o n )
dens i ty ∗= HeightGradient ( weather . gb , p o s i t i o n )

23



5
Rendering

This section describes how clouds are rendered and lit according to special den-
sity distribution presented in previous section. First we describe how clouds
are rendered using ray marching from views below the atmosphere. We then
describe how this can easily be extended into rendering from views inside the
atmosphere and from space. This section also covers how a spherical atmo-
sphere was achieved. It then describes how clouds can be rendered with any
height at any altitude using our improved height signal. We then cover how
lighting is applied and how shadows are added.

5.1 Ray Marching

Ray marching is the volumetric rendering technique that we use for rendering
clouds. A scene is rendered using this technique by for each pixel march along
a ray and evaluating density, lighting and shadow at each sample point along
that ray. More sample points yields better results but in turn is more expen-
sive. Therefore it is necessary to weigh the step count and step length against
each other, in order to get desired result.

In our solution we use a step size which is the draw distance divided by the
number of steps. Draw distance is the minimum value of the atmosphere depth
and a artist controlled cutt-off distance. The number of steps is determined
by both quality option as well as the depth of the atmosphere. This makes
sure that even if the atmosphere would be scaled to be very small or very
large an appropriate step count will always be used. As seen in Figure 5.1
the atmosphere depth is larger near the horizon but the step count is kept
constant. This has the effect that clouds close to the viewer has a smaller
step size which yields better quality. Algorithm 5.1 shows how ray marching
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is performed when viewed from planet surface.

Algorithm 5.1 – Ray marching through atmosphere

entry = RaySphereIntersect ( atmosphereStart , directionFromEye )
e x i t = RaySphereIntersect ( atmosphereEnd , directionFromEye )
stepLength = Distance ( entry , e x i t ) / s t ep s
s t e p O f f s e t = random [ 0 , 1 ]
t = stepLength ∗ s t e p O f f s e t
for s tep =0; s tep < s t ep s ; ++step

p o s i t i o n = entry + directionFromEye ∗ t
dens i ty = GetDensity ( p o s i t i o n )
EvaluateLight ( dens i ty )
t += stepLength

Figure 5.1 – How atmosphere depth depends on view direction

5.2 Render From Inside Atmosphere and Space

Algorithm 5.1 can easily be extended to render clouds from views within the
atmosphere and from space. When we render from space view we use exit
point in Figure 5.1 as origin and march into the atmosphere. It is not possible
to calculate atmosphere depth by using the distance between entry and exit
points. This is because when using space view not all rays will intersect with
both the inner and outer bounds of the atmosphere. This is solved by using
a fixed atmosphere depth for rays that only intersected with the outer bound
of the atmosphere.

When rendering from within the atmosphere we use the eye position as origin
instead of using the entry point. Atmosphere depth is calculated as the dis-
tance from the eye to the exit point and with a maximum of cutt-off distance.
Automatic change of ray marching algorithm is handled by Cloud Module.
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5.3 Dome Projection

Dome projection is implemented by using ray-sphere intersection as described
in Algorithm 5.2. This algorithm calculates intersecting points of a ray and
a perfect sphere. Earth’s atmosphere is shaped as an oblate spheroid e.i. the
radius is larger at the equator than at the poles, but in order to simplify
calculations we treat the atmosphere as a perfect sphere instead. By using the
position returned by this algorithm as entry point clouds will naturally bend
over the horizon.

Algorithm 5.2 – Ray sphere intersection

a = dot ( d i r e c t i o n , d i r e c t i o n ) ∗ 2
b = dot ( d i r e c t i o n , s t a r t P o s i t i o n ) ∗ 2
c = dot ( s ta r t , s t a r t )
d i s c r im inant = b ∗ b − 2 ∗ a ∗

( c − atmosphereRadius ∗ atmosphereRadius )
t = max(0 , (−b + s q r t ( d i s c r im inant ) ) / a )
i n t e r s e c t i o n = cameraPos it ion + d i r e c t i o n ∗ t

5.4 Height Signal

The height signal of the clouds is implemented as an parabola function as
described in Equation 5.1, where x is the altitude in atmosphere, a is cloud
starting altitude, h is cloud height. This function controls both the altitude
at which the cloud appears and its actual height. The height signal function
has two roots, one at the starting altitude of the cloud and the other root at
the cloud height. The global maximum value of the height signal is scaled
to always be one. By using this parabola function clouds naturally get less
density at its top and bottom edges.

