
  

 
     
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Ray tracing fully implemented on  
programmable graphics hardware 
 
 
 
 
 
Filip Karlsson  
 
Carl Johan Ljungstedt 
 
 
Master’s Thesis 
Programme in Computer Science and Engineering 
CHALMERS UNIVERSITY OF TECHNOLOGY 
Department of Computer Engineering 
Göteborg 2004 



i 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Innehållet I detta häfte är skyddat enligt Lagen om upphovsrätt, 1960:729 och får inte 
reproduceras eller spridas i någon form utan medgivande av författarna. Förbudet gäller hela 
verket såväl som delar av verket och inkluderar lagring i elektroniska och magnetiska media, 
visning på bildskärm samt bandupptagning. 
 
© Filip Karlsson, Carl Johan Ljungstedt, Göteborg 2004 



ii 

Abstract 
Modern graphics cards are rapidly increasing in computational power and the amount of 
memory available. Still this computational power is rarely used for anything else than 3D-
games and modelling. 
This thesis investigates how to implement a ray tracer that executes all of its image rendering 
operations on a graphics card using pixel shaders and vertex shaders and to compare the 
performance of this implementation to standard ray tracer. 
Implementing general purpose programs for graphics hardware is not trivial because GPU:s 
have large limitations compared to ordinary CPU:s. Recursion and loops with too many 
iteration can not be used and there is also the problem of storing data in texture memory. 
It will be shown how many of the programming limitations can be worked around and how 
texture memory can be used to store data needed for the computations. 
This thesis will also show how a proximity cloud algorithm can increase performance 
compared to standard grid traversal when ray tracing on graphics hardware, but still none of 
the implementations have been able to achieve better performance than 3D-studio’s ray tracer, 
“Mental Ray”.  
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Sammanfattning 
Moderna grafikkorts beräkningskraft och dess storlek på texture minnet ökar hela tiden, men 
fortfarande används sällan grafikkortens beräkningsmöjligheter till annat än 3D-spel eller 
modelering. 
Detta examensarbete undersöker hur man kan implementera en ray tracer, som utför alla sina 
renderingsberäkningar på ett grafikkort, med pixel- och vertex shaders för att sedan jämföra 
denna implementation med med befintliga ray tracer. 
Att implemetera generella program mot grafikhårdvara är inte trivialt, på grund av att GPU:n 
har mycket större begräsningar jämfört med en vanlig CPU. Anvädningen av rekursion och 
loopar med för många interationer kan inte implementeras och det finns även problem när det 
gäller att lagra data i texturminnet. 
Det kommer att visa sig i detta examensarbete hur många av dessa 
programmeringsbergränsningar kan kringgås och hur texturminnet kan användas för att lagra 
den data som behövs för att utföra beräkningarna i en ray tracer. 
Förutom detta visar vi även hur proximity-cloud algoritmen kan ger ökad prestanda jämfört 
mot standard grid traversering vid ray tracing på grafikhårdvara. Dock lyckas ingen av 
implementationerna uppnå högre prestanda än 3D-studios ray tracer ”Mental Ray”. 
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1 Introduction 
The fast development of graphics cards has given us cards whose computational power is 
equal to or surpasses that of modern CPU:s. It can be argued that modern GPU:s with up to 16 
pipelines are a lot more powerful than modern CPU:s but since the types of data that can be 
processed and output by GPU:s is very restricted it is hard to compare the two.  
On a modern computer the graphics card often stand for a large portion of the total cost. Yet 
graphics cards are usually not used in any other applications than games or 3D-modelling 
tools [11].  
Because modern cards are highly programmable there is little reason not to use the 
computational power of the graphics card for other applications. For example the latest 
“graphics processing unit” (GPU) from Nvidia, has up to 16 parallel pipelines that are each 
able to execute a program of more than 65 000 instructions at a speed of up to 450 MHz. 
What we have done in this project is to investigate how to implement a complete ray tracer 
using pixel shaders and vertex shaders. 
During this project we have implemented a ray tracer that runs on a GeForce 6800 GT. 
Graphics algorithms are very suitable for implementing on GPUs because they usually 
consists of doing similar calculations a large number of times, for example calculate the 
colour of each pixel. Many of the fundamental mathematical functions that are needed are 
also implemented directly in hardware which allows for high performance. 
Because a GPU is a form of stream processor, programs or part of programs that need to 
perform similar operations on a large number of elements are probably suitable for 
implementation on the graphics card. 
Our goal with this project was to implement a complete ray tracer on a GeForce 6800 that 
would be able to render scenes with up to 1 million triangles, which we have also succeeded 
in doing. 
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2 Problem statement 
Today normal ray tracers are implemented like any other program. It uses only the CPU and 
the internal memory, and can easily render models that have more than 1 000 000 polygons.  
 
