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Abstract

This thesis focuses on the interaction between light sources and mate-
rials which is often called shading. It describes the design of the shading
system implemented for the second version of the Turtle renderer that sup-
ports the flexibility and power of the Maya rendering packages shaders. It
discusses different approaches to shading, how rendering of passes can be
incorporated, multi threading issues and problems with secondary rays in
shading systems.

1 Introduction

1.1 Background

Computer generated images and animations are getting more and more com-
mon. It is used in many different contexts such as movies, commercial, medical
visualization, architectural visualization and CAD. Advanced ways of describing
surface and light source properties are important to ensure artists are able to
create realistic and stylish looking images. Even when using advanced rendering
algorithms such as ray tracing, shading may contribute with a large part of the
image creation time. Therefore both performance and flexibility is important
in a shading system.

1.2 Organization of the Thesis
The thesis is divided into the following parts

e Background
Describing the context the shading system is going to be used in. Peo-
ple already familiar with different rendering architectures and shading in
general can skip the rest of this section.

e Previous Work
Previous approaches to shading are described briefly.



e Design Aspects
Discussion of the previous work, external requirements, properties and
problematic aspects of shaders.

e Implementation
Details on the system design and implementation.

e Conclusions and Future Work
Here the results, possible improvements and ideas for future work pre-
sented.

1.3 The Rendering Equation

The rendering equation was introduced by Kajia[l] and describes how light
is transported between surfaces. Most rendering with some kind of physical
plausibility are possible to express with this equation, however in most methods
approximations and simplifications are used in order to gain performance and
stability. The equation looks like (this formulation is taken from[2])

Lz —0©) =
L.(z — 0) +/ fr(z, ¥ — Q)L(x — ¥)cos(Ng, ¥)dwy
Qp

Where z is the point where the light is computed, © is the direction towards
the viewer, ¥ the direction towards the light contribution NV, is the normal at
the point x, 2 is the hemisphere over the point = centred in the normal.

L(x — Q) represents the radiance[2] transported from point x in the direction €.
L.(z — ©) is the emitted radiance from point z in direction ©. f.(z,¥ — Q)
is the Bidirectional reflectance distribution function (BRDF see 1.3.1) for the
point z with the view direction §2 and light direction V.

The rendering equation says that the outgoing light from a point in a certain
direction is the integral of all incoming light in the hemisphere multiplied by the
BRDF for the outgoing light and the incoming light direction multiplied with
cosine of the angle between the normal of the point and the direction towards
the light contribution. This is a very brief description, for more information
look at[2] or[1].

Rendering an image can be thought of as evaluating radiance reflected towards
a virtual image plane from a set of objects reflecting and emitting lights.

1.3.1 BRDF

The BRDF is a function of light direction, view direction and wavelength that
describes how a surface reflects lights. Typical examples of BRDF’s:

e Perfect reflection, where the BRDF is 1 for the view direction and the
reflection of the view direction, and 0 for all other pairs of incoming and
outgoing directions.



e Diffuse, where all pairs of light and view directions have the same value.

To model reality accurately, BRDF’s more complex than this are needed.
More advanced models are described in section 1.5.2. The wavelength depen-
dency gives the ability to let light of different wavelengths be distributed differ-
ently. A diffuse red wall will only reflect light in the red part of the spectrum and
absorb the rest of the light. For the sake of simplicity most computer graphics
applications treats colors as triples of red, green and blue light (usually referred
to as RGB colors) rather than wavelengths. This however cannot capture all
effects. This simplification is described in[3]. As an example of the incomplete-
ness of the model, yellow light may be light in the yellow spectrum or a mix of
red and green light, the eye cannot tell the difference. If simulating dispersion
in a prism, this light would behave differently depending on if it is a mix or not.

1.4 The Rendering Pipeline

A rendering pipeline is a method of transforming a conceptual 3d world into
an image. There are many different ways of doing this, but a shading system
is an important part of all of them. A well designed shading system should
be disconnected from the rest of the renderer as much as possible to make it
possible to use it in many different rendering pipelines.

1.4.1 Shading

Shading is a wide expression. The word shading implies light calculation but
it’s nowadays being used not only for lighting but all customizable parts of a
rendering pipeline. Typical “shadable” parts of a rendering pipeline are

e Material Types

Light Sources

e Camera Models

e Volume Properties

e Geometry Displacement

This project is focused on light calculations and material descriptions, which are
the most commonly “shadable” part in a rendering pipeline. Material shaders
tends to work on surface fragments, which are infinitely small surfaces with
properties such as position in the world, a normal, etc. By using these properties,
it is possible to calculate how light is transported.

