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Abstract
Ambient Occlusion is an area that has seen increased activity in the last few years and is an important

aspect of reality in 3D-graphics. Rough approximation algorithms that are fast enough to be used in real
games have appeared, but realistic solutions still have a way to go.

This thesis covers an evaluation of the recently published Ambient Occlusion Volumes algorithm and
presents various attempts of similar approaches to increase the algorithm performance. While no major
breakthrough were made, it presents some new ideas and further examines some of those presented in
the original paper. The algorithm is currently not fit for real-time rendered ambient occlusion except for
applications dedicated to that purpose, but this might change in the near future, as it relies heavily upon
the GPU which is a fast advancing field of technology.



Sammanfattning
Kontaktskuggor är ett område som har sett ett ökat intresse de senaste åren. Grova approximeringsal-

goritmer har dykt upp, men verklighetstrogna lösningar är inte riktigt där än.
Denna rapport presenterar en undersökning av den nyligen presenterade algoritmen Ambient Occlu-

sion Volumes. Den går även igenom ett flertal försök med liknande algoritmer i syftet att öka prestanda
vid körning. Inga större genombrott har gjorts, men den presenterar ett antal nya idéer och går även in
djupare på vissa områden än originalrapporten. Algoritmen är ännu för långsam för att användas till att
rendera kontaktskuggor i realtid annat än i program som inte behöver övrig tillgång till grafikkortet. Detta
kan emellertid komma att ändras inom en snar framtid då grafikkortsteknologin går starkt framåt.
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1 INTRODUCTION

1 Introduction

Ambient illumination is a term that describes the
indirect illumination of distant light, such as light
from the sky, or light reflected on distant objects.
Ambient occlusion refers to how nearby objects can
occlude parts of this ambient light, producing indi-
rect shadows or contact shadows. In effect, this is the
darkening of curved or closed surfaces in a scene,
for example if we have a car on a cloudy day, we
will have a darkening underneath it due to the am-
bient occlusion (the car blocks the ambient light that
would otherwise have reached the ground).

Computing this term efficiently is currently one
of the most important topics in real time graphics,
as it greatly improves the visual quality of images,
not only making it more physically correct but also
providing a visually pleasing experience.

Much of the current research in ambient occlu-
sion deals with utilizing the GPU to produce ambi-
ent occlusion in images. An early production-ready
solution was the CryTek Screen Space Ambient Oc-
clusion (SSAO) presented in [Mittring, 2007] and uti-
lized in their graphics engine CryEngine 2. This
was followed by a great number of papers on im-
provements and variations on this technique, such
as [Bavoil and Sainz, 2009] and [Bavoil et al., 2008].

A slightly different approach to this, but still
in screen space, was introduced in [McGuire, 2009],
called Ambient Occlusion Volumes. The algorithm
is analytical and produces smooth and near ground
truth results at impressing frame rates, but can not
be considered real-time for production use. This the-
sis examines the algorithm and introduces several
attempts to improve it, with the goal of making it
suitable for real-time applications, such as games, on
modern hardware.

1.1 Previous work

A technique described in GPU Gems 2
[Matt Pharr, 2005] treats polygon meshes as a set
of surface elements. The benefit of this is that cal-
culations are not needed between each and every
element. A fast approximation is then done to com-
pute the shadowing from blocking geometry.

A further improvement to the technique de-
scribed in GPU Gems 2 is suggested in GPU Gems 3
[Boubekeur and Schlick, 2007]. They give a demon-
stration on a few changes to the algorithm that in-
creases the usefulness and the robustness of the tech-

nique.
Another paper which makes use of ideas pre-

sented in GPU Gems 2 [Matt Pharr, 2005] is paper
named "Accelerated Ambient Occlusion Using Spa-
tial Subdivision Structures" [Wassenius, 2005]. The
technique adds geometry to a spatial subdivision
structure (an octree) and traverses it to find nearby
occluders.

Doing ambient occlusion in screen-space has re-
cently become very popular. On of the first in-
troduced was the Screen-Space Ambient Occlusion
(SSAO) [Mittring, 2007], in which the idea is to ap-
proximately calculate the ambient occlusion of a
pixel by sampling the a depth buffer. A paper
called Screen-Space Directional Occlusion (SSDO)
[Ritschel et al., 2009] builds on this technique, and
enhances it with directional information. The direc-
tional information can then used to calculate local
indirect illumination, or together with an environ-
ment map; directional shadows. This provides an
even more accurate solution than the SSAO solution,
with little computational cost.

By precalculating a set of factors around an ob-
ject, from which the ambient occlusion factor can
be derived, [Kontkanen and Laine, 2005] were able
to perform ambient occlusion between objects very
quickly. [Malmer et al., 2007] built upon this idea,
but stored the occlusion factors in a 3D grid instead,
which made the algorithm even faster and can han-
dle self-occlusion in the same pass.

[Evans, 2006] also uses 3D textures to estimate
ambient occlusion, but instead of per object they use
one large grid for the whole scene, which they can
quickly create and then use to estimate ambient oc-
clusion.

[Reinbothe et al., 2009] introduces the idea of
voxelizing the scene each frame, and then using
this information to calculate the ambient occlusion,
achieving interactive frame rates.

1.2 Problem statement

This section will give a brief analytical motivation
for ambient occlusion. The rendering equation is
commonly defined as:

Lo(x, ω) = Le(x, ω)+

∫
Ω

fr(x, ω
′, ω)Li(x, ω

′)(ω′·n)dω′
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1.2 Problem statement 1 INTRODUCTION

where Lo is the light exiting from a surface point
x in the direction ω, Le is the emitted illumination,
fr is the material properties, Li is incoming light and
n is the surface normal.