(x− a)︸ ︷︷ ︸
1st root

· (x− a− h)︸ ︷︷ ︸
2nd root

· -4

h2︸︷︷︸
Scale

(5.1)

In Figure 5.2 is a graph showing how the density varies with altitude. In
this graph starting altitude as is 1 and height h is set to 2, resulting in a
density larger than 0 for altitudes between 1 and 3. Algorithm 5.3 shows how
this height signal is implemented in the shader.
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Figure 5.2 – Heigth signal with as = 1 and h = 2

Algorithm 5.3 – Height signal implementation

oneOverHeight = 1 / he ight
a l t i t u d e D i f f = a l t i t u d e − a l t i t u d e S t a r t
h e i g h t S i g n a l = a l t i t u d e D i f f ∗ ( a l t i t u d e D i f f − he ight )

∗ oneOverHeight ∗ oneOverHeight ∗ −4

5.5 Lighting

Lighting is evaulated for every sample that returned a density larger than
zero when ray marching through the atmosphere. Our lighting model is a
simplification of the radiative transfer function since we do not take emission
into account. We also do not account for surfaces behind our clouds. The
remaining part of the radiative transfer function that needs to be solved is
shown in Equation 5.2.

L(x, ~ω) =

∫ s

0
Tr(x, xt)σs(xt)Li(xt, -~ω)dt︸ ︷︷ ︸

S

(5.2)

Transmittance follows the properties of Beer–Lambert’s law as described in
Equation 5.3. By using this property the scattered light and transmittance
can be calculated using analytical integration as shown in Algorithm 5.4. This
is using a scattering integration method proposed by Hillaire [Sé15] and is more
stable for high scattering values than previous integration techniques.

Tr(x0, x1) = e
-
∫ x1
x0

σt(x)dx

Tr(x0, x2) = Tr(x0, x1) · Tr(x1, x2)
(5.3)
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Algorithm 5.4 – Analytical integration

sampleSigmaS = s igmaScat te r ing ∗ dens i ty
sampleSigmaE = sigmaExt inct ion ∗ dens i ty
ambient = grad i ent ∗ p r e c i p i t a t i o n ∗ globalAmbientColor
S = ( eva luateL ight ( direct ionToSun , p o s i t i o n ) ∗ phase +

ambient ) ∗ sampleSigmaS
Tr = exp(−sampleSigmaE ∗ s t e p S i z e )

/∗
A n a l y t i c a l i n t e g r a t i o n o f l i g h t / t r ans mi t t ance
between the s t e p s

∗/
Sint = (S − S ∗ Tr) / sampleSigmaE

s c a t t e r e d L i g h t += transmit tance ∗ Sint
t ransmit tance ∗= Tr

5.5.1 Phase Function

A phase function describes the angular distribution of scattered light. The
phase functions is responsible for cloud lighting effects such as silver lining, fog-
bow and glory. In our implementation we use the Henyey-Greenstein [HG41]
phase function described in Equation 5.4. The Henyey-Greenstein phase func-
tion is well suited for describing the angular distribution of scattered light in
clouds as it offers a very high forward-scattering peak. This forward peak is
the strongest optical phenomena found in clouds. Another phase function we
considered using was one presented by Cornette-Shank [CS92] and is described
in Equation 5.5. This phase function is also well suited for clouds but is more
time consuming to calculate [FZZZ14].

Both the Henyey-Greenstein and the Cornette-Shank phase function does not
produce back-scattered optical phenomenas as the Mie phase function does.
A comparison between the Henyey-Greenstein and the Mie phase function is
described in Figure 5.3. We did not use the Mie phase function due to its os-
cillating behavior which is undesired because it could cause banding artifacts.

pHG(θ) =
1 − g2

4π · (1 + g2 − 2g · cos(θ))1.5
(5.4)

pCS(θ) =
3

2

(1 − g2)

(2 + g2)

(1 + cos2(θ))

(1 + g2 − 2g · cos(θ))1.5
(5.5)
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Figure 5.3 – Plot of phase functions for light scattering in
clouds [BNM+08]. Blue: Mie, Green: Henyey-Greenstein with

g = 0.99

5.5.2 Shadows

Self- and inter-cloud shadowing is implemented by for each step inside a cloud
also step towards the sun as shown in Figure 5.4. The self- and inter-cloud
shadowing effect is expensive although necessary to convey a sense of depth.
Marching towards the sun has a great impact on performance since for every
step an extra number of steps has to be taken. In our implementation four
steps towards the sun are taken at exponentially increasing steps size. This
is because we want most of the contribution to be from the cloud itself while
still receiving shadows from other clouds. In Figure 5.5 is an in-game rendered
image showing clouds with both self- and inter-cloud shadowing.