Shading is an expensive part of rendering, Wald identified it as the biggest
individual bottleneck in his high performance renderer[5].



Figure 1: Whitted Style Raytracing Overview

1.4.2 Raytracing

Raytracing[6] is a general way to render images. The original raytracer created
by Whitted works by tracing rays from a virtual image plane, through a pinhole
camera into the world of 3d objects (see figure 1). The closest intersection point
is used as input to a shading calculation. Depending on the surface properties
and light configuration, the shader recursively generates “secondary rays” to
sample reflections, refractions and making light sources cast shadows.

A more advanced version is distributed raytracing[7] which traces multiple rays
to handle features such as motion blur, soft shadows and depth of field. The
algorithm has also been extended to handle full global illumination[1]

It’s a general and elegant solution to rendering but is traditionally considered
computationally expensive. Much of its power lies in the fact that the only way
to access the geometry is through the simple ray intersection operation that can
be used both for primary and secondary effects.

1.4.3 Scanline Rendering

Scanline rendering is a rough categorisation of rendering algorithms working in
the opposite direction of ray tracing. Rather than asking the question of which
object is visible on a pixel it asks the question of which pixels an object covers.
There are a lot of different flavours and techniques for scanline rendering, for
instance the REYES architecture[8] and most graphics hardware. Objects are
rasterized on the screen using a perspective transform that mimics a camera.
The generated fragments are then shaded.

Compared to ray tracing rasterization is often fast in simple situations but sec-
ondary effects like reflections and refractions are difficult to handle. Generally
it is done using pre generated images (environment maps[9]). However these
approximations are giving incorrect results. More advanced scanline renderers
are hybrid renderers supporting ray tracing for this kind of effects. When ren-



dering scenes with global illumination (see 1.5.2), only a small percentage of the
rendering time is spent on calculation direct light for points directly visible to
the camera and therefore the performance difference between scanline renderers
and raytracers are decreasing.

1.5 Lighting
1.5.1 Traditional Lighting

Lighting a surface fragment in a traditional setup is done by evaluating the light
emitted and reflected towards the viewer from all non shadowed light sources for
the surface fragment. The OpenGL rendering pipeline uses a similar approach.
This kind of lighting suffers from the fact that only light reflected directly from
the light source to the viewer is considered. Indirect light bounces, such as light
reflected on a mirror to the fragment being lit, is left out.

1.5.2 Global Illumination

More complete solutions to the rendering equation considers indirect light, such
as caustics from reflective and refractive materials and light bouncing off diffuse
surfaces. Typical algorithms that handle this or parts of it are path tracing[1],
radiosity[10] and photon mapping[11].

Path tracing and derivations from it, such as bidirectional path tracing[12] and
Metropolis light transport[13], are interesting algorithms since they are unbi-
ased and handle all light contributions. An unbiased renderer is one that given
enough rendering time, will actually converge to the correct solution of the ren-
dering equation for the image. The errors shows up as noise in the image. The
problem with these algorithms is that they are generally very slow and produces
noisy results.

Radiosity[10] is a way to handle diffuse interreflections between surfaces in a
noise free way. It works by subdividing the geometry into patches and calculate
how much light is transported between the patches. A variation of this algo-
rithm is final gathering[14] which samples irradiance at points in an irradiance
cache. This cache is then used to look up nearby irradiance values to interpo-
late a reasonable irradiance value. This algorithm has the nice property that it
doesn’t have to subdivide or in any way modify the geometry while rendering,
making it is easy to integrate in a raytracing framework.

Photon mapping[15] is an algorithm that handles all light contributions by emit-
ting “photons” from light sources and letting them bounce in the scene. The
“photons” are saved in a three dimensional data structure called photon map.
Calculating light for a point is done by looking up photons in the vicinity of
the point and weighting them to compute the influence. Photon mapping sup-
ports all illumination effects, but generally it is used in combination with a
traditional lighting setup that calculates the direct light and photon mapping
for the indirect light. It may also be used together with a final gather solution
that handles the first bounce of indirect light and letting photons contribute



with longer diffuse light paths. It can also handle caustics but it is often done
separately from the diffuse inter-reflection photon map since the requirements
for caustic photon mapping is quite different.