The incoming light can be divided into two
terms: "near" and "ambient" light, depending on
how far the light travels before it hits the surface.
This means the space is divided into two parts, the
near space which is a sphere with a radius d, and the
ambient space which is everything outside it.

Lo(x, ω) = Le(x, ω) + Ln+∫
Ω

fr(x, ω
′, ω)V (x, ω)La(x, ω

′)(ω′ · n)dω′

where V (x, ω) is the visibility function, which
is 1 if a ray from x in the direction ω is unob-
structed for at least a distance d, and otherwise 0.
The Ln term describes the "near" incoming light,
such as direct light and indirect light (bouncing from

nearby surfaces), and is described in more detail in
[McGuire, 2009]. The last term describes the ambi-
ent illumination of the surface point, and a common
approximation is:

π

(∫
Ω

fr(x, ω
′, ω)La(x, ω

′)dω′
)(

V (x, ω)(ω′·n))dω′
)

The first factor of this can be precomputed with
only a small error for diffuse surfaces, thus only the
second factor needs to be computed. The second fac-
tor could be described as the accessibility of the sur-
face point, i.e. a number from 0 to 1 describing how
much ambient light reaches it. Ambient occlusion
is generally defined as one minus the accessibility.
Calculating this integral efficiently, with an error as
small as possible, for each surface point visible on
the screen is the primary problem that ambient oc-
clusion algorithms try to solve.
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2 AMBIENT OCCLUSION VOLUMES

2 Ambient Occlusion Volumes

The AOV (ambient occlusion volumes) algo-
rithm calculates the ambient occlusion term in the
rendering equation. It operates in screen space and
makes use of a deferred rendering pipeline. We
will now explain this method briefly. For a full ex-
planation, this method is thoroughly explained in
[McGuire, 2009].

2.1 Deferred rendering

A deferred rendering pipeline is used to create inter-
mediate geometry buffers which is of high impor-
tance to the AOV algorithm. A common need, is
to find the world position of a pixel in screen space,
which is where the AOV algorithm operates. In the
geometry buffer, the worldspace normal is stored
which is also needed for the AOV algorithm.

2.2 Ambient occlusion volumes

Every polygon in the scene is considered to be a po-
tential occluder to a pixel. To limit the amount of
pixels to be evaluated, a volume is extruded from
every polygon which makes up for the space in
which pixels are considered. The volumes are be-
ing extruded both horizontally and vertically from
the polygon. This is done in the geometry shader.
For each vertex in the polygon, an extension vector
is being calculated. The normal, which is computed
in the geometry shader, and the extension vectors
are then used to extrude the polygon vertically and
horizontally respectively. It is important to store the
magnitude to which we are extruding the volumes
in order to later scale the amount of occlusion added
to a pixel according to the distance from the polygon
to the pixel in world space in order to avoid hard
edges on the volumes.

2.3 Algorithm

For each pixel found by rasterizing the volumes, the
corresponding pixel in worldspace is being calcu-
lated using the depth value stored in the geometry
buffer. The polygon, which in this case is a triangle,
belonging to the rasterized pixel is then considered
to be a potential occluder to the worldspace pixel.
There are four cases which can arise from this set-
ting.

1. The triangle is below the surface to the normal
of the worldspace pixel

2. Two vertices in the triangle is above the surface
to the normal of the worldspace pixel

3. One vertex in the triangle is above the surface
to the normal of the worldspace pixel

4. All vertices are above the surface to the normal
of the worldspace pixel

In the first case, no possible occlusion could be
dealt to the pixel. In the second and third case, clip-
ping has to be done between the triangle and the sur-
face to the normal of the worldspace pixel in order
to find the part of the triangle which is above the
surface. In the forth case, the whole polygon is con-
sidered.

In the final step of the algorithm, an occlusion
value is calculated for each considered pixel. Sub-
tractive blending is used in order to combine occlu-
sion values. For the considered world space pixel,
a hemisphere, based on the world space normal is
visualized to explain the following projections. The
triangle is projected to the surface of the hemisphere,
and further projected down to the surface of the nor-
mal to the worldspace pixel. The area of the pro-
jected triangle directly corresponds to the amount of
occlusion which is weighted with a value in order to
avoid hard edges.
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3 SUGGESTED IMPROVEMENTS

3 Suggested improvements

3.1 Pre-calculated self-occlusion

If we look at the ambient term of an object, we can
split it into two components: self-occlusion and oc-
clusion from other objects. For static geometry, the
self-occlusion term will never change, since it only
depends on the geometry itself. This means that
we should be able to pre-calculate this term and
only calculate the occlusion from other objects live.
Dynamic geometry (such as, for example, animated
skinned-mesh objects) are handled as normally done
by the AOV algorithm.

Two major parts of this optimization can be iden-
tified; calculating the self-occlusion efficiently and
utilizing this pre-calculated self-occlusion in the pro-
gram. The different stages of the algorithm is visu-
alized in Figure 1.

This technique is similar to light maps
[Beam, 2003], with the difference that light maps
often refer to whole-scene pre-calculated lighting,
and not only self-occlusion. Light maps may also
handle direct illumination.