The goals of this thesis have been to implement a ray tracer that executes all of its image 
rendering operations on a graphics card and to se how this implementation performs 
compared to standard ray tracers.   
 

2.1 Utilizing GPU computational power 
For 3D-animators rendering times are a big problem. The animated movie Shrek 2 for 
example required approximately 10 million computer hours for the final rendering [13]. 
Therefore is it interesting for us to se how much of the ray tracing algorithm that can be 
implement on programmable graphics hardware to see how much you can decrease the load 
on the CPU and use the power of the GPU instead. For 3d-animation studios even a small 
improvement in rendering time can greatly decrease the cost and time to produce a movie. 
 

2.2 Input Data 
The only efficient way of accessing information in large amounts of stored data required for 
the ray tracing calculations is to use the texture memory of the graphics card. Therefore it is 
important to investigate how data such as vertex points, vertex normal, rays and grid traversal 
data can be stored in texture memory without loosing precision and, because high detailed 
models might require millions of vertex points to be stored, without allocating unnecessary 
amounts of texture memory.  
 

2.3 Data structure and traversal algorithms 
To speed up a ray tracer different types of accelerations algorithms i.e. different types of data 
structures, are often used. In this implementations a grid structure that divides the scene in to 
voxels will be used, but what will be the fastest way to traverse this grid, to use the standard 
way or to use a different algorithm i.e. proximity clouds [12]? 
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3 Previous work 
Ray tracing that only uses the CPU have been around for a long time and the algorithm is well 
known and has been implemented by thousands. The classic algorithm has been modified 
many times and to day you can easily render models that contain millions of polygons and 
new methods that improve ray tracing is developed all the time. Therefore the idea to use the 
GPU to ray trace models is a natural step for improving it. The idea is not completely new and 
there have been various papers on the subject of what way would be the best to solve this 
problem. 
 
The paper on The Ray Engine [2] proposes an idea to reconfigure the geometry engine to a 
ray engine. The idea is to put the heavy computation of ray-triangle intersection test on to the 
graphics card by using textures that holds the model and ray data and then use a pixel shader 
to compute the intersection test. This implementation sounds good except that the result from 
the ray engine are read back on to the AGP bus. This can still be a bottleneck.  
 
Another idea that has emerged is to view the graphics hardware as a streaming processor and 
to use it to implement a ray tracer. To use this idea the graphics card and its shader must 
support branching. As one paper [3] presents this has given good results but this was only a 
simulation of a streaming processor. At the time when the thesis was presented there were no 
graphics cards that supported the necessary instructors needed. 
 
There is also a paper on GPU-based nonlinear ray tracing [4]. This solution claims to have 
succeed in implementing a non linear ray tracer without read back to the AGP bus. However 
we have found no evidence of any actual ray tracing in the report. The solution seems to be 
more of a ray caster for curved rays described by differential equations and no classical ray 
tracing effects such as reflection and refraction seem to be implemented.    
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4 Graphics hardware 

4.1 Programming limitations 
There are a lot of problems when programming for graphics card as opposed to ordinary 
programming for CPU:s. Even modern graphics cards do not allow recursive calls and they 
have limitations on how many instruction that can be executed in a single pass as well as 
limited depths for if statements and limited iterations in loops. 
For this project an Nvidia GeForce 6800 GT with 128 Mb of memory has been used [5]. This 
has given some advantages from using earlier cards from the GeForce FX-series [6]. 
The GeForce 6800 GPU supports the shader model 3.0 [10], which allows us to do 
conditional branching and execute pixel programs of up to 65 000 instructions.  
Another limitation with using graphics cards is the AGP-bus. Although it is very fast at 
transferring data to the graphics card it is slow at reading data back to the CPU which must be 
taken into consideration. However this problem can be solved by using PCI-Express [7] cards 
instead. 
 