Figure 5.4 – Exponentially increasing step size taken towards the
sun
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Figure 5.5 – In-game render showing inter cloud shadowing

5.5.3 Ambient

Ambient light contribution is added using a linear gradient from the clouds
bottom to the top and increases with altitude. The strength as well as color
of the ambient contribution is controlled by the Cloud Module. How ambient
contribution is added is described in Algorithm 5.4.
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6
Optimization

Several optimizations has been implemented in order for this cloud rendering
technique to achieve real-time performance. This section covers most of these
different optimizations.

Render Target Resolution
Decreasing the render targets resolution to half of the original resolu-
tion is one optimization that was necessary for the rendering technique
to achieve real-time performance. Using an even lower resolution may
provide an even greater performance boost at the cost of a blurrier result.

Shape Texture Resolution
The first implementation had the same resolution in all axises for the
shape texture. But since this texture is repeated more in x and z than
y. We reduce the amount of resources required for this texture by using
a quarter of the resolution for the y axis.

Temporal Upsampling
By using temporal upsampling it is possible to take fewer steps when
marching without reducing visual quality of the clouds. How temporal
upsampling was implemented is covered later in this section.

Early Exit
It is possible to early exit in the shader if the transmittance is either
high or low as described later in this section. In the rendered images
in Section 7.3 with visual results marching was terminated when the
transmittance was less than 0.01.
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6.1 Temporal Upsampling

This section describes how temporal upsampling was implemented and how
the technique improved the visual quality. In Figure 6.1 is a scene with-
out temporal upsampling and in Figure 6.2 is the same scene rendered with
temporal upsampling. Both figures are rendered using the same step count
and length, the only difference is the temporal upsampling. Notice how the
banding artifacts disappears when temporal upsampling is enabled. This is
because multiple frames have been blended together and each starting step
when ray marching was different. The different steps for temporal upsampling
is described below.

1. Offset the starting step in the ray marching algorithm by multipling the
step length with a value in the range [0,1], as described in Algorithm 5.1.
This value is provided by the cloud module and is calculated as a Van
der Corput sequence.

2. Calculate world position of P from clip space position using current
inverse view projection matrix.

Pwp = Pcs · (V P )−1

3. Calculate, P ′cs, which is position of P in the previous frame. This is done
by multiplying Pwp with view projection matrix from previous frame.

P ′cs = Pwp · (V P )

4. Sample previous frame at position P ′.

CP ′ = texture(P ′)

5. Blend current frame with previous frame using a blending factor α, which
is TemporalAlpha in AppendixB. Low values of α results in less banding
but takes more time to converge. We use 5% as the default blending
value. If the sample is outside of the screen we set α to 1, which results
in only the current frame being rendered. In order to hide banding when
we cannot blend with the previous frame we increase the step count for
this pixel.

CP · α+ CP ′ · (1 − α)
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Algorithm 6.1 – Temporal upsampling

c l ipSpacePos = computeClipPos ( screenPos )
camtoWorldPos = ( cl ipSpacePos , 1) ∗ invViewProject ionMatr ix
camtoWorldPos /= camtoWorldPos .w
pPrime = camtoWorldPos ∗ ViewProject ionMatr ix
pPrime /= pPrime .w
screenPos = computeScreenPos ( pPrime )
isOut = any ( abs ( screenPos . xy − 0 . 5 ) > 0 . 5 )
cur rent = sca t t e r edL ight , t ransmit tance . x
r e s u l t = isOut ? cur rent : cur rent ∗ alpha

+ prevo ius ∗ (1 − alpha )

Figure 6.1 – Without temporal upsampling

6.2 Early Exit

Performing as few calculations as possible is key to performance. This section
describes how we use early exit points in our shader to improve performance.

6.2.1 Low Transmittance

While marching through the atmosphere every sample with a non-zero density
will reduce the transmittance, which is loss of energy. Therefore as transmit-
tance gets lower new samples will contribute less to the final result. We stop
marching when transmittance is less than 0.01. This provided a great perfor-
mance increase without noticeable visual artifacts.