3.1.1 Algorithm outline

1. (Offline) Create occlusion maps for every ob-
ject type

2. (Each frame) Create an object id buffer

3. (Each frame) Render the scene using normal
lighting, and use the occlusion maps to pro-
vide self occlusion

4. (Each frame) Render the Ambient Occlusion
Volumes on top of this, but skip pixels which
would calculate self-occlusion

3.1.2 Efficiently pre-calculating the self-occlusion

The first part of the optimization is the pre-
calculation of the self occlusion. What we get from
this is a texture which we call the occlusion map.
This texture contains values defining how much
light, or occlusion, points on the surface of the ob-
ject receives. It is important to UV-map the object in
such a way that no faces overlap in the UV-map, oth-
erwise those texels occlusion value would represent
several faces occlusion value.

The occlusion map can be calculated in a lot of
ways, and it is unimportant to the second part of

the algorithm exactly how they are constructed. We
have devised one algorithm that calculates the oc-
clusion map on the GPU using the AOV algorithm,
which has the benefit of producing results that are
very similar to calculating the AOV self-occlusion
term live, meaning that the difference between an
image with pre-calculated self-occlusion and an im-
age with normal AOV is very small (as can be seen
in Figure 1).

The algorithm can be outlined as follows:

1. Calculate a normal and a world position buffer
in texture space (using the UV-coordinate of
the vertex as position, and outputting the nor-
mal and world position as texcoords)

2. Run the AOV algorithm on an empty buffer,
but instead of outputting volumes output
quads covering the whole buffer.

The reason this works is because of how the AOV
algorithm works. The AOV pixel shader has the fol-
lowing input: world position and normal of pixel
we are trying to shade and the triangle that we want
to calculate how much it occludes that pixel. The
world position and normal are simply sampled from
the calculated buffers in stage one, and the triangle is
simply output in the geometry shader (as normally
done) in the second stage.

A few points should be noted though:

• You can choose to use or omit the gp function.
Omitting it is mathematically equal to sam-
pling towards infinity when calculating the
AO term. This might however not always be
desirable, for example inside a room model,
since the room would then be rendered com-
pletely black (the AOp term will be one).

• The P triangles outputted in the geometry
shader can be offset by a small value along
the mk vector to prevent "edges" of under-
occlusion in the occlusion map.

• After the algorithm is done, we can run a
"padding" algorithm on the texture which ba-
sically fills texels that are outside the faces on
the occlusion maps with nearby texel informa-
tion, similar to the "push-pull" algorithm from
[Grossman and Dally, 1998]. This prevents in-
correct color "bleeding" when sampling the
texture.
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3.2 Clipping 3 SUGGESTED IMPROVEMENTS

Figure 1: Pre-calculated self-occlusion visualizations

3.1.3 Rendering

To utilize the pre-calculated self-occlusion in the live
rendering, we have to perform a few additional
steps to the original AOV algorithm. The general
idea is to skip calculating self-occlusion on objects,
and use the pre-calculated values in those places in-
stead.

The first step is to calculate what we call an ob-
ject id buffer. This buffer is a screen resolution
buffer of integers, each integer representing the id of
the object at that location. Next we clear the screen
and then draw the scene normally, but with the self-
occlusion maps applied to all objects. This will pro-
duce an image with only self occlusion, so after that
we render the AOV algorithm to calculate occlusion
from other objects, but with a modification; we only
draw a pixel if the id of object we are working with
is not the same as the id in the object id buffer.

3.1.4 Performance

The early measurements of this technique was made
on a Radeon HD 3470, which is a graphics card
with a fairly low fillrate (3.2 GPixels/s). All our test
scenes were fillrate bound on this card.

We started out implementing the id buffer as an
integer texture, which we rendered to in a separate
pass, and then we simply read this texture in the
AOV pixel shader and discarded pixels which had
the same id as the object that was being handled.
However, this proved very slow and we only saw a
rough 10% performance gain compared to standard
AOV.

We then implemented the id culling by writing
id’s to the stencil buffer while doing the normal ren-
dering, and then using the stencil buffer to cull away

the pixels with the same idea, which turned out to be
much faster. In many of our test scenes we saw per-
formance gains of around 50% (i.e. twice the framer-
ate).

Measuring the overdraw we noticed a similar re-
lationship; in many scenes the overdraw was halved
compared to normal AOV, which explains the per-
formance gain on this graphics card.

3.1.5 Conclusions

This technique is fairly straight forward to imple-
ment, and produces almost equal (if the occlusion
map resolution is low), equal or better (the d vari-
able can be arbitrarily large in the occlusion map, or
gp omitted) results than the normal AOV algorithm.
The occlusion map generation is fast, and can be
compiled offline once and then simply loaded from
the hard drive.

The drawbacks are that it requires a UV-mapping
with no overlapping faces (which means we either
have to generate those maps in the modelling soft-
ware, or compute them in some way; we created
them in the modelling software for simplicity) and
the extra memory usage of the occlusion maps. An-
other concern is that the stencil buffer can only store
8-bit values, which means that we can only handle
255 objects at a time, more than that and we would
have to recalculate the stencil id buffer every 255th
object for the next 255 objects.

3.2 Clipping

When computing contributions from polygon p to
pixel x, one must find the parts of p that can pos-
sibly shade x. If all vertices of p are below the sur-
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3.2 Clipping 3 SUGGESTED IMPROVEMENTS

face to the normal of x, p can not shade x. If all ver-
tices lie above the surface to the normal of x, p fully
shades x. However, clipping has to be performed
on p when p intersects the surface to the normal of
x. In our case, all polygons are triangles so there are
two cases where clipping is needed. One where two
vertices are above the surface to the normal of x and
another where only one vertex is above the surface
to the normal of x.

This is a simple task but since it is run for every
pixel it has to be done fast. We found two analytical
techniques. One suggest in the paper which is de-
veloped by GPU GEM, and another one developed
by ourselves. We also tried to find an approximation
algorithm for solving this problem in order to trade-
off visual appeal for performance.

