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Abstract—We present a physically-based, yet fast and simple method to simulate gaseous phenomena. In our approach, the

incompressible Navier-Stokes (NS) equations governing fluid motion have been modeled in a novel way to achieve a realistic

animation. We introduce the Lattice Boltzmann Model (LBM), which simulates the microscopic movement of fluid particles by linear

and local rules on a grid of cells so that the macroscopic averaged properties obey the desired NS equations. The LBM is defined on a

2D or 3D discrete lattice, which is used to solve fluid animation based on different boundary conditions. The LBM simulation generates,

in real-time, an accurate velocity field and can incorporate an optional temperature field to account for the buoyancy force of hot gas.

Because of the linear and regular operations in each local cell of the LBM grid, we implement the computation in commodity texture

hardware, further improving the simulation speed. Finally, textured splats are used to add small scale turbulent details, achieving high-

quality real-time rendering. Our method can also simulate the physically correct action of stationary or mobile obstacles on gaseous

phenomena in real-time, while still maintaining highly plausible visual details.

Index Terms—Lattice Boltzmann model, graphics hardware, GPU, textured splatting, gaseous phenomena modeling.
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1 INTRODUCTION

GASEOUS phenomena, such as rolling clouds, moving
dust, rising steam, and billowing smoke, play an

important role in graphics simulations. A good fluid model
for gaseous phenomena should not only describe the flow,
but also model the interaction between the flow and the
surrounding environment in a physically correct manner. In
Computational Fluid Dynamics (CFD), fluid properties and
behaviors have been studied for many years. However,
while the goal of researchers in fluid dynamics is to obtain
highly accurate fluid behavior, our goal is to achieve
physically-based realistic-looking results, while maintain-
ing fast calculation and rendering speed.

A fluid is described by several macroscopic variables,

such as density, velocity, pressure, and temperature. In

CFD, fluid dynamics can be described by the Navier-Stokes

(NS) equations. The following formulas are the incompres-

sible 3D NS equations:

r � u ¼ 0 ð1Þ

@u

@t
¼ �ðu � rÞu� 1

�
rpþ �r2uþ f; ð2Þ

where u is the velocity field, p is the pressure field, � is the

kinematics viscosity of the fluid, � is its density, f is an

external force, and r is the vector of spatial partial

derivatives. Equation (1) describes the conservation of

mass, indicating that the inflow and outflow of mass in a

fluid element are balanced. Equation (2) shows the
conservation of momentum. It describes the velocity
changes in time, due to convection, spatial variations in
pressure, viscous forces, and external forces. Many books
and articles (e.g., [12], [16]) have been published on how to
solve these equations numerically. The difficulty in solving
the NS equations is due to their nonlinear terms. This
complexity makes the solution of these equations in 3D very
time-consuming.

Since our goal is to achieve real-time computation and
rendering speed, we propose in this paper the use of the
linear and microscopic Lattice Boltzmann Model (LBM),
instead of solving the macroscopic NS equations directly.
Fluid flow consists of many tiny flow particles. The
collective behavior of these microscopic particles results in
the macroscopic dynamics of the fluid. The LBM is similar
to a cellular automata whereby individual particle packets
move on a discrete lattice at discrete time steps. The
calculation is performed on a regular grid. At every grid
cell, there are variables indicating its status. All the cells
modify their status at every time step based on the same
linear and local rules. Since these interaction rules are
defined in such a way that they satisfy the conservation of
mass and momentum at each local grid cell, the macro-
scopic NS equations are satisfied globally. The LBM also
lends itself to proper handling of the boundary conditions
and the interaction of the gaseous phenomena with the
environment in a physically correct way.

In the traditional CFD approach, the physical modeling of
the fluid behavior and the numerical approximation are
separate steps,while, in LBM, those twophases are combined
together. The main difference between the LBM and the
traditional numerical approaches of the NS equations is that,
in theLBM, thephysical transition rules are discrete,while, in
the latter, the discretization is performed on the level of the
macroscopic NS equations. In both cases, the same physical
conservation laws are satisfied.
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In this paper, we show the application of the LBM to
model both the movement of gaseous phenomena and their
behavior with stationary or moving obstacles at interactive
frame rates. The final performance gap is filled by realizing
that the linear and local calculations that occur at each grid
cell are very amenable to acceleration on a commodity
graphics processing unit (GPU), resulting in interactive
modeling rates of 30 frames/sec.

Using the LBM to yield a velocity volume rich in small
scale rotational and turbulent details still requires a large
3D grid. Since our goal is to achieve fluid-like effects in real-
time and not a strict physical simulation, we base our work
on relatively low-resolution grids. Texture hardware accel-
eration enables us to accomplish real-time computation
speed. To provide the missing details, we augment the low-
resolution velocity field with high-resolution textures of
small-scale perturbations, which can also be efficiently
rendered on commodity texture mapping hardware. Our
two-tier approach is justified by the fact that, in most
graphics applications, gaseous objects are mainly used to
enhance the realism of the virtual environment—users
don’t require observation of highly accurate details of the
interaction between gaseous phenomena and obstacles. All
that is needed is that the gases are behaving in a near
physically correct way. It turns out that, by combining a
low-resolution velocity grid with high-detailed textures, a
surprisingly realistic viewing experience can be generated.
By incorporating into the LBM a number of physically
accurate effects, such as the buoyancy effect of hot gases,
additional realism can be provided. Our framework makes
efficient use of the concept of textured splats [6], which are
associated with the macroscopic particles to represent the
gaseous phenomena. The textured splats form the obser-
vable “display particles,” such as the smoke particles or
dust particles, while the LBM deals with nonobservable
microscopic particles. To distinguish the two, we use the
term “packet” to stand for the microscopic particles and the
term “display primitive” to stand for the smoke or gas
particles. The display primitives move freely through space,
advected by the velocity field simulated by the underlying
LBM grid as well as to other forces, such as the
temperature-induced buoyancy.