1.5.3 Material Models

Looking at the rendering equation, the BRDF part of the equation describes
the material properties. This is a function of the of viewing direction, incom-
ing light direction and wavelength. There are many representations for this
function available. Some are based on intuition such as the Phong model[16].
The Cook and Torrance model[17] is based on micro-facet theory. There are
also techniques to measure BRDF’s[18] of materials to accurately capture their
properties. For a more complete description of different approaches see[19)].

It may seem inappropriate not to use a measured material, but the non mea-
sured models are still much more popular. Among the reasons are performance,
tweakability and the fact that they nicely separate different light contributions.
A measured BRDF has no natural parameters to tweak to change the color or
the roughness of the material.

The fact that the mathematical models tend to separate specular and diffuse
components is not only convenient when tweaking the shader but also opens
opportunities for using different approaches for specular and diffuse aspects of
global illumination. It also makes it possible to divide light contributions into
separate passes (see section 1.5.6) which gives artists the ability to post process
calculations to make features such as reflections more or less visible without
having to rerender the image. When using more physically accurate rendering
methods and material models, it is generally difficult to tell what is a reflection,
a specular highlight or diffuse light which makes the render pass separation
much harder.

1.5.4 Surface Shaders

A surface material is often not identical for an entire object. This means that
the BRDF depends not only on the object but where on the object it is com-
puted. A flexible shading system gives the shader creator freedom in mapping
parameters of the BRDF to different functions such as images, ramps and masks
in order to make custom materials.

Texture mapping[20] is an example of how to do this. It basically stretches an
image (texture) over the object to give it a new look (see figure 2(b)). It is
possible to generalize this to map not only the color, but also other parameters
of the shading model such as the shininess (see figure 2(d)).

To use this, a mapping from locations on the surface to the two dimensional
texture needs to be specified. For polygonal models, this is usually done by
storing 2d positions together with the objects vertices, which are interpolated
over the polygons and then used when looking up points in textures. This is
often referred to as UV mapping (U and V are X and Y respectively in texture
space). It is also possible to use three dimensional textures which is convenient



(a) Untextured (b) Textured

(c) 3d texture (d) Textured Specular Color

Figure 2: Different ways of texturing a surface

for materials such as marble and wood (see figure 2(c)).

Texture maps are often in procedural form, meaning that instead of mapping
an image over the surface a two dimensional function is mapped over the sur-
face. Typical examples of such functions are noise and fractals, which would
be wasteful to store in images since they are simple to compute. By generating
them procedurally it is possible to make them more or less infinite in size with-
out repetition.

Texturing is not only about mapping an image as a color for an object but a
very general concept where data such as lighting information and pre-computed
complex functions can be passed to the shader.

1.5.5 Instances of Shaders

A three dimensional scene often contains many materials based on the same
shading model but with different parameters. This means that the same shader
may be instanced many different times with different parameters. It is important
to be able to share the main aspects of shaders but tweak settings of them
independently. This comes naturally in shading languages of different types
where functional decomposition lets the shader creator reuse blocks of shading
code.



1.5.6 Render Passes

Rendering passes is about outputting renderings in separate components, such
as diffuse light, specular light and reflections (see figure 3). In its simplest form
it may be that only a certain light contribution should be considered, a more
difficult example is to separate reflections so the first reflection bounce ends up
in one pass, the second in another and so on.

To be able to handle this in an efficient way the shaders must be able to select
components to be rendered. It must be possible to select components based on
ray type and ray depths. For instance, if rendering a reflection pass, primary
rays should only use the reflection component of the shading computations but
reflection rays should be shaded as usual.

2 Previous Work

2.1 Non Customizable Shading

Old renderers often used a fixed shading model where only simple tweaks of
colors, roughness parameters, etc were possible for different objects. There are
numerous problems with this approach since different materials often requires
different reflection models. It is also likely that the implemented shading model
has to be a “worst case” model meaning that in situations where a simple shader
would be sufficient it will still need to use the advanced model and ignore the
disabled parts of it.

2.2 Shade Trees

Shade trees[21] is the first work on customizable shading. It creates expres-
sions of simple operations organized as trees which are interpreted at runtime.
Different shaders are used for lights and surfaces. It supports functional de-
composition by reusing trees as subtrees in larger trees. All shaders supports
texture reads and constants in addition to surface fragment data.