33



6.2. EARLY EXIT CHAPTER 6. OPTIMIZATION

Figure 6.2 – With temporal upsampling

Figure 6.3 – Red parts showing when early exit was done due to
low transmittance

6.2.2 High Transmittance

When transmittance is high it means that few samples along this ray had
a density larger than zero. By using the position calculated for temporal
upsampling we can sample transmittance from the previous result and check
whether there was a cloud in this direction. If transmittance is less than 1.0
there is a cloud in this direction, but due to wind we cannot assume that
a direction with transmittance of 1.0 has not any clouds. Always exiting
on high transmittance would not render all clouds if they move into a region
where previous frame had high transmittance. Instead we early exit before any
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marching is done if transmittance in previous frame is 1.0 and then force this
pixel to be marched in the following frame. This could be done automatically
using a checkered tile pattern instead to avoid one frame being a lot more
expensive than the other.

Figure 6.4 – Red parts showing when early exit was done due to
high transmittance

35



7
Results

This section presents in detail our results from this implementation with re-
sources required, run-time performance and finally a visual comparison. These
visual results are focused on clouds rendered from the planets surface. Addi-
tional visual results from inside the atmosphere and from space are presented
in Appendix A.

7.1 Resources

Table 7.1 shows the amount of resources that this technique requires. The re-
sources required for render tagets is based on using half resolution of 1920x1080
while rendering.

Table 7.1 – Resources required

Texture Format Size Memory

Detail RGB8 32x32x32 0.1MB

Weather RGB8 1024x1024 3.1MB

Shape RGBA8 128x32x128 2.1MB

RenderTarget A RGBA16 960x540 4.1MB

RenderTarget B RGBA16 960x540 4.1MB

Total 13.5MB
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7.2 Performance

This section describes run-time performance measured on a PC using a built-in
performance diagnostics tool. The hardware configuration used during perfor-
mance evaluation is shown in Table 7.2.

Table 7.2 – Hardware configuration used when evaluating
performance

Hardware Release year

XFX Radeon HD7870 2012

Intel Xeon E5-1650 2012

Most computations are performed in the pixel shader on the GPU. Execution
times are measured on the GPU using a built-in diagnostics tool. The envi-
ronment used when measuring was an empty level which only had clouds in
it. In Figure 7.1 is execution time shown when maximum draw distance has a
constant value of 20 000m and view direction is upwards. In Figure 7.2 is the
with maximum draw distance altered and atmosphere depth has a constant
value of 2 000m and view direction is towards the horizon for a comparison of
how rendering distance affects run-time performance. When coverage is high
almost the entire sky is covered by clouds and when coverage is set to low only
a small part of the screen has clouds in it. As expected a low coverage is much
faster mostly due to the early exit on high transmittance.
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Figure 7.1 – Run-time performance as function of atmosphere
depth.

Figure 7.2 – Run-time performance as function of max render
distance.
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7.3 Visual Results

In this section we present visual results from our cloud rendering technique
together with photographs for comparison.
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Figure 7.3 – Yellow sunset photograph

Figure 7.4 – Yellow sunset in-game render

39



7.3. VISUAL RESULTS CHAPTER 7. RESULTS

Figure 7.5 – Cumulus clouds in-game render

c
b

a
W
ik
im

ed
ia

C
o
m
m
o
n
s

Figure 7.6 – Cumulus clouds photograph
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8
Discussion and Conclusion

The cloud rendering technique we have presented can produce lots of clouds
under fully dynamic lighting conditions. The technique achieved real-time
performance through several optimizations and can be used in games as seen
in Figure A.6, where it was added to Battlefield 4. Although the technique
is not yet production ready as it missing important features like god rays,
reflection views and the clouds does not cast shadows on the environment.
In order to implement these features the technique will most likely need ad-
ditional optimizations. During the implementation we introduced a distance
field together with the weather texture that would store the distance to the
closest cloud. This distance field was pre-generated using the midpoint circle
algorithm to find the closest red pixel in the weather texture and store this
inside a different texture. The distance field increase run-time performance in
some cases but in others it got worse and was therefore removed.

One optimization that seems very promising but has not been implemented
yet is to pre-compute shadows. Since we assume that the direction to the
sun is parallel, shadows could be pre-calculated and stored in a look-up table.
This look-up table would only need to be updated when the sun has moved.
Since we take four additional samples towards the sun for every sample this
would greatly reduce the number of samples.