 

4.2 Advantages 
The main advantage with using graphics card for programs other than games and  
3D-modelling is of course that the CPU could be used for other things during the execution of 
the shader programs. In our implementation however this is not the case because the CPU is 
busy running a display loop. It would probably be advisable to use a multithread 
implementation to be able to utilize the CPU while the graphics card is busy. 
Parallelism will be high because modern GPU:s have a large number pixel-pipelines that are 
executed in parallel, e.g. the GeForce 6800 that has 16 pipelines which makes it very suitable 
for applications such as ray tracing that need to perform a large number of similar 
calculations.  
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5 Data structures / Texture memory management 
Before we can start rendering an image we need to transfer all the information needed to the 
texture memory of the graphics card. In practice this means that all the information about 
rays, positions, meshes, lights, materials, textures, normals and grid traversal must be 
organized into two-dimensional float-arrays that can then be stored in texture memory, by 
using for example OpenGL's glTexImage2D. The reasons that we use 2D-textures for storing 
data are that we are able to use the texture-coordinates from the vertex-pipeline for some of 
the texture-lookups required during the execution. 
 
Depending on what type of information we want to store in the texture memory we must use 
different types of memory data structure. 
 

5.1 Grid data structure  
To speed up the ray-triangle intersection test a 
uniform grid structure has been used. In our 
implementation the grid size and also the 
number of voxels can be varied in every 
dimension, in the range from 22 to 28. This is 
used because the grid can then be built 
recursively instead of linearly. 
Two variations of the grid structure have been 
implemented, 1) one normal [8] and, 2) one 
that builds a proximity cloud [12].  
A proximity cloud is equal to a normal grid 
with the difference that when the grid has 
been built every voxel is processed and given 
a value that corresponds to the distance, in 
voxels, to the nearest voxel that contains 
polygons, see Fig.1. These values can then be 
used to skip empty voxels when traversing the 
grid. 
 

Bild på prox cloud 
Figure X 

Fig.1 shows an example of a proximity cloud in 
2-dimensions. 
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5.2 Scene texture structure 
A scene will be stored on the graphics card in different textures. This is done to get good 
access to every voxel and its meshes. The concept is to first store the mesh information, 
coordinates, normals, texture coordinates and materials in textures.  
Fig 2 shows a graphical representation of some of the information stored in textures. 
 
 

 
 
 
 
 
All data concerning rays are stored in textures with the same dimensions as the final picture. 
This makes it possible to make use of the texture coordinates provided by the rasterizer. 
For data concerning the mesh it is a bit more complicated. Grid, triangle and vertex data are 
stored in large textures for which texture coordinates must be calculated during execution of 
the pixel shaders.  
 
The grid, triangles and vertex data are represented 
as described in Fig.3. Voxels contain only a 
pointer to the index of the first triangle it contains 
and triangles contain a pointer to the index of the 
vertex points that describes the triangle. These 
index values are used as in-data for calculating 
texture coordinates and values are fetched using 
texture lookups.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Left: The texture for the generated eye-rays. 
          Middle: The texture holding information for grid traversal. 
          Right: A texture representing part of the mesh.  

Fig.3 A scheme showing how information for 
grid, triangles and vertices are stored. 
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6 Algorithm 
Because there is no support for recursive functions on any graphics cards today we have been 
forced to develop an iterative ray tracing algorithm. Our algorithm is a multipass algorithm 
that runs each shader program several times. Because the number of instructions that can be 
executed in a shader program is limited we have divided the algorithm into three separate 
programs, intersection calculations, grid traversal and shading. We also have a fourth program 
that display the partial results but this is not necessary and could also be replaced with 
OpenGL’s texture2D and will not be explained further in this text. 
 

6.1 Setup 
By setting up a single square polygon in OpenGL and positioning the viewport and camera so 
that the polygon exactly fills the entire screen we are able to store eye rays, ray start positions 
and so on in textures with the exact same resolution as the screen and then use the texture 
coordinates produced by the vertex shader to access a single ray every time a pixel shader 
program is executed. This is because the size of a single pixel is the same size as a single texel 
in for example the ray texture. 
Before any rendering can be done all the information about the scene, grid and initial values 
for the rays must be processed by the CPU and stored in textures on the graphics card. 
The single square polygon is then rendered using OpenGL which will cause the pixel shader 
programs to be executed once per ray.  
 

6.2 Execution 

6.2.1 Intersection tests 
First, every ray is tested for intersection against the triangles in the ray’s current voxel in the 
grid. Intersection testing is done using the “Moller-Trumbore ray-triangle intersection test” 
[9]. If an intersection is found within the voxel, the triangle index and information about the 
point of intersection are stored in a separate texture to be accessed in later steps of the 
algorithm. 
 