2.3 Renderman Shading language

Renderman Shading language[22] is a C-like language supporting many kinds
of shaders. It has a type system appropriate for shaders and supports getting
surface properties in different coordinate systems. It also has constructions
for gathering and emitting light that looks similar to the rendering equation.
This means it nicely separates light sources and materials. Non directed lights
(ambient lights) are also supported.

Renderman shading language is owned by Pixar.
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Figure 3: A Cornell box rendered in passes
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2.4 OpenGL Shading Language and HLSL

These languages are quite similar. They are C-like languages. They differ from
Renderman Shading Language by having programmability on both vertex level
and fragment levels. They are also much lower level languages and features such
as light source abstractions and coordinate systems has to be taken care of by
the developer manually. These limitations are due to the importance of high
performance in interactive applications and limited program size in graphics
accelerators. The potential overhead introduced by using advanced shading
languages may cause rendering times that’s not acceptable for interactive frame
rates.

2.5 Programming API’s

Exporting a programming interface in a language such as C is another way
to implement customizable shading in a renderer. For instance Mental Ray
from Mental Images takes this approach for shaders of different kinds. From a
compatibility point of view it is a bit of a problem since every shader has to be
compiled for each platform it is supposed to be executed on. Another problem
is that there are a lots of problems related to dynamically linking binary code,
in particular if doing on multiple platforms. On the positive side no custom
language has to be learned for people already used to C and the availability of
high performance C compilers.

2.6 Building Block Shaders

Building block shaders[23] uses graphs of blocks, quite similar to shade trees, to
express shaders. It has generally more complex nodes and also more advanced
semantics for execution order. It supports custom nodes which can be freely
incorporated in existing networks. By combining existing nodes it is possible to
generate complex material models and procedural textures without any custom
programming.

A system similar to this is used in the Maya modelling and rendering package.

3 Design Aspects

3.1 Comparison of Previous Approaches
3.1.1 Usability

From an artist point of view the Building Block Shaders approach are probably
the most useful since it is possible to create complex shaders simply by combin-
ing standard components. The solutions relying on a programming language are
always difficult to use for non programmers but allows users to create complex
and specialized shaders with less overhead than building block shaders.

It is possible to use a language as a back end for more visual and intuitive tools.
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Mayaman is an implementation of this for Maya which converts maya shading
networks into renderman shading language.

3.1.2 Performance

From a performance point of view, the question is mainly about using pre com-
piled blocks like mental ray and maya or a custom language. Using pre compiled
blocks made in C or C++ gives access to extremely powerful optimizing compil-
ers for almost every platform. On the other hand, a language being interpreted
or compiled by the renderer may do partial evaluations[24] of shaders such as
dead code elimination, constant folding and function inlining by analyzing the
entire program at compile time.

For instance, a precompiled shading solution interpreting a shader supporting
mapping either a color or a texture to an input has to assume the worst and
do a virtual function call to figure out the color since the compiler knows noth-
ing about what kind of networks the user will construct. A system compiling
shaders at runtime knows the entire shading network structure at the time it
generates code and can handle the constant without a function call.

As a conclusion, the custom language is very powerful but it requires more effort
and to really make use of the power since it needs a good compiler or interpreter
to outperform C or C++ based shading solutions. On the other hand it sup-
ports optimizations a pre compiled solution can never do.

When targeting specialized hardware such as GPU’s and stream processors us-
ing a custom language may be a good solution since C is not always available
and using a custom language may ”force” the coder to write code suitable for
the platform. An example of such a language is Brook for GPU’s[25].

3.1.3 Customizing Power

Custom shading languages tends to be focused and optimized for programming
shaders and are generally not a very good base to implement customization
that goes outside the boundaries of the language. A shading solution based
on C/C++ may expose the user to more complex APT’s and let the user build
persistent structures such as irradiance caches and point clouds. Handling this
kind of functionalities can be difficult in more specific shading languages and
implementations of this often works by rendering multiple passes and store
data in textures that are used from the later passes. An example of this is
the retrofitted subsurface scattering solution in Renderman used in “Finding
Nemo” [26].

3.2 Properties of Shaders

Shader programs have properties making them stand out from normal programs.
Since the shaders tends to be consistent over objects, it is often possible to batch
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up shading calls for a shader and execute them in a single go. Another nice prop-
erty is that there are generally no dependencies between shading calculations of
different surface fragments. Finally, shaders tends to have simple control flow
without too much conditionals.