The rest of the paper is organized as follows: In the next
section,we briefly discuss relatedwork in computer graphics
on gaseous phenomena modeling and manipulation. In
Sections 3 and 4, we present the basic ideas of the LBM and
the initial and boundary condition settings. In Section 5, we
discuss the incorporation of a temperature field in the LBM.
We introduce the implementation of the LBM calculation in
texture hardware in Section 6. In Section 7, we show how to
use textured splatting to achieve high-quality real-time
rendering speed. Finally, we outline our implementation
and describe several examples in Section 8.

2 PREVIOUS WORK

A common approach to simulating gaseous phenomena is
procedural modeling [11], [26], [30], where fluid behaviors
are described by procedural functions. This method is fast
and easy to program, but it is difficult to find the proper
parameter settings that achieve realistic results. The inter-
actions between the fluid and the surrounding objects, such
as flowing around obstacles, blown by the wind, are also
difficult to model in a physically correct manner.

Physically-based modeling is another broadly used
method; however, it usually requires a large amount of
computation time and memory, especially in 3D. In 1991,
Wejchert and Haumann [38] gave an analytic solution to the
NS equations by using simple flow primitives. Chen and
Lobo [2] solved a simplified NS equations in 2D using a
finite difference approach. Later, Foster and Metaxas [14]
presented a full 3D finite difference solution to simulate the
turbulent rotational motion of gas. Because of the inherent
instability of the finite difference method with a larger time
step, the speed of this approach is limited. Stam [31]
devised a fluid solver using a semi-Lagrangian advection
scheme and implicit solver for the NS equations. Each term
of the equations is handled in turn, starting with external
force, then advection, diffusion, and finishing with a
projection step. This method is unconditionally stable and
produces compelling simulations of turbulent flows. It can
also achieve real-time speed for a low-resolution grid.
However, the numerical dissipation associated with the
method causes the turbulence to decay too rapidly. Fedkiw
et al. [13] further improved the result by introducing the
concept of vortex confinement to the graphics field. The
problem of numeric dissipation is addressed by feeding
energy back into vortices through vortex confinement. Two
rendering approaches were used in their work: One is a fast
hardware-based renderer, the other is an expensive photon
map renderer to create production quality animations.

In this paper, we demonstrate a new and pioneering
direction on how real-time fluid simulation could also be
approached, instead of solving the traditional NS equations.
All of the above methods generate fluid-like behaviors by
solving macroscopic equations either by explicit or implicit
approaches. In contrast, the LBM approach considers the
problem from the microscopic perspective. Since we use the
LBM on a relatively low-resolution grid, one may ask why
not solve the NS equations on the same grid. Although it is
true that combining the NS equations with the high-
resolution textures has the same effect, however, the
computation of the NS equations is not as simple as that
of the LBM. Also, the fact that the calculation of the LBM
only consists of simple operations such as addition,
subtraction, and multiplication and it is conducted locally
allows us to further improve the calculation speed of LBM
by employing commodity texture hardware. This achieves
the desired real-time speed. In the next section, we present a
complete framework for the LBM-based fluid simulation
and how its calculation is implemented based on the fast
growing GPU technology.

Physically-based particle models [5], [7], [22], [24], [33],
[34], [35] have also been used to describe fluid behaviors.
Particle systems were first introduced by Reeves [28] as a
technique for modeling fuzzy objects, such as fire, clouds,
smoke, and water. Tonnesen [35] used a discrete model for
the heat transfer equations to describe the interaction of
particles due to the thermal energy. Terzopoulos et al. [34]
implemented a similar approach. Particles and springs are
utilized to render a series of blobbies. Desbrun and Gascue
[7], [8] developed a paradigm extended from the Smoothed
Particle Hydrodynamics approach used by physicists for
cosmological fluid simulation. This technique defines a type
of particle system which uses smoothed particles as
samples of mass smeared out in space. A highly inelastic
fluid is simulated by computing the variations of contin-
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uous functions such as mass, density, speed, pressure, or
temperature over space and time. Stora et al. [33] also used
smooth particles to simulate lava flow. Particles are coated
with implicit surfaces to get the final rendering result.
Particles in all of the above methods move and interact
freely in space. They are irregular, difficult, and expensive
to track at OðN2Þ complexity. While, in the LBM approach,
particle packets move and interact on a regular grid based
on linear and local rules, it is proven that the global
behavior is the same as the one achieved by directly solving
the heavy NS equations, which is the common approach in
graphics [19].

Dobashi et al. [9] implemented a realistic animation of
clouds based on a cellular automata model. Our work is
fundamentally different from theirs. Dobashi et al.’s model
can only be used to model clouds. In contrast, the LBM is a
general method used to describe a variety of fluids. Harris
et al. [18] implemented a coupled map lattice, a variation of
cellular automata, on graphics hardware, which has similar
motivation as this paper. To the best of our knowledge, we
pioneered the introduction and use of the LBM to simulate
gaseous phenomena in the graphics literature.

3 LATTICE BOLTZMANN MODEL

The LBM [19], [25] is a lattice model similar to a cellular
automata. It is defined on a 2D or 3D discrete grid, where
the time and the state of each cell are also discrete. Fluid
behavior can be understood as a self-organizing process
evolving from the microscopic collisions of atoms or
molecules. Cellular automata is used to simulate these
microscopic movements and collisions in order to get the
continuum macroscopic equations of fluid dynamics in two
and three dimensions. The class of cellular automata used
for the simulation of fluid dynamics is called the Lattice Gas
Automata (LGA) [10]. The main difference between the LGA
and the traditional numerical approaches of the
NS equations is that, in the LGA, the physical evolution
rules are discrete, while, in the latter, the discretization is
performed on the level of the macroscopic flow equations.