3.2.1 GPU-GEM

This technique is suggested for use in the latest ver-
sion of ambient occlusion volumes. As the problem
itself, the technique is straight forward. The algo-
rithm goes through a series of if-statements in order
to find the correct setting. To find the points of inter-
section, this technique computes the distances from
the vertices of the triangles to the plane. This is illus-
trated in figure 2.

Figure 2: Distances d0 and d1 are calculated in order
to find the intersection point i0.

In order to find the intersection point we simply
calculate it:

i0 = (d0/(d0 − d1)) ∗ (v0 − v1)

They choose to structure their if-statements in a
logical way that searches to find a setting of vertices
which matches the actual case. The way of doing
this is the key difference between our algorithm and
theirs. Their structure looks as follows:

if(v0 is above)
{

if(v1 is above)
{

if(v2 is below)
{

//compute intersections from
//v2 to v1
//v2 to v0

}
else if(v2 is above)
{

//all above
}

}
}
... etc ...

3.2.2 Our method

The main difference between this method and GPU
GEM’s method is how the if statements are struc-
tured. In our algorithm, we first count the number
of vertices that are below the surface to the normal
of x. By doing that we can split the if-statements into
blocks, each representing a number of vertices below
the surface to the normal of x. The structure looks as
follows:

if(below == 3)
//all below

if(below == 0)
//all above

if(below == 2)
//find which vertex is above

if(below == 1)
//find which vertex is below

When there are two vertices below the surface we
check which vertex is above to know which setting
that needs to be handled. We then compute the in-
tersection points on the surface to the normal of x

7



3.2 Clipping 3 SUGGESTED IMPROVEMENTS

and the vectors from the vertex above to the vertex
below. When there are only one vertex above the
surface to the normal of x, we look for that particu-
lar vertex and compute the intersection points in the
same manner as in the previous case.

3.2.3 Approximation methods

There are no approximation methods easily avail-
able online, which is natural since the nature of the
problem itself is so simple. We developed our own
to gain some knowledge into how much visual ap-
peal one would have to trade-off to boost perfor-
mance. In our best implementation, we managed to
gain performance but the visual appeal was greatly
impaired which ruins the soul purpose of AOV. The
algorithm looks as follows:

Input: Polygon p, Pixelnormal N
Output: Clipped polygon p’

for each Vertex v in Polygon p
if(v below plane)

move v up to plane
return true if any v is above plane

else false

What is actually being approximated is the inter-
section points of the triangle and the plane. The al-
gorithm always returns three vertices in difference
to the analytical version which returns a quad or a
triangle dependant on the setting of vertices. This
is a result from how the intersection points are be-
ing approximated. In our algorithm we rise vertices
below the plane until they lie in the plane. This is
illustrated in figure 3.

Figure 3: This figure illustrates how the clipping
is approximated by translating the triangle until all
points are above the surface of the normal to the
pixel being shaded.

The error-area shown in figure 3, is dependant of
the distances from the vertices to the plane. It can be
reduced by doing additional computations at the ex-
pense of performance. Unfortunately the price is so
high, the approximation algorithm no longer boosts
performance in comparison to the previously men-
tioned methods. So the error-area is the final trade-
off to gain additional performance.

3.2.4 Performance & Conclusion

The performance between our method and GPU-
GEM’s varies greatly between computers and can
differ up to 20 %. We could not find any way to
pre-determine which algorithm to use. It is very
difficult to create an approximation algorithm that
boosts performance while not killing off the visual
looks. We were not able to develop a method that
could out-perform GPU-GEM by a lot, but our most
successful method seems to be at an advantage on
most machines.
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Figure 4: A comparison between the ground truth and sampled pictures at various quality.

3.3 Upsampling

A common way to improve performance for pixel
bound methods is to reduce the size of the render
target for that particular method. The output is writ-
ten to an intermediate low resolution buffer and then
rescaled using filtered sampling in order to recon-
struct the information lost from the downsampling.

3.3.1 Bilateral filter

Many papers suggest ways to implement bilateral
filters. What usually varies is the size of the kernels
and the ways of weighing the normals, distances
and depths.

In the AOV-paper a Gaussian function is used to
weigh distances, normals and depths, and a 5x5 ker-
nel is used to sample from the low resolution texture.

A paper from 2008 [Lei Yang, ] takes a similar ap-
proach to the implementation of the bilateral filter
but with some interesting differences. To upsam-
ple the low resolution texture, they use a 2x2 ker-
nel. They also choose to weigh the distances differ-
ently by using a tent function rather than the typical
Gaussian. Both papers use the Gaussian function to
weigh normals and depths.

f(x) = ae
−(x−b)2

2c2

This is the Gaussian function that is used to
weigh normals and depths. The width of the Gaus-
sian curve is adjusted by modulating a. It needs to
be carefully tuned in order to preserve sharp edges
which is usually desired for visually pleasing im-
ages.

3.3.2 Implementation

To implement the suggested method in the 2008 pa-
per for the AOV method, one has to create a high

resolution and a low resolution geometry buffer. The
low resolution geometry buffer should be of the size
as the downsampled render target.

cHi =
∑
cLj f(xi,xj)g(|nH

i −n
L
j |,θn)g(|zHi −z

L
j |,θz)∑

f(xi,xj)g(|nH
i −nL

j |,θn)g(|zHi −zLj |,θz)

This is the formula which is being applied to ev-
ery pixel pi. In our implementation a 2x2 grid was
used so this was run four times per pixel. xi is the
position of pi in the downsampled texture and xj is
a sample in the grid. θz and θn is the weight of dif-
ference in the normals and depths respectively.