6.2.2 Grid traversal 
If an intersection is not found in the previous step the ray will be traversed through the grid to 
the next voxel it intersects in the grid. Depending on whether standard grid traversal or 
proximity cloud is used, the next voxel will be either the nearest next voxel or the voxel at the 
distance implied by the proximity value. 
If an intersection has been found, no grid traversal is done because a new ray will have to be 
spawned with its starting point in this voxel. 
Last, the current voxel indices are stored in a separate texture. 
 

6.2.3 Shading 
The third step uses “multiple render targets” (MRT) to output values into four separate buffers 
that are then stored in textures. 
If an intersection has been found, the pixel is shaded using the hit point on the ray, light 
position and material, texture and normals of the hit triangle. The calculated colour is then 
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blended with the colour calculated in previous steps to be able to produce the reflection and 
refraction effects. The colour value of the pixel is written to a buffer and the previously 
calculated colour texture is overwritten. 
If the hit triangle is not diffuse and the maximum reflection depth has not been reached, a new 
ray is calculated and written to two separate buffers. The previous ray direction and ray start 
position textures are then overwritten. Also one texture with data for grid traversal is 
overwritten.  
 

6.2.4 Iteration 
These three steps are executed repeatedly until all rays have been reflected out of the grid, 
have hit a diffuse object or the maximum reflection depth has been reached. 
The texture containing the temporary colour values of the pixel will now be the finished 
image and can be used to texture the screen filling polygon to produce the final result. 
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7 Results / Discussion 
To test the efficiency of our different implementations vi have made a number of test 
renderings on 7 test scenes consisting of between 1792 and 328192 polygons. We have 
measured rendering times for the standard grid traversal and proximity cloud implementations 
for different image resolutions. To put our times in perspective we have also done time 
measurements on the same scenes and resolutions using 3d studio max’s standard renderer 
“mental ray”. 
The test scenes are shown below in fig.4.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

                  Scene 1   Scene 2            Scene 3 

                  Scene 4    Scene 5             Scene 6 

                    Scene 7 

Fig.4 Showing the seven test scenes used in the rendering time measurements. 
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7.1 Performance tests 
The times measured do not include time for preparing data structures or readbacks from the 
graphics card. This is because 3d studio max can build it’s data structures while the scenes is 
being created and because readback times can be greatly reduced through the use of different 
hardware like PCI-Express. 
Fig 5-7 present the results of the time measurements. 
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Fig.5 Rendering times for the seven test scenes with an image resolution of 256x256 pixels. 



11 

512x512 pixels

0

5

10

15

20

25

30

35

1792 7232 15872 26112 36352 143872 328192

polygons

tim
e 

(s
ec

) GPU standrad grid

GPU proximity cloud

3D studio

 
 
 
 
 
 

1024x1024 pixels

0

20

40

60

80

100

120

1792 7232 15872 26112 36352 143872 328192

polygons

tim
e 

(s
ec

) GPU standrad grid

GPU proximity cloud

3D studio

 
 

Fig.6 Rendering times for the seven test scenes with an image resolution of 512x512 pixels. 

Fig.7 Rendering times for the seven test scenes with an image resolution of 1024x1024 pixels. 
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As we can se from Fig. 5-7 a significant reduction in rendering times is achieved with the 
proximity cloud implementation over the standard grid traversal in scenes with more than 
about 40 000 polygons. This is probably mostly because these scenes require a grid with high 
resolution which causes the standard grid traversal algorithm to do a lot more iterations than 
the proximity cloud algorithm. For the scenes with more than 36 352 polygons a grid of 
128x128x128 voxels have been used. These scenes have a maximum proximity distance of 63 
voxels which means that there is at least one voxel in the grid from which the proximity cloud 
algorithm can traverse at least 63 voxels in any direction. The maximum proximity distance 
might not be a very good measurement because it is also very important to know how many 
voxels in the scene that have a large proximity distance but it can at least give us a hint about 
when the proximity cloud can give us an increase in performance. For the scene with 36 352 
polygons we do not get any noticeable advantage with proximity clouds. For this scene a grid 
of  64x64x64 voxels was used with a maximum proximity distance of 32 voxel which leads us 
to the conclusion that for this scene we need a maximum proximity distance of more than 32 
voxels  to get any performance increase with the proximity cloud algorithm. 
 