The first LGA, introduced by Hardy et al. [17], was called
the HPP model, defined on a square lattice. In this model,
microscopic particles of unit mass and unit speed move
along the lattice links. Not more than one particle in a given
direction can be found at a given time and node. When two
microscopic particles arrive at a node from opposite
directions, they immediately leave the node in the two
other, previously unoccupied directions. These rules con-
serve mass (particle count) and momentum. The main
problem with this model is that the gaseous behavior it
modeled is anisotropic.

A historically important lattice gas model is the FHP
model, introduced by Frisch et al. [15] in 1986. It is a
2D hexagonal lattice used to ensure macroscopic isotropy.
In this model, each cell has six nearest neighbors and,
consequently, six possible velocity directions. Updating the
grid involves two types of rules: propagation and collision.
Propagation means the microscopic particles move to the
nearest neighbor along their velocity direction. Collision is
the most important part. It can force particles to change
direction and is decided by the collision operator. No matter
how we define the collision operator, the conservation of
mass and momentum must be satisfied. For instance, when

two microscopic particles enter the same node with
opposite velocities, both of them are deflected by 60 degrees
such that the net momentum in the postcollision state
remains zero. When multiple states are possible, a random
selection is made. Fig. 1 represents the collision rules for the
FHP model.

It can be demonstrated [15] that, by observing the
propagation and collision rules, we can simulate the
following macroscopic equations based on the LGA:

@u

@t
¼ �ðgð�Þu � rÞu� 1

�
rpþ �r2u; ð3Þ

where � is the density and can be calculated as the

average number of microscopic particles per cell and

gð�Þ ¼ ��3
��6 . If we renormalize the time t, the viscosity �,

and the pressure p using t0 ¼ gð�Þt, �0 ¼ �
gð�Þ , p

0 ¼ p
gð�Þ , the

NS equations for incompressible fluids without external

force can be recovered.
Although the LGA has proven to be very useful for

modeling fluid behavior, one major drawback of the
method is the statistical noise in the computed hydro-
dynamic fields. This is a direct consequence of the single
particle Boolean operation. One method to smooth out the
noise is to average in space and time. In practice, spatial
averages can be taken over 64, 128, 256, 512, or 1,024
neighboring cells for time-dependent flow in two dimen-
sions. This, however, dramatically limits the space resolu-
tion we can get. The problem can be solved by replacing the
Booleans in the LGA model by real-valued densities of
microscopic particles that move along each bond of the
lattice, following the motion of an average distribution fqi of
microscopic particles. This gives rise to a model known as
the Lattice Boltzmann model (LBM) [3]. In the densities fqi, the
index qi describes the D-dimensional sublattice defined by
the permutations of (�1; . . . ;�1; 0; . . . 0), where q is the
number of nonzero components and i counts the sublattice
vectors. For a 2D LBM, there are three lattice models: D2Q5,
D2Q7, and D2Q9. Since our goal is to simulate the 3D
gaseous phenomena, we concentrate on the 3D LBM. For a
3D grid, the geometry of the model should be symmetrical
to satisfy the isotropic requirement of fluid properties. To
correctly recover the NS equations, it also requires sufficient
lattice symmetry. In order to understand the design of 3D
LBM model, the notion of sublattice is used in the LBM
literature. Out of the 26 neighbors of an individual cell, four
symmetrical sublattices are defined on a 3D grid, as
described in Fig. 2a, Fig. 2b, Fig. 2c, and Fig. 2d:
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Fig. 1. Collision rules of the FHP model, defined on a triangular lattice.

An arrow denotes a microscopic particle and its moving direction. When

multiple postcollision states are possible, a random selection is made.

The collision rules satisfy mass and momentum conservation.



1. q ¼ 0, the cell (0, 0, 0) has particle packets with zero
velocities—Fig. 2a;

2. q ¼ 1, the six nearest neighbors ð�1; 0; 0Þ, ð0;�1; 0Þ,
ð0; 0;�1Þ, where the particle packets move with unit
velocity—Fig. 2b;

3. q ¼ 2, the 12 second-nearest neighbors ð�1;�1; 0Þ,
ð0;�1;�1Þ, ð�1; 0;�1Þ, where the particle packets
move with a velocity of

ffiffiffi
2

p
—Fig. 2c; and

4. q ¼ 3, the eight third-nearest neighbors ð�1;�1;�1Þ,
where the particle packets move with a velocity offfiffiffi
3

p
—Fig. 2d.

To simulate a 3D flow, and for the sake of computational
efficiency, we try to find the minimum necessary number of
packet distributions. In practice, there are three widely used
3D LBM geometries: D3Q15, D3Q19, and D3Q27. D3Q15
includes sublattices 0, 1, and 3, shown in Fig. 2a, Fig. 2b,
and Fig. 2d, having the least number of packet distribution
values. However, it is the least isotropic and more prone to
numerical instability. It also may induce an artificial
checkerboard invariant and cause spatial oscillation when
simulating turbulent flows. D3Q27 is composed of all four
sublattices and, due to this complexity, it requires 27 packet
distribution calculations at each fluid node. It needs too
much CPU time and storage space. Our work is based on
D3Q19, which represents a good compromise in terms of
both computational efficiency and reliability. The D3Q19
lattice consists of three sublattices: sublattices 0, 1, and 2,
shown in Fig. 2a, Fig. 2b, and Fig. 2c. In other words, at each
cell of D3Q19, there are 19 possible flow directions and that
fmðx; tÞ is the packet distribution at location x, at time t and
moving in direction m, where 1 � m � 19. Fig. 3 shows the
D3Q19 model lattice geometry. The velocity directions of
the 18 moving packet distributions are shown as arrows.
The center is the packet distribution with zero velocity.