The 2008 paper mentions that small values for
θz and θn are desired for maintaining sharp edges.
In our implementation we found that θz = 0.1 and
θn = 0.1 produced pleasing results.

3.3.3 Results & Performance

The results are showing huge performance gains
from downsampling. This was to be expected
since we are directly attacking the bottleneck of this
method. When using smaller kernels we can further
optimize the upsampling, in particular when using
the 2x2 instead of the 5x5 grid. The trade-off in vi-
sual appearance is small, if even noticeable.

In order to get good results with a smaller kernel
one has to be extra cautious about correctly tuning
the weights to the Gaussian functions. In figure 4,
visual appearance are shown when using different
scales on the render target.

The downsampled scenes are rendered using a
2x2 grid, weighing distances with a tent-function
and depths and normals with a Gaussian function,
as suggested in the paper by Yang. The perfor-
mance differs a lot between different downsampling
schemes. They are rendered in 290 ms, 105 ms, 65
ms and 45 ms respectively.
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Using the same scheme, but with a 5x5 grid
the performance is highly affected and the quality
gained is hardly noticable. The fourth picture ren-
dered in 45 ms using the 2x2 while it takes the 5x5
grid 83 ms.

An obvious improvement is the second picture
which is rendered three times as fast as the full reso-
lution image while not losing any visual appeal. The
third picture which downsamples the render target
by almost 11% further increases performance by al-
most 100 %, while still not producing any notewor-
thy artifacts.

3.3.4 Conclusion

The 2x2 grid suggested in Yang’s paper show
promising results in visual appeals and particularly
in performance. The sampling in the 2x2 is very fast
in comparison with the sampling in the 5x5.

3.4 Pre-calculated AO and clipping func-
tion

Looking at the pixel shader in the standard AO al-
gorithm, we may identify a few things that are po-
tentially worth pre-calculating. The input to the ac-
tual clipping and AO functions consists of three vari-
ables; the triangle, the surface normal at the point
and the world space position of the point (equation
1).

t : triangle (3 vertices = 9 floating point values)
n : surface normal
x : world space position
ao : ambient term
h : hash value

Figure 5: Definitions

clip(t, n, x)→ t′ (1)
AO(t′, n, x)→ ao

Our idea was to use these values to calculate a hash
value, which we would then use to look up the AO

value (equation 2).

hash(t, n, x)→ h (2)
lookup(h)→ ao

Not only can we thus save the calculation of theAOp
value, but we can also save the very expensive clip-
ping calculations, since this can be computed in the
lookup table.

3.4.1 Naïve hash function

(t, n, x) consists of a total of 15 floating point val-
ues. The most simple solution would be to simply
use these values to create a hash. If we map each
of these values to only four bits, meaning they are
limited to only 16 values, we will still have 1615 =
1.1529215 ∗ 1018 values, which is obviously much
larger than any memory can hold.

3.4.2 Using spherical coordinates to map

A lot of the information in a naïve mapping would
however be redundant. First of all we can get rid of
x, and use (t − x, n) instead, since it does not mat-
ter where in the world a triangle is, the calculations
will be the same. Next, we may also transform the
triangle with n, which gives us (trans(t − x, n)), a
total of nine values. Further more, we may reduce
these nice values by projecting the triangle onto the
sphere and use spherical coordinates to describe the
triangle (which only requires two values per ver-
tex instead of three, since the radius is always one
when the triangle is projected onto the sphere). Fi-
nally, the z-rotation of the triangle is unimportant
so we may describe the values in reference to one
of the vertices, leaving us with only five values
(aθ, bθ, bϕ− aϕ, cθ, cϕ− aϕ) (where (a, b, c) is the ver-
tices of the triangle).

If we use one byte to store each ao value, and
map each of these floating point values to four bits,
then the map will be 1 ∗ 165 = 1048576byte = 1MB
large. Since 1D textures in directx only can be of
8192 texels in width, we use 3D textures, meaning
we have to do additional mapping from these five
floating point values to three integer values.

3.4.3 Performance evaluation and Conclusions

To do an early evaluation of the performance of this
technique, we implemented a pixel shader that per-
formed the lookup in an empty texture. The pixel
shader is outlined in figure 6.
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1. t′ = ToSphericalCoords(|t− x|)

2. n′ = ToSphericalCoords(n)

3. t′′ = Normalize(t′ − n′)

4. h =Map5FloatTo3Integer(t′′)

5. ao = LookupInTexture(AOTexture, h)

Figure 6: Pixel shader outline

Early measurements of this provided an perfor-
mance increase of around 20-30%, which we con-
sider low in relation to how complex the method is.

There are however alternative hashing
functions which may prove more efficient;
[Hr?dek et al., 2003] is one example.

3.5 Hard-limiting maximum number of
overdraws

The biggest bottleneck of the AOV algorithm is the
huge overdraw (around 10-20 times per pixel in av-
erage for many of our scenes). To counter this, a
simple solution is to hard-limit the number of over-
draws (by using for example the stencil buffer).

Implementing this is very straight forward, but,
as can be seen in Figure 7, the artifacts are very
large even at as large limits as 32 times overdraw
(for example, the chairs are under-shaded at n =
32). Moreover, we could not measure any significant
performance increase at all from this optimization,
which we believe is due to the fact that the algorithm
is heavily fillrate bound, meaning that even though
it might be able to skip some pixel calculations the
fillrate will still bottleneck the application.