7.2 Advantages of proximity clouds      
The sparser a scene is the more apparent the advantage of the proximity cloud becomes. In 
sparse scenes large areas of the grid can be skipped in a single iteration which gives 
significantly better rendering times with proximity clouds compared to standard grid traversal. 
To show this we have done a measurement on a single sparse scene, see Fig. 9. The results are 
presented in Fig. 8 below. 
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For this test rendering a grid of 32x32x32 voxels was used with a maximum proximity 
distance of 24 voxels and still the proximity cloud implementation has about a 37% lower 

Fig.8 Rendering times for a single sparse test scene with an image resolution of 1024x1024 pixels. 
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rendering time than the standard grid traversal. Although the maximum proximity distance is 
only 24 voxels for this scene we most likely have a large amount of voxels with more than 20 
voxels in proximity distance which gives this large performance increase. If the same scene is 
rendered with a grid of 128x128x128 voxels we get a maximum proximity distance of 96 
voxels and a performance increase of more than 50%. 
Although the time for the proximity cloud is much lower it is still far from the 3d studio 
rendering time which shows that a uniform grid probably isn’t a very good data structure for 
these types of scenes at all.  
For dense scenes the proximity cloud will not give any increase in performance and might 
even perform a bit worse than the standard grid traversal because the shader code for 
proximity cloud traversal is slightly more complex. The standard grid traversal algorithm 
computes 2-3 lines of code per iteration while our proximity cloud implementation needs to 
compute 8 lines of code that includes 2 divisions. 
  

Fig.9 The test scene for the  
proximity cloud test. 
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8 Future work 
We have presented a fast GPU implementation of a ray tracer but there are still more features 
to add to it, for instance shadows and reflecting refractions. This feature will demand the 
possibility to generate more than one new ray at intersection points but this would demand 
more memory because these rays must be stored. Shadows can be achieved by adding another 
rending pass to our implementation but it would not be correct shadows because the shadows 
would not be reflected. 
 
In this implementation we use the ATI predefinition use of buffer reading, atiDrawbuffers. 
This instruction has given us some limits on the size of the buffers we can use and therefore 
we would like to see if there is a way to circumvent the use of it in the future. 
 
A problem with the proximity cloud algorithm is that only one proximity value per voxel is 
calculated. This value is the minimum number of voxels to the nearest voxel that contains 
polygons but does not take into account the direction of the ray. One possibility to increase 
performance would be to calculate proximity values for every positive and negative axis of 
the grid. This would allow for better accuracy when skipping empty voxels [14]. 
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9 Conclusion 
The work on this thesis has definitely given us great insights to how graphics card 
programming works. We are very pleased with the results we have acquired as far as 
answering our problem statements is concerned. However using the graphics card as an extra 
processor for running programs might not yet be fully appropriate for mainstream programs. 
What we have learned during our work is that it is definitely possible to write many types of 
programs for graphics cards but since there is no real standard for how the code will be 
executed this might not always be the best idea. Code execution is dependent on what driver 
and hardware is being used and the performance might change simply because the graphics 
card driver is updated. This poses obvious concerns with security and functionality of 
programs since a program can only be guaranteed to run properly when run on a computer 
with the exact same hardware and driver configuration. This is a major problem that will have 
to be addressed by the graphics card manufacturers before their cards might be used in a more 
wide area of applications. 
 
Although it has taken a lot of work to get our ray tracer up and running the final result is great 
success. Not only have we been able to show that it is possible to implement a ray tracer 
algorithm fully on a modern graphics card we have also been able to show that using 
proximity clouds for grid traversal can greatly enhance. 
So far we have not been able to acquire rendering times that compete with established ray 
tracers like mental ray but then again this has never been the objective of this thesis. Writing 
fast ray tracers with the help of graphics hardware is something that we believe is definitely 
possible though. A good idea is probably to use the graphics card only for some parts of the 
rendering like for example intersection tests and shading and letting the CPU take care of the 
traversal of data structures and such.
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Appendix A: Screenshots 

 
 
 
 
 
 
 
 
 
 
 
 

Our first raycasted triangle 
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Or first model from a 3ds-file, 20 polygons. 
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A face, about 2000 polygons 
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Face again but this time with interpolated normals and materials. 
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One of our first correctly ray traced images. 
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Glass statue with about 45000 polygons. 
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Happy Buddha, more than 1 000 000 polygons! 