Similar to the LGA, the LBM updates the packet
distribution values at each node based on two simple and
local rules: collision and propagation. Collision describes
the redistribution of particle packets at each local node. It is
decided by the collision operator. Propagation means the
particle packets move to the nearest neighbor along their
velocity directions. These two rules of the LBM can be
described by the following equations:

collision : fnew
qi ðx; tÞ � fqiðx; tÞ ¼ �qi ð4Þ

propagation : fqiðxþ eqi; tþ 1Þ ¼ fnew
qi ðx; tÞ; ð5Þ

where � is a general collision operator and eqi is the unit
vector, representing the packet velocity along the lattice link

qi. The collisions are completely local, making the LBM

efficiently parallelizable. In one time step t, each packet

distribution value at every node is updated based on the

collision operator �. Then, in time step tþ 1, the new packet

distribution value propagates to the nearest node along the

velocity vector eqi.
The macroscopic density (mass) � and velocity u are

calculated from the respective velocity moments of the
packet distributions as follows:

� ¼
X
qi

fqi ð6Þ

u ¼ 1

�

X
qi

fqieqi: ð7Þ

Combining (4) and (5), we get

fqiðxþ eqi; tþ 1Þ � fqiðx; tÞ ¼ �qi:

The update of the LBM system is decided by the collision

operator �qi. It is critical to select �qi in such a way that the

mass and momentum are conserved locally. Based on the

work of Chen and Doolean [3], we assume that, for each

individual packet distribution fqi at each cell, there is

always a local equilibrium packet distribution feqqi . Its value

only depends on the conserved quantities � and u at that

cell. In this way, we get a new equation, also called the

kinetic equation:

fqiðxþ eqi; tþ 1Þ � fqiðx; tÞ ¼ � 1

�
ðfqiðx; tÞ � feq

qi ð�; uÞÞ; ð8Þ

where � is the relaxation time scale and feq
qi ð�; uÞ is the

equilibrium packet distribution. According to Muders’s
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Fig. 2. The four sublattices defined on a 3D grid. The velocity vectors eqi are shown as arrows in each sublattice.

Fig. 3. The D3Q19 lattice geometry.



work [25], the equilibrium packet distribution can be
represented by a linear formula:

feq
qi ¼ �ðAq þBqðeqi � uÞ þ Cqðeqi � uÞ2 þDqðuÞ2Þ; ð9Þ

where the coefficients Aq through Dq are dependent on the
employed lattice geometry. They are constant values for the
specific model. In Table 1, we list the coefficients used in the
D3Q19 model. Using these coefficients in conjunction with
(8) and (9) ensures local conservation of mass and
momentum.

The viscosity of a fluid is ameasure of the fluid resistance to
change of shape. For example, water has a higher viscosity
value than gas. In LBM, the viscosity � is decided by the
parameter � with equation � ¼ 1

3 ð� � 1
2Þ. Since the viscosity is

always greater than zero, � must be greater than 1
2 .

Our algorithm for calculating the LBM is as follows:

1. Set the initial conditions for all grid cells, choose
proper density and velocity for inlet cells, and select
a relaxation time scale � ;

2. Calculate the macroscopic variables of density and
velocity for each cell using (6) and (7);

3. Compute the equilibrium packet distribution for
each packet distribution by (9);

4. Plug the packet distribution and equilibrium values
into the kinetic equation (8);

5. Propagate the packet distribution to all neighboring
cells;

6. Modify the packet distribution locally to satisfy the
boundary conditions;

7. Back to Step 2.

4 INITIAL AND BOUNDARY CONDITIONS

Initial conditions are usually specified in terms of macro-
scopic variables, such as densities and velocities. For the
LBM, these macroscopic values are translated into the
corresponding microscopic packet distribution values for
each fluid node. This is done by solving the equilibrium
equation (9). Hence, the initial values of the density and
velocity of each node are plugged into (9) and the
equilibrium particle distribution values are set as the initial
packet distribution values for each node.

For a grid nodenear the boundary, someof its neighboring
nodes lie outside the fluid domain. Therefore, the packet
distribution values coming from those solid nodes are not
uniquely defined. For D3Q19, as shown in Fig. 4, there are
several unknownpacket distribution values for the boundary
nodes, for example, five unknowns for planar surface nodes
and nine for concave-edge nodes. We need to generate a
boundary solution to set these unknown values.

Different types of boundary conditions have been
introduced in the field of Hydrodynamics for the LBM.
Bounce-back is the simplest one, where boundary nodes are
placed halfway between the grid points. When particle
packets propagate to the boundary nodes, they just bounce
back along the same link. The propagation step is changed
to f�qiðx; tþ 1Þ ¼ fqiðx; tÞ. Another approach is using
periodic boundary conditions. Here, the departing packet
distribution along outward-pointing links is allowed to
reenter the lattice via corresponding inward-pointing links
on opposite boundaries. Both of these approaches are easy
to implement and solve the unknown packet distribution
values based on the known packet distribution values of the
neighboring cells. However, these two methods cannot set a
unique value for the invisible links shown in Fig. 4b. Also,
they can’t be used to set the specific density and velocity
constraints at the inlets, outlets, and walls.