The weather texture shown in Figure 4.6 has an overall yellow tone due to
red and green having similar values. One optimization to reduce the size of
this texture could be to remove one of these channels and use the same for
coverage and height. This would not allow scenes to have both low and high
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clouds with high density, but if it might increase run-time performance.

The Henyey-Greenstein phase function provides a strong forward peek which
is necessary for a silver lining effect although its approximation. A Mie phase
function for cumulus clouds were generated using MiePlot and stored in a tex-
ture for use in the shader. Our results from this were an oscillating behaviour
from back-scattered light and reduced run-time performance Therefore we in-
stead use Henyey-Greenstein, but using Mie phase function would be a better
solution for providing more physically accurate result.

The Mie phase function was tested by generating it using MiePlot [Lav45]
and storing it in a look-up table which was then used in the shader. This gave
promising results but due to the Mie phase functions oscillating behaviour
banding occurred. This was most visible when viewing along the sun direc-
tion.

8.1 Limitations

This cloud rendering does not support clouds that overlap in altitude. This is
because the weather texture only stores coverage, height and starting altitude.
By using multiple weather textures this limitation could be resolved, but it
would reduce run-time performance.

The phase function we use produces a strong forward peak but does not pro-
duce back-scattering effects as glory and fogbow. We also only take sun and
ambient light into account and not other light sources.

8.2 Ethical Aspects

This cloud rendering technique can produce clouds for many different weather
situations and in a game context changing the weather could affect both the
mood and behavior of the players. A more general ethical aspect related
computer graphics is photo and video manipulation and falsification.
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9
Future work

In our future work we will optimize the algorithm and implement currently
missing features such as render into reflection views and cast shadows on the
environment. The clouds should also be affected by aerial perspective and
fog to allow for a smoother transition into the horizon. Another part that is
left for future work is to implement the cloud rendering technique on other
platforms such as Playstation and Xbox.
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A
Additional Visual Results

Figure A.1 – Sunset with very high start multiplier
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Figure A.2 – Clouds viewed from space

Figure A.3 – Clouds viewed from inside atmosphere at day
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Figure A.4 – Sunset viewed from inside atmosphere

Figure A.5 – Sunset viewed from inside atmosphere
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Figure A.6 – Cumulus clouds in Battlefield 4
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B
Artist Controls

This section lists controls with their names and description that were added to our
new cloud module for modifying clouds. The controls are grouped together in sections
by what they control. All these controls can be dynamically changed during run-time.
Controls for wind and sky are not listed since they are not part of this module. In
Figure B.1 is the editor FrostEd with different modules and exposed controls for the
cloud module displayed.
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Figure B.1 – Editor showing selected Cloud module with exposed
controls
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Erode

• BaseAndTopMultiplier Modifies strength of a parabola function used as height
signal. This is the extrema value of this function.

• BaseToTopMultiplier Modifies strength of the linear height gradient.

• EdgeDetailThreshold Threshold for specifying at which density details should
be added.

• ThicknessMultiplier Increases density of the cloud shape before erosion.

General

• Enable Enables the cloud module.

• ShapeTexture 3D Shape texture.

• DetailTexture 3D Detail texture.

• WeatherTexture 2D Weather texture.

• CloudQuality This is a quality option that allows for a trade-off between perfor-
mance and visual appearance. It adjusts how many samples are taken when
rendering.

Height

• HeightMultiplier Specifies the maximum cloud height in meters.

• StartMultiplier Specifies the maximum starting altitude of a cloud in meters.

• PlanetRadius Radius of the planet in meters.

• AtmosphereStart Starting distance of the atmosphere from the planet’s surface.

Horizon

• CutOffDistance Maximum distance from camera that clouds are rendered in.

Lighting

• Absorption Color and strength of absorption coefficient.

• Scattering Color and strength of scattering coefficient.

• Phase Paramater g in the Henyey Greenstein phase function.

• AmbientMulitplicator Strength of ambient contribution.

• AmbientDesaturate Modifies the saturation of ambient color.

Scale

• ShapeScale Scaling value for shape texture.

• DetailScale Scaling value for detail texture.

• WeatherScale Scaling value for weather texture.

Temporal

• TemporalAlpha Blending value for temporal upsampling between current and
previous frame.

Weather

• Precipitation Adds preciptation effect to clouds.

• Offset Offsets the weather texture.
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