These properties makes shaders excellent to compute on SIMD machines by
batching up shading calls that uses the same control flow, that is calls using
the same material, light and render pass configuration, and execute the compu-
tations in parallel. Another nice feature is that texture and other data access
patterns tends to be coherent between surface fragments that are close to each
other on the screen. Not surprisingly shading units of todays graphics hardware
are massively parallel stream processors[27] since it is easy to exploit coherence
in scanline based rendering pipelines.

3.2.1 Secondary Rays

The nice shader properties tends to fail if used with secondary rays in raytrac-
ing renderers. Each single ray can take a unique path generating more or less
random shading calls which will make the coherence break down in a naive re-
cursive raytracer.

If planning to execute shaders in a raytracer on graphics hardware, this is a
big problem since it is important to feed it with large batches to get good
throughput[28]. It is possible to handle this by rescheduling the contribution
of secondary rays after the shader is done executing. This is done by Pharr et
al.[29], even if the primary goal in this example is to achieve memory coherence
in the geometry intersection code rather than the shading calls. A problem with
this approach is that it is impossible to let the shader depend on the result of
rays generated in the shader. For instance a shader generating 10 rays that will
give output a different value depending on if more than 5 rays hits a certain
surface would be impossible to write. This might sound like a silly limitation,
but features such as adaptive sampling of blurry reflections needs to do this.

It is possible to circumvent this by scheduling rays differently, but designing a
shading system not supporting low overhead secondary rays would probably be
extremely inefficient in most current rendering pipelines.

An example of a rendering pipeline handling this efficiently by doing many shad-
ing tasks in parallel is the Kileauea renderer[30]. If one shader thread stalls while
waiting for the result of a secondary ray it can start executing a new shader
and continue the execution of the old one when the result for the rays are in.
If making sure there are a lot of fragments to shade it is likely that there are
always shading calculations to do and the shading will never be stalling. It is
by no means a perfect solution since the execution state of the partly executed
shaders needs to be stored in some way which might not be trivial. The ap-
proach also doesn’t work for increasing the coherence in shading it merely hides
the overhead in shooting rays with latency. Therefore it is not very useful to
use together with a GPU that needs a lot of similar shading calls to speed up
the calculations.

Future approaches to construct rendering pipelines should take this in consid-
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eration and limit the shading interfaces in appropriate ways to force coherence
in shading calculations and raytracing since it will open the up the possibility
of using stream processors such as GPU’s for shading.

3.3 External Requirements

Coding a complete shading system is a complex task and to keep the scope of
the project within reasonable limits is therefore a must.

3.3.1 Maya Support

Since the test environment for the project is a renderer for Maya, the shading
system should be implemented in a way that it can be used as a back end for the
building block shader system used in the Maya renderer. It should also support
handling the shaders and features of Maya in a natural way.

This is quite tricky since Maya requires a lot of features that prevents many opti-
mizations and experiments such as dependency on secondary rays and querying
light sources of quite specific data to get specular highlights right.

3.3.2 Supported Shader Types

Only materials and light sources are considered.

3.3.3 Global Illumination and Indirect Light

The shading system has to be able to handle light contributions from different
kind of indirect light such as Final Gathering and Photon Maps.

3.3.4 Render Passes

The shading system shall be able to render different passes and make sure it is
possible to add custom passes without affecting previously coded shaders.

3.3.5 Performance

The system must be able to render shaders with high performance. It must not
introduce too much overhead when transferring data from the shader system to
the outside world and should be able to access data from the renderer efficiently.
It shall also have low overhead allowing it to shade single fragments without too
much setup cost which is important in recursive raytracers.

3.3.6 Quality

Make sure the shaders are provided sufficient information to handle filtering
properly to avoid unnecessary super sampling in areas with no geometrical or
shadow edges.
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3.3.7 Thread Safe

Computer graphics is computational expensive and it is crucial to make sure a
shading system behaves correctly and scales on well on multi processor systems.

3.3.8 Easy API

Developing shaders is something that should be straight forward. A developer
has to be able to construct new nodes in a simple way and focus on the actual
shading programming rather than the glue code.

4 Implementation

4.1 Design
4.1.1 Programming Language

The language chosen for the project is C++. The reasons are that it has been
used in similar situations before, the performance is good, there are a lot of
good developer tools and it is easy to create hooks into the particular renderer
we used in the project since it is also developed in C++.