The purpose of setting boundary conditions is to
determine the packet distribution values for the incoming
links on the boundary nodes. Most methods (e.g., [19]), such
as the bounce-back and periodic boundary condition,
calculate these unknown packet distribution values expli-
citly. In this way, we cannot determine the velocity and
density value on these boundary nodes, such as a velocity
value of 0:1 at the inlet boundary node. An incorrect density
or velocity value at the boundary nodes can eventually
cause a negative density value at local grid points. As we
solve the kinetic equation (8) with � close to 1

2 , we find that
if feq

qi ð�; uÞ is much smaller than fqiðx; tÞ, the packet
distribution value fqiðxþ eqi; tþ 1Þ will be changed to a
negative number, which is incorrect. This error can
accumulate and eventually generate a negative density
value. The problem can happen as the boundary conditions
become complicated, such as a fast moving boundary object
or a complex geometric structure.

In our work, we implemented the boundary conditions
based on Mei et al.’s method [23] for curved boundaries. In
their approach, the problem is solved in another way.
Instead of directly setting the microscopic values, they
calculate the macroscopic variables of density and velocity
at the boundary nodes first. By modifying the equilibrium
equation, one can get better results for complicated
boundaries.

As shown in Fig. 5, in the propagation step, the
knowledge of fqiðxb; tÞ of a node b at xb on the boundary

168 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 2, MARCH/APRIL 2004

TABLE 1
Coefficients of the Three Sublattices in the D3Q19 Model

Fig. 4. Boundary geometry examples for D3Q19: (a) planar boundary

surface with five unknown values, (b) concave edge boundary with nin

unknown values (the invisible links shown by dashed arrow lines).



side is required in order to obtain the fqiðxf ; tþ 1Þ for a
node f at xf on the fluid side. To decide the fqiðxb; tÞ, we
define

� ¼ jxf � xwj
jxf � xbj

ð10Þ

as the fraction of an intersected link in the fluid region (it is
obvious that 0 � � � 1). The fqiðxb; tÞ is calculated based on
the packet distribution values, velocity, and density values
of neighboring cells at the current time step:

fqiðxb; tÞ ¼ ð1� �Þfqiðxf ; tÞ þ �f�qiðxb; tÞ þ 6Aq�eqi � uw; ð11Þ

where Aq is the constant value we introduced in (9). � is
defined by � and � (see below) and uw indicates the speed of
the wall boundary. In the case of boundary surfaces with
nonzero velocity, we modify the value of uw. f

�
qiðxb; tÞ is the

packet distribution value at the boundary node b. It is
decided by a modified equilibrium distribution function:

f�
qiðxb; tÞ ¼ �ðAq þBqeqi � ubf þ Cqðeqi � ufÞ2 �DqðufÞ2Þ;

ð12Þ

where Aq, Bq, Cq, and Dq are the constant coefficients
defined in (9) and ubf is the virtual speed at the boundary
node b. It is set according to �. When � � 1=2, we define
� ¼ 2��1

�þ1=2 and

ubf ¼ 1� 3

2�

� �
uf þ

3

2�
uw: ð13Þ

When � < 1=2, we have � ¼ 2��1
��2 and :

ubf ¼ uff : ð14Þ

5 TEMPERATURE FIELD

In this section, we show how to incorporate a temperature
field to model the buoyancy force of hot gases. Other types
of external forces can also be added based on the work of
Muders [25]. The temperature of smoke or gas has a direct
effect on the behavior of their motion. Hot smoke tends to
rise more quickly due to the buoyancy effect. The D3Q19
model used in our work is an isothermal model and it can’t

describe the energy transfer due to difference in tempera-
ture. There are many thermal LBMs [3] in the Hydro-
dynamics field. However, most of them suffer from
instability problems.

To describe the effect of the buoyancy force, the
evolution of temperature must also be modeled. The change
of the temperature of the smoke in the air can be
characterized as a combination of the convection and
diffusion of heat in neighboring cells. To achieve fast speed,
we use a linear equation, similar to [4], instead of an
accurate differential equation, to approximate the change of
temperature for the display primitives. Our model is
governed by the following heat formula:

TkðtÞ ¼ �Tkðt� 1Þ þ �
X
j 6¼k

GðdkjÞTjðt� 1Þ; ð15Þ

where � is the conservation coefficient, � is the transfer-
ability coefficient, dkj is the distance between the display
primitive k and j, and GðÞ is a function describing the
thermal diffusion. We use a Gaussian filter as the function
GðÞ to approximate the effect of diffusion. At t ¼ 0, Tkð0Þ is
a predefined initial value, indicating the initial temperature
of the display primitives.

If the temperature of a particle is lower than the ambient
temperature in the air, the particle will disappear. For each
particle, we add the vertical buoyancy force to the move-
ment of the particle. This force depends on the temperature
field and is governed by the following equation:

Fbuoyancy ¼ HgðTk � TambientÞ; ð16Þ

where g is the gravity in the vertical direction, H is the
coefficient of thermal expansion, and Tambient is the
predefined ambient temperature value.

6 MAPPING LBM TO GRAPHICS HARDWARE

We briefly review in this section the basic ideas of mapping
LBM to graphics hardware, that is, a graphics processing
unit (GPU). (For more details, see [21].) To compute the
LBM equations on GPU, we divide the LBM grid and group
the packet distributions fqi into arrays according to their
velocity directions. All the packet distributions with the
same velocity direction are grouped into the same array,
while keeping the neighboring relationship of the original
model. Fig. 6 shows the division of a 2D model. We then
store the arrays as 2D textures. For a 2D model, all such
arrays are naturally 2D, while, for a 3D model, each array
forms a volume and is stored as a stack of 2D textures. The
idea of the stack of 2D textures is from 2D texture-based
volume rendering, but note that we don’t need three
replicated copies of the data set.