3.6 SSAO using the AOp function

As mentioned earlier, the AOV algorithm is heavily
fillrate bound. The reason it is fillrate bound is be-
cause of the AO volumes used to identify pixels a
triangle can potentially shade. These volumes over-
lap each other a great number of times, and since
the results are blended together all of them have to
be drawn, which produces a high overdraw count.

Our idea is to turn the relation around; instead
of using volumes to identify pixels a triangle can
shade, we try to find triangles that can shade a pixel
for each pixel. This is inspired by the Screen Space

Ambient Occlusion algorithms such as the Crytek
SSAO [Mittring, 2007].

The algorithm can be outlined as follows:

1. Create a triangle buffer

2. Draw a fullscreen quad with the triangle buffer
as input. For each pixel find triangles from the
triangle buffer that can potentially shade it,
and calculate the shading using the AOp func-
tion.

3.6.1 Triangle buffer

The triangle buffer can be created by rendering the
geometry using forward-rendering, and in the ge-
ometry shader appending information to each ver-
tex as to which triangle it belongs to. We then output
this information in the pixel shader, either in three
targets (containing the three vertices of the triangle)
or compressing each vertex into one float value.

This operation is very fast and lightweight,
though it does scale with scene complexity.

3.6.2 Computing AO

We then proceed by drawing a fullscreen quad to
compute the AO term of each pixel. For each pixel
we sample a number of triangles from the triangle
buffer. These triangles are then used in the normal
AO algorithm, with the exception that we don’t need
to use the gp function.

3.6.3 Advantages and Limitations

The primary advantage with this method is that it
scales very well with scene complexity. The triangle
buffer creation is the only part of the algorithm that
is proportional to scene complexity.

The AO computation depends on three values;
the screen resolution, the number of samples and
the size of the kernel (since a larger kernel decreases
cache performance).

However, the major drawback with this method
is that it comes with a large constant factor; the pixel
shader of the AO computation is rather heavy since
we have to try to find the triangles that shade that
pixel.

We also have the problem of choosing a kernel.
Several kernels were tried out, amongst them a grid,
random sampling and a grid with each sample offset
with a random number, each of these scaled in size
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Figure 7: Overdraw with hard-limited number of maximum overdraws (n).

Figure 8: SSAO using the AOp function. Using a grid kernel with random offsets for each sample, scaled with the
depth of the pixel and the constant d. Notice that no matter the value of d the kernel cannot find the triangles under
the table (since we are sampling in screen space), and thus we will never have shading below the table.

by the distance of the pixel. All of these had trou-
bles finding appropriate sample spots (i.e. finding
the potential triangles that could shade this pixel).

Above all, the problem is finding triangles which
are not visible in screen space (as detailed in Fig-
ure 8). This could potentially be solved, at least
partially by, for example, techniques described in
[Bavoil and Sainz, 2009].

3.6.4 Conclusions

Although this technique has its advantages, the
drawbacks makes it in its current state practically
useless, as there exists various other SSAO tech-
niques that would be preferred.

3.7 Ambient Occlusion lookup table us-
ing circle-approximation

Due to the high amount of overdraw for Ambi-
ent Occlusion Volumes, reducing the complexity of
computations in the pixel shader is essential in or-
der to reach good frame rates. This approximation
technique utilizes pre-calculated values in order to
remove the occlusion calculations from the pixel
shader.

3.7.1 Main idea

The main idea behind this algorithm is to replace the
hemisphere-projected triangles found in the pixel
shader-stage of the original algorithm with circles of
the same area. By doing this the work that needs
to be done each frame is reduced to finding the cir-
cle approximation for each triangle processed in the
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pixel shader. The ambient occlusion can then be
found by doing a lookup in a pre-calculated table.

The pre-calculations performed finds the Ambi-
ent Occlusion values for different values of the posi-
tion angle θ and the circle size angle ψ and outputs
these to a texture.

3.7.2 Circle approximation (Pixel shader)

Starting out with a triangle P in worldspace coor-
dinates and a sphere around point ~x, the triangle
vertices are projected onto the sphere surface with
new coordinates A, B and C. By doing this before
finding the circle we do not have to take into account
the angle of P in regard to the sphere. We find the
circle radius by using the triangle area

Atriangle =
1
2 |B −A× C −A| = πr2 = Acircle

r =
√
( 1

2π |B −A× C −A|)

Figure 9: Circle approximation projected onto tangent
plane of ~x.

By finding the radius r and the triangle’s cen-
troid c, we get a circle in world space. This alone
is not very easy to work with since the AO-values
wanted needs to fit in a single texture. It is easier
to work with the circle projected onto the sphere
surface which can be represented using two angles
thanks to the ~x->circle vector being orthogonal to
the projected triangle plane.

φ = arctan r
|c|

θ = π
2 − arccos c·y

|c||y|

3.7.3 Finding occluded surface area (Pre-
calculated)

Given the sphere projected circle S(C) with circle
size angle φ we can find the amount of occlusion
cast by the approximation circle by projecting the
spherical segment surface onto the tangent plane of
~x. We thus eliminate the cosine weighted solid angle
by changing the integration domain.

AOC = 1
π

∫
S(C)

(ω̂ · n̂) dω̂ = 1
π

∫
T (S(C))

1 d~x

Finding the occlusion from here comes down to
finding the projected area in the tangent plane and
compare it to the unit circle area.

3.7.4 Performance

Running this algorithm showed time reductions of
20 − 60% depending on scene complexity and the
magnitude of the maximum obscurance distance δ.
As expected, the difference in performance is greater
for more complex scenes and bigger δ-values due to
a faster pixel shader program.