An alternative would be to use an interpreting language such as Lua[31] or
Python[32]. Tt would definitely be an interesting case study to use such lan-
guages, but since performance is an important requirement for the shading sys-
tem and we find it hard to predict the outcome, C++ seems like a more reliable
choice.

Implementing an own shading language with an optimizing compiler would prob-
ably be the solution with most potential, but writing a good compiler back end
or byte code interpreter is a lot of work, in particular if it should support ad-
vanced partial evaluation features.

4.1.2 Building Block Shaders

When using C++ as programming language it is difficult to write custom code to
extend the shading system without recompiling or providing a binary interface
to plug in new modules. It is therefore important to give the user some kind
of tool to generate original and complex shaders. Building Block Shaders with
a ”standard library” of material models, textures and utility nodes is an easy
to use and powerful way to do this. By keeping the complexity of the shading
nodes balanced it is possible to keep the overhead in virtual function calls to
connected nodes low without limiting the flexibility of the system too much. It
is also possible to provide a dynamic linkable node interface to make it possible
for the user to provide own shaders to combine with the existing set.

The building block shader paradigm is not only nice from an artist point of view
but also maps well to object oriented languages. Therefore, it is easy to model
in a language such as C++. The building blocks implementation in the project
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are inspired by Maya making each building block contain multiple inputs and
outputs. Typically, a surface shading block not only contains a color output
but also a transparency and glow output. The inputs consists of features such
as material colors and specularity settings which are available to read from all
outputs of the block.

4.2 Shading Data
4.2.1 Explicit and Implicit Data

A diffuse material shader would need a diffuse color component, a surface nor-
mal, a fragment position and a set of light sources that contributes light to be
able to compute the fragment color. If adding a texture map to a color compo-
nent it would also require mapping coordinates.

The color component is a property of the specific shader that the user want to
tweak explicitly, but the surface normal and fragment position are properties
of the particular fragment and the scene it is being executed in. This data is
modelled as inputs that is bound implicitly to the shader and available to all
shaders (see figure 4).

This way of thinking separates the shading system from the renderer being used.
By ensuring the implicit inputs correctly maps to the data the renderer outputs
it’s possible to deploy it in a new renderer. It is also easy to override the default
behaviour of an implicit stream. For instance, normal mapping[33] can be im-
plemented by overriding the default surface normal input with a custom node
that looks up a normal from a texture.

4.2.2 Data Types

Inputs and outputs needs to be typed. When reading a normal input it is
important that the data provided is actually a vector and not a scalar value. This
means that every input and output of a shader is assigned a type and only inputs
and outputs of the same or coercible types are possible to connect. In computer
graphics, data such as colors and vectors are often used interchangeable. For
instance, normal maps are often modelled as RGB textures. Therefore, it is
important to be able to type cast colors to vectors, floats to integers etc.

It is important to handle compound types efficiently since much of the data
passed through the shading blocks are colors, vectors and points. More complex
compound types consisting of non primitive members, such as a spline control
point consisting of a position, a time and a tangent, are also useful.

Another important type is the array type. For instance, a ramp of colors may
consist of an arbitrary number of colors.

By looking at shaders, it turns out that complex compounds and arrays are
generally used as a way of organizing input data rather than as output data.
Introducing dynamic arrays as a data type to pass through the connections
will introduce dynamic memory allocation and consideration of copy semantics.
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Figure 4: Implicit Data

Therefore, the shading system only supports arrays as inputs, however each
element in the array may be connected to different outputs or constants.

It is also important to make sure it is possible to have a proper granularity in
the calculations. For instance, a node that computes colors will in most cases
be used to compute entire colors rather than single components, therefore it
might be worth the overhead to generate all three RGB components in one
computation even for cases where only a single component is actually read. In
addition, most of the computations are shared for the different components of
the color.

The model used to handle this is to make Vectors, Colors “primitive” types
even if they are actually compounds. To avoid confusion primitive types, colors
and geometric vectors are called simple types. Output types of nodes has to be
simple, i.e. nodes returning arrays or complex compounds are not supported.
The static nature of shading network instances also makes it possible to assume
the size of an array is constant for a shader instance. The simple types in the
shading system are

e Boolean
e Integer

Float

o Vec2
e Vec3
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4.2.3 Components of Simple Types

Since the simple types contains vectors and colors, it is important to be able to
access and connect components of them independently. Accessing is done using
nodes that takes a vector as input and outputs each of the components as floats.
Connection is handled using nodes taking scalars as inputs and merges them to
a vector. Figure 5 is an example of merging and splitting components. The split
and merge nodes in our system are automatically generated in the conversion
phase (see 4.5.1), rather than inserted manually in the shader editing tool.