In addition to the packet distributions, the density �, the
velocity u, and the equilibrium distributions feq

qi are
similarly stored in 2D textures. We project multiple textured
rectangles with the color-encoded densities, velocities and
distributions. For convenience, the rectangles are parallel to
the viewing plane and are rendered orthogonally. By setting
the texture interpolation to nearest-neighbor and choosing
the resolution of the frame buffer and the texture
coordinates properly, we create a one-to-one mapping from
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Fig. 5. The 2D projection of a regularly spaced lattice and a wall

boundary. eqi and eqi are velocity vectors in opposite directions.



the texture space to the image space (one texel mapped to
one pixel).

The textures of the packet distributions are the inputs.
Density and velocity are then computed from the distribu-
tion textures. Next, the equilibrium distribution textures are
obtained from the densities and the velocities. According to
the propagation equation, new distributions are computed
from the distributions and the equilibrium distributions.
Finally, we apply the boundary conditions and update the
distribution textures. The updated distribution textures are
then used as inputs for the next simulation step. To reduce
the overhead of switching between textures, we stitch
multiple textures representing packet distributions with the
same velocity direction into one larger texture. Fig. 7 shows
an example in which every four slices are stitched into a
larger texture.

According to (5), each packet distribution having
nonzero velocity propagates to the neighboring grid every
time step. Since we group packets based on their velocity
directions, the propagation is accomplished by shifting
distribution textures in the direction of the associated
velocity. We decompose the velocity into two parts, the
velocity component within the slice (in-slice velocity) and the
velocity component orthogonal to the slice (orthogonal
velocity). The propagation is done for the two velocity
components independently. To propagate in the direction of
the in-slice velocity, we simply translate the texture of
distributions appropriately.

If we don’t stitch multiple slices into one texture, the
propagation in thedirectionof theorthogonal velocity isdone
simply by renumbering the distribution textures. Because of
the stitching, we need to apply translation inside the stitched
textures as well as copying subtextures to other stitched
textures. Fig. 7 shows the out-of-slice propagation for stitched
slices. The indexed blocks denote the slices storing packet
distributions. The rectangles with thicker boundaries mark
the subtextures that are propagated. For example, the
subtexture composed of slices 1 to 3 is shifted down by the
sizeof one slice in theYdimension. Slices 4 and8aremoved to
the next textures. Note that, in time step tþ 1, a new slice is
added owing to the inlet or the boundary condition, while
block 12 has moved out of the framework and is discarded.

To implement the LBM computation with fixed point
graphics hardware, we need to map all the variables to the
range of ½0; 1� or ½�1; 1�. Special care must be taken so that
all the intermediate values are also within the hardware
supported range. Because various multiplications are
involved, we only apply scaling to change the numerical
ranges. Apparently, the scale factors should be appropriate
so that no clamping error occurs and the computation
exploits the full precision of the hardware.

For each function yðxÞ, we compute two scaling factors:
the left-hand scalar, ymax ¼ maxxðjyðxÞjÞ, and the right-hand
scalar, UðyÞ, as the maximal absolute value of all inter-

mediate results during the evaluation of yðxÞ, no matter

what computation order is taken when the computation

contains multiple operations. Assume fmax
q is the left-hand

scalar of the packet distributions and the equilibrium packet

distributions of sublattice q. We define the scaled distribu-

tions ffqifqi and the scaled density e�� as:

ffqifqi ¼
1

fmax
q

fqi ð17Þ

e�� ¼ �

�max
¼

X
qi

fmax
q

�max
ffqifqi: ð18Þ

Since all the fqi are positive inputs, �max ¼ Uð�Þ ¼
P

qi f
max
q .

We also define:

1e��0 ¼ �mine���max
; ð19Þ

where �min is the lower bound of the density and 1e��0 2 ½0; 1�.
We compute the right-hand scalar of the velocity UðuÞ as:

UðuÞ ¼ 1

�min
max

b

X
qi

fmax
q feqi½b� > 0g; ð20Þ

where b is the dimension index of vector eqi. Note that UðuÞ
and umax are scalars rather than vectors. Then, the scaled

velocity is computed as:

euu ¼ u

umax
¼ UðuÞ

umax

1

~��0

X
qi

fmax
q

UðuÞ�min
eqi

� �effqi: ð21Þ

With such range scaling, (8) and (9) become:

ffqifqiðxþ eqi; tþ 1Þ ¼ ffqifqiðx; tÞ �
1

�
ðffqifqiðx; tÞ � ffeq

qifeq
qi Þ ð22Þ

ffeq
qifeq
qi ¼

Uðfeq
q Þ

fmax
q

~��
Aq�

max

Uðfeq
q Þ þ

2Bqu
max�max

Uðfeq
q Þ <

eqi
2
; euu >

�
þ 4CqðumaxÞ2�max

Uðfeq
q Þ <

eqi
2
; euu >2 þ

4DqðumaxÞ2�max

Uðfeqq Þ <
euu
2
;
euu
2
>

!
:

ð23Þ
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Fig. 6. Division of the D2Q9 model. Distribution values are grouped into

textures according to their velocity directions.

Fig. 7. Propagation of the packet distributions along the direction of the

velocity component orthogonal to the slices.



For the D3Q19 model, Aq � 0, Bq � 0, Cq � 0, and Dq � 0,
hence:

Uðfeqqi Þ ¼ maxðð�maxAq þ 2Bqu
max�max þ 4CqðumaxÞ2�maxÞ;

ð2Bqu
max�max � 4DqðumaxÞ2�maxÞÞ:

ð24Þ

Note that, in (23), we scale the vectors before the dot
products. The scaling factor is chosen to be a power of two
for easy implementation in hardware.