3.7.5 Conclusions

Figure 10: The results for this technique did not come out
very well.

Although the speed increase of this algorithm is
promising, especially for bigger scenes than the rel-
atively small ones used in these tests, the visual re-
sults were far from satisfactory as shown in figure
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10. The main purpose of the Ambient Occlusion Vol-
ume algorithm is to deliver results that are very close
to the ground truth and by making too hefty approx-
imations this purpose is easily lost.

3.7.6 Further work

Circles are not very good at approximating trian-
gles. Using eclipses instead would yield more accu-
rate results but is also slightly more computationally
heavy.

One such solution would be to store two angles
that determine the shape of the ellipse instead of one
as in the circle case. This is not the most accurate
solution as we still need another angle in order to
rotate the ellipse freely, but it could easily be repre-
sented by a 3D-texture.

3.8 Pre-calculated Volumes

A natural proposal for making the Ambient Occlu-
sion Volumes algorithm faster is to remove the ge-
ometry shader stage by pre-computing the occlusion
volumes for all rigid objects on the CPU.

Performance tests showed that this had no effect
at all when running on typical laptop GPUs with low
fillrates, but that it gave a significant boost in per-
formance on high performance GPUs. It also scales
very well with scene complexity if the application
can handle the increased memory usage of storing
all the extra data.

The visual quality of the images is equal to those
rendered by the original AOV algorithm since their
pixel shader function and the input it receives are
equal for both algorithms.
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4 PERFORMANCE EVALUATION

4 Performance Evaluation

This section provides results from benchmark
runs well as a discussion about the work as a whole.

All tests in this section have been run on an
NVIDIA Geforce GTX 260 GPU with an Intel Core
2 DUO E8500 clocked from 3.16 to 3.80 GHz and
4GB of physical memory on a Windows 7 64-bit sys-
tem. The languages of choice for all implementa-
tions were C# 3.5 and HLSL using DirectX 10 via the
SlimDX API. The most important hardware for all
techniques is the graphics card due to the high fill-
rate demands of most algorithms.

4.1 Results

All images supplied here were rendered using the
baseline algorithm. Only variants that produced re-
sults similar to the baseline with no major artifacts
are presented. All tests were run using a δ of 2 me-
ters with 1280x720 resolution. No frustum culling
or similar optimization techniques were used. Rele-
vant individual settings follow below.

• The limited overdraw method used a cap of 48
overdraws per pixel

• Upsampling used the 2x2 grid mentioned in
3.3.2

Each scene was tested by letting the camera fly
around the scene in a pre-determined manner so that
the results gave a good overview of the general per-
formance of the algorithm. The camera position and
rotation for each frame was set independent of ren-
dering performance which made the algorithms run
on equal terms.

The scenes presented below are:

• Baseline - The normal AOV algorithm as pre-
sented by McGuire.

• Baked shadows - Pre-calculated self-occlusion
as described in section 3.1.

• Upsampling (1/2) - Upsampling as described
in 3.3 using a render target texture of half the
width and height of the final resolution.

• Upsampling (1/4) - Like Upsampling (1/2),
but with quarter width and height render tar-
get texture.

• Limited overdraw - Hard-limiting maximum
number of overdraws as described in section
3.5.

• Pre-calculated volumes - Pre-calculated vol-
umes as described in section 3.8.
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4.1.1 Simple box

Figure 11: Simple box scene (14 triangles).

Technique Min. time Avg. time Max. time
Baseline 0.26 1.84 8.80
Upsampling (1/4) 0.52 1.57 5.47
Baked shadows 0.56 1.64 5.78
Pre-calculated volumes 0.32 1.94 11.61
Upsampling (1/2) 0.56 2.23 5.18
Limited overdraw 0.27 2.73 9.66

Table 1: Rendering times in milliseconds when rendering the scene in figure 11.
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4.1.2 Multiple boxes

Figure 12: Multiple boxes scene (278 triangles).

Technique Min. time Avg. time Max. time
Baseline 0.54 23.69 47.19
Upsampling (1/4) 1.18 4.04 7.83
Pre-calculated volumes 0.54 7.54 24.83
Upsampling (1/2) 1.27 11.2 19.59
Baked shadows 0.88 20.30 39.98
Limited overdraw 0.77 40.02 81.75

Table 2: Rendering times in milliseconds when rendering the scene in figure 12.
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4.1.3 Stairs

Figure 13: Stairs scene (120 triangles).

Technique Min. time Avg. time Max. time
Baseline 0.31 8.71 25.43
Pre-calculated volumes 0.24 1.76 13.75
Upsampling (1/4) 0.48 2.24 7.63
Upsampling (1/2) 0.5 4.93 10.31
Baked shadows 0.89 5.39 12.46
Limited overdraw 0.32 12.79 40.51

Table 3: Rendering times in milliseconds when rendering the scene in figure 13.
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4.1.4 Indoor scene

Figure 14: Indoors scene (3678 triangles).

Technique Min. time Avg. time Max. time
Baseline 3.46 66.46 93.93
Pre-calculated volumes 2.16 5.11 10.77
Upsampling (1/4) 2.77 10.36 16.06
Upsampling (1/2) 4.71 30.52 97.86
Baked shadows 4.41 61.93 81.53
Limited overdraw 3.50 130.00 163.41

Table 4: Rendering times in milliseconds when rendering the scene in figure 14.
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4.1.5 Sponza

Figure 15: Sponza scene (66454 triangles).

Technique Min. time Avg. time Max. time
Baseline 0.24 36.22 81.39
Baked shadows - - -
Upsampling (1/2) 0.45 20.63 41.86
Upsampling (1/4) 0.74 13.48 26.20
Limited overdraw 0.31 60.55 139.94
Pre-calculated volumes - - -

Table 5: Rendering times in milliseconds when rendering the scene in figure 15.

This scene was too heavy to load for the pre-calculated shadows method and, due to a problem with the
model, the scene would unfortunately not load for the pre-calculated volumes method either.
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4.1.6 Summary

Technique Box Multiple Boxes Staircase
Baseline 0.26 / 1.84 / 8.8 0.54 / 23.69 / 47.19 0.31 / 8.71 / 25.43
Baked shadows 0.56 / 1.64 / 5.78 0.88 / 20.3 / 39.98 0.89 / 5.39 / 12.46
Upsampling (1/2) 0.56 / 2.23 / 5.18 1.27 / 11.20 / 19.59 0.50 / 4.93 / 10.31
Upsampling (1/4) 0.52 / 1.57 / 5.47 1.18 / 4.04 / 7.83 0.48 / 2.24 / 7.63
Limited overdraw 0.27 / 2.73 / 9.66 0.77 / 40.02 / 81.75 0.32 / 12.79 / 40.51
Pre-calc volumes 0.32 / 1.94 / 11.61 0.54 / 7.54 / 24.83 0.24 / 1.76 / 13.75

Technique Indoor Sponza
Baseline 3.46 / 66.46 / 93.93 0.24 / 36.22 / 81.39
Baked shadows 4.41 / 61.93 / 81.53 -
Upsampling (1/2) 4.71 / 30.52 / 97.86 0.45 / 20.63 / 41.86
Upsampling (1/4) 2.77 / 10.36 / 16.06 0.74 / 13.48 / 26.20
Limited overdraw 3.50 / 130.00 / 163.41 0.31 / 60.55 / 139.94
Pre-calc volumes 2.16 / 5.11 / 10.77 -

Table 6: Comparison of time (milliseconds) required to run the benchmark test for the different scenes used in this
performance evaluation.

Based on the above results we can see that all
variations perform at least slightly better than the
baseline in terms of speed except one, limited over-
draw. The maximum number of allowed overdraws
needed to be quite high which made the possible
gains from the algorithm lose out to its overheads.

Upsampling with 1/4 dimensions on the AOV
render target (1/16th of the original area) looks quite
cluttered when moving around most scenes, while
the 1/2 one fared much better. They both scale
pretty well with scene complexity, which makes
them viable candidates for real applications.

An algorithm that scaled very well with scene
complexity was pre-calculated volumes. Unlike up-
sampling, however, there is no gain whatsoever
from running this algorithm on a GPU with a low
fillrate as this quite easily becomes the bottleneck.
The resulting image is equal to the one produced by
the baseline algorithm.

Baked shadows ran slightly faster than the base-
line algorithm, but there was a noticeable drop in
shadow quality. This, bundled with the complexity
of implementation, makes it hardly worth the effort.

4.2 Discussion

The AOV algorithm has many benefits and is cer-
tainly revolutionary in its target area, accurate im-

ages at interactive rates. That being said, it still suf-
fers from a few issues such as the high dependency
on fillrate and the difficulty in finding a good size
on δ. Nevertheless, it is a good thing that it relies so
heavily on the GPU since this area currently is ad-
vancing at a fast pace, which might mean the algo-
rithm could be used for games in a couple of years.

Being an analytic solution it ensures precise and
smooth results with little artifacts. The algorithm
does not have any problems dealing with non-
rigid objects either which makes it good for 3D-
modelling, which is its main target application.

This thesis covers a variety of propositions for
improvements; some mentioned by McGuire in his
paper and some that was formed during this thesis
work. The most applicable ones of those presented
in this paper seems to be pre-calculated volumes and
upsampling, both coming with their share of down-
sides and both presented in the original paper. The
first can become a bit heavy on memory usage, while
the second skimps on image quality.

None of the fresh attempts at improving the algo-
rithm were able to make it all the way, though some
were cutting it close. It is possible that some might
end up with better results with slight modifications,
but there was not enough time allotted in this thesis
work for further exploration.
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5 Conclusions

5.1 Future work

There are still some features and variants that are yet
to be explored. Some are mentioned in the original
paper by McGuire, but were not used in the tests of
this report.

The best way to improve the algorithm seems to
be to limit the amount of rasterized pixels, so that
as few unnecessary computations are carried out
as possible. One way make the occlusion volumes
tighter is to implement a dynamic δ that varies based
on the surrounding geometry and the polygon size.
However, such an implementation is non-trivial.

The original paper uses a 1D-texture compen-
sation map to mitigate the overshadowing effects
that can occur in geometrically dense areas. Doing
this can increase the visual results with little perfor-
mance overhead.

Another method mentioned by McGuire is to
represent the geometry with quads instead of trian-

gles. According to the paper this resulted in a notice-
able speedup. Unfortunately, the OpenGL and Di-
rectX geometry shaders are unable to output quadri-
lateral lists which complicates the implementation.

5.2 Conclusion

This thesis examines the Ambient Occlusion Vol-
umes algorithm and presents several attempts of im-
proving it. No better solutions than what was pre-
sented in the original paper were found, but the re-
alized attempts might provide useful information or
spring new ideas to others exploring the same area.

The algorithm is currently not sufficient for
modern games, it fulfills the requirements of 3D-
modelling which is the intended usage. Neverthe-
less, due to the current fast advances in GPU perfor-
mance, it is far from impossible that we will be see-
ing the algorithm used in games a few years from
now.
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