A major concern about using graphics hardware for
general computation is accuracy. Most graphics hardware
supports only 8 bits per color channel. Fortunately, the
variables of the LBM fall into a small numerical range,
which makes the range scaling effective. Besides, the
property of the LBM that the macroscopic dynamics is
insensitive to the underlying details of the microscopic
physics [1] relaxes the requirement on the accuracy of the
computation. In the new generation of GPUs, such as ATI’s
R300 and Nvidia’s NV30, floating-point computation is
available throughout the fragment shader, hence the
accuracy is less of an issue. However, floating-point
requires more memory and is slower than its fixed-point
counterpart. Therefore, the proposed scaling is still valuable
in applications where speed is more important than
accuracy or the variables are restricted to a small range.
Note that our range scaling makes no assumption of the
precision of the hardware.

7 RENDERING WITH TEXTURED SPLATS

In this section, we discuss our approach of rendering the
gaseous phenomena. When observing gaseous objects in
real life, we notice a variety of rotational and turbulent
movements and structures at a variety of scales. Employing
the LBM and the temperature field to calculate all these

turbulence details would require a very large 3D grid size.
Extremely time-consuming simulations would ensue,
which is counter to our goal of generating a realistic-
looking model at interactive frame rates. The LBM model
already provides the physically correct large-scale beha-
viors and interactions of the gaseous phenomena, at real-
time speeds. What we require now is an equally efficient
way to add the small-scale turbulence details into the visual
simulation and render these to the screen. One way to
model the small-scale turbulence is through spectral
analysis [32]. Turbulent motion is first defined in Fourier
space and then it is transformed to give periodic and chaotic
vector fields that can be combined with the global motions.
Another approach is to take advantage of commodity
texture mapping hardware, using textured splats [6] as the
rendering primitive. King et al. [20] first used this technique
to achieve fluid animation based on simple and local
dynamics. A drawback of their model is, however, that it
lacks the interaction of the fluid with environmental
influences, such as wind, temperature, obstacles, and
illumination, isolating the modeled gaseous phenomena
from the rest of the scene.

While our LBM simulation takes care of the large-scale
interactions of the fluid with the scene, our rendering
approach adds the small-scale interactions and visual
details on-the-fly during the interactive viewing stage. A
key component of our approach is textured splats, which
can be efficiently rendered on any commodity graphics
hardware. Textured splats allow us to model both the visual
detail of the natural phenomena itself as well as the
volumetric shadows cast onto objects in the scene. Our
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Fig. 8. A set of textures generated from real images (courtesy of Scott

King).

Fig. 9. Hot steam rising up from a teapot and its spout.

TABLE 2
LBM Timing Results (in ms)



rendering approach is as follows: First, we select a set of
textures of turbulence details that match the phenomena we
wish to model. These textures can be generated from real
images or a noise function (see Fig. 8 for some example
textures). The size of the textures we use is 32� 32 and our
texture database presently includes 32 textures. To ensure
proper blending at rendering time, the textures must be
weighted with a smooth function, for example, a Gaussian.
When a smoke particle enters the flow field, an initial
texture is selected from the texture database at random and
assigned to the particle. As the particle moves along the
velocity vector on the grid, one can either circulate through
the texture database and select a different texture for each
time step, which adds an additional degree of small-scale
turbulence, or one can retain the initially assigned texture
for the entire lifetime of the particle. In the former case, the
assigned texture series must be somewhat continuous, else
disturbing sparkling effects may occur. Each particle is also
influenced by the buoyancy force and the longer the particle
stays in the field, the dimmer its color, until it eventually
disappears. At each time step, all the display primitives are

rendered in a back-to-front order. As the user changes the
viewpoint position, the splats are aligned so that they face
the user at all times. Alternatively, one can use
3D hypertextures [27] which are sliced according to the
viewpoint.

The use of textured splats also allows the efficient
modeling of shadows cast by the volumetric gaseous
phenomena. First, all regular scene objects are rendered
from the view of the light source, with the z-buffer write-
enabled. The resulting z-image is saved as a (hard shadow)
image. Then, the z-buffer is write-disabled but left test-
enabled and the RGBA portion of the frame buffer is set to
zero. Now, the textured splats are rendered from the view
of the light source. The resulting color-buffer image
represents the attenuation of the light due to those gaseous
scene objects that are not occluded by opaque scene objects.
This image is used as an amorphous shadow texture in the
subsequent second rendering pass, now from the view of
the camera. Here, we render the polygons of the scene
objects, mapping both the amorphous shadow image and
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Fig. 10. A sequence of images showing smoke emanating from a chimney.



the hard shadow image onto the polygons, via projective
textures [29].

8 IMPLEMENTATION AND RESULTS

We use a finite volume to represent the gaseous phenom-
ena. The objects in the virtual environment are defined by
axis-aligned bounding planes. Different types of boundary
conditions are specified on the surface of the grid cells that
overlap with the surface of the bounding planes. For the
LBM computation, the density and velocity are defined at
the center of each grid cell. Each display primitive in the
volume has its own temperature and vertical velocity field.

For the initial conditions of the LBM, as mentioned

before, the packet distribution fqi is initialized to equal the

equilibrium packet distribution value feq
qi , which is known

in terms of density and velocity. This approximation may

introduce errors into the system at the beginning of the

simulation. For this reason, in our work, we discard the first

few steps of the simulation.
At the outlet of the model, fluid leaves the grid. One way

to achieve this is to assign a density value for the outflow,

changing the problem of outlets to that of the density

boundary conditions. However, we have found that it is

difficult to define the outflow density before the simulation.

We instead impose a zero derivative condition after the

collision step, which works very well. Suppose the surface

Z ¼ Nz is an outlet (whereNz is the number of lattice cells in

the Z-direction), for each of the outlet nodes, we execute the

equation: fqiði; j; Nz � 1Þ ¼ fqiði; j; NzÞ.
Our LBM-based system works in the following way:

1. Inject new display primitives into the system with an
initial temperature field and texture (the number of
display primitives characterizes the density of the
gaseous phenomenon);

2. Update the velocity vector on the grid points
according to the LBM algorithm in Section 3;

3. Change the temperature of display primitives using
(15). If its temperature is lower than the ambient
temperature, remove it from the system;

4. For each display primitive, first calculate its buoy-
ancy force using (16). Then, compute its velocity
vector by trilinear interpolation from the velocities
stored at the surrounding grid vertices. Based on
these forces, move all display primitives to their new
locations. If a display primitive moves out of the
grid, remove it from the system;
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Fig. 11. A sequence of images showing smoke interacting with a green moving obstacle.



5. Move the viewpoint to the light source and
precompute the amount of light reaching each
display primitive;

6. Render all the display primitives in a back-to-front
order using texture splatting;

7. Go back to Step 1.

The power of our method is that we distinguish between

the microscopic packets in the LBM and the macroscopic

display primitives that we can see. Thus, we don’t require a

huge amount of display primitives, which allows the

rendering to be fast. In our work, a few hundred display
primitives are used to generate the results. We present
several examples to demonstrate our LBM method. All the
results have been generated on a P4 1.6GHz PC with Nvidia
GeForce4 Ti 4600 card that has 128MB of memory. For all
the following examples, we have succeeded in achieving
real-time computation and animation. Table 2 shows the
resolution, the calculation time of each step with and
without the texture hardware acceleration, and the render-
ing time of the splatting algorithm for four examples.
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Fig. 12. A sequence of images showing smoke billowing around the buildings in an urban canyon.

Fig. 13. Time per step of the LBM computation with graphics hardware and software.



Fig. 9 shows the result of hot steam rising up from a
teapot and its spout. We model the inlets of the steam as
two patches. One is 3� 3, the other is 1� 1. The steam exits
the inlet with a speed of 0.1 and a density value of 0.42. We
set the temperature near the inlet of the steam to be 100	 C
and the temperature of air to be 28	 C.

Fig. 10 is a sequence of images modeling smoke coming
out of a chimney. The inlet of the smoke is modeled as a
2� 2 patch at the top of the chimney. The left side of the
computation grid is modeled as a wind field, while the top
and right side of the computation grid are described as
outlets. Fig. 11 is another example indicating the effect of a
green moving obstacle on the gas behavior. The object
moves from the right side of the grid to the left,
continuously changing the shape of the gas.

Fig. 12 shows smoke propagating in an urban city model.
Several buildings are used as boundary objects. The inlet of
the smoke is modeled as a 4� 4 patch. The smoke exits the
inlet with a speed of 0.07 and a density value of 0.42. The
left side of the grid is assigned a speed of 0.1 along the
X axis to model the effect of wind. The top and right side of
the grid are modeled as open surfaces. The shape of the
smoke will change as the wind speed increases or
decreases. We set the temperature near the inlet of the
smoke to be 40	 C and the temperature of air to be 28	 C.

Fig. 13 compares the time (in seconds) per step of the
hardware LBM with a software implementation. The
statistics does not include the time for rendering. The
“Stitching” curve refers to the performance after stitching
small textures into larger ones, while “No Stitching” does
not. Note that the hardware accelerated technique wins in
speed for any size of the model, except that for the 163 grid,
the “No Stitching” method is not faster than software. This
is because, in “No Stitching,” the overhead of switching
between textures becomes a bottleneck. However, simply
by stitching 16 16� 16 textures into four 64� 16 textures
gains a speedup factor of 7. Fig. 13 is in logarithmic scale for
both axes. Note that stitching is very effective for grids
smaller than 643 and the simulation can proceed more than
200 steps per second.

9 CONCLUSIONS

The two primary contributions of this paper are:

. Introducing the LBM as a solution to the computer
graphics problem of animating gaseous phenomena;

. Achieving real-time, physically-based, realistic ani-
mation of fluid with turbulent effects in complex
environments.

Our approach has the following advantages:

. Both the gaseous phenomenon evolution by the LBM
and the temperature updates require only an
efficient, linear model for the lattice computations.
This allows the modeling to be achieved at near-real-
time frame rates.

. Since the computations on the grid cells can be
performed on commodity texture hardware, an
additional acceleration factor of at least 20 can be
obtained. This yields the desired real-time model-
ing speed.

. The modeling of the flow can be performed on an
efficient low-resolution grid since high-resolution
textures are used to supply the fine details required
for realistic appearance. Due to this novel hybrid
approach, we can model near physically correct
interactions of gaseous phenomena with moving
objects at interactive speed, while still attaining high
visual details.

. Images can be rendered quickly and realistically
by taking advantage of fast, commodity texture
hardware.

In the future, we plan to investigate the result of updating
textures following a pattern. Sequences of texture splats (we
call them “video splats”) or even 3D video kernels can be
generated offline based on an accurate simulation of the
velocity field with a large LBM computation grid. Then,
during the rendering part, appropriate video splats can be
chosen on the fly to represent and visualize small-scale
turbulence and swirls. We believe this approach will
improve the fluid animation. We also plan to model the
behaviors of objects in the flow, such as the leaves blowing
in the wind. Besides gaseous phenomena, our model can
also be used to simulate liquid [36], heat in a solid, and the
like, and be extended to model fire [37].
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