4.2.4 Shader Types

The building block model makes it possible to get higher level type conflicts.
For instance, what normal will a Phong shader node connected as shader for a
light source get when it reads the normal input? It is of course an option to try
to figure out a normal that "makes sense”, but the real problem is that the type
of a phong shaders is simply wrong for everything but surfaces. On the other
hand, a texture might make sense to map on both light source and surfaces, it
only requires a mapping coordinate to be evaluated.

It would probably be possible to have an advanced type system to decide
whether a shader makes sense to use in a certain context, but the shading
system is to be used mainly for execution of shaders and not shader network
editing, any higher level type checks are left to the editor. The shading system
should handle incompatible mappings gracefully by giving warnings but return-
ing default values such as 0 for floats, black for colors when reading undefined
streams.
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4.2.5 Implicit Data

The implicit data available to the shading system is the bridge between the
renderer and the shading system. For surface shaders information about the
surface fragment such as normal, position, tangents and mapping coordinates
are mapped to implicit streams. It is also important to supply data about
the fragments area from the viewer to handle filtering. Since the renderer the
shading system is developed for uses Ray Differentials[34], these are available
as implicit streams.

Light sources has the same data available as the surface, with the exception that
the mapping coordinates is replaced with a mapping more reasonable (spherical
for point lights, perspective projection for spotlights etc). This gives it the
ability to get information about the point it should contribute light to without
giving up the ability to map the color in different directions.

4.2.6 Coordinate Systems

Different renderers and rendering architectures tends to output data in differ-
ent coordinate systems and it is important for a shader to know whether the
normal it just read is in camera space or world space to be able to compute
shading values that makes sense. It is important that light contributions are
in the same coordinate system as the point being shaded and avoid coordinate
system changes for points and vectors as much as possible from a performance
point of view.

A simple solution would be to provide the different implicit streams in all co-
ordinate systems. The problem with this solution is that if some kind of modi-
fication, such as normal mapping for a normal, would be applied to one of the
streams it wouldn’t affect the ones in different coordinate system.

A better solution is to let the stream be the same for all coordinate systems but
when referring to it at link time(see section 4.5.2), select what coordinate system
it should be in. If the actual data produced by the renderer is in another coor-
dinate system it will be transformed before it is returned. It is important that
the shader developer is aware of what coordinate system the renderer usually
produces its data since reading data in another coordinate system will trigger
matrix vector products. When accessing the light sources a coordinate system
must also be specified to avoid problems with the shader.

4.2.7 Upstream Writing

Upstream writing is a problematic but sometimes very useful feature of the
shading system. A typical situation is bump mapping[20], that needs to sample
a few distorted positions in the texture to find a gradient to perturb the normal.
It would be possible to model this as a network with a set of different inputs
from the same texture mapping node that each have an unique distortion on
the UV-parameter connected to it. This is inconvenient and a better approach
is to provide a safe way to distort an implicit stream.

If the implementation of the implicit streams are known to the shader it would
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be possible to use some kind of “short cut” into the data that will be read
when reading the implicit stream and modify it, but it is not a fully satisfactory
solution since it would make the shading system less isolated from the renderer.
Another way to handle this is to provide a stack for each implicit input on
which it is possible to store distortions. When reading the implicit stream the
distorted value is returned instead of the standard value. It is up to the node
that that distorted the value to pop the distortion from the stack. Improper use
of this stack is easy to detect after a shader execution by checking if the size is
not zero. A somewhat unintuitive feature of this is that if bump mapping the
normal of the base shader won’t affect other shaders connected to the network
depending on the normal. If this behaviour is desirable all shaders using the
normal has to be explicitly normal mapped. An elegant solution to this is the
one used in Building Block Shaders paper[23] where it is possible to set the
whether a node should be executed before execution of shaders depending on it
or when read.

4.3 Light Calculations
4.3.1 Light and Material Interaction

It is important to separate light models from material models to avoid treating
each light source type differently for each material type. This is not as easy as it
may seem, since many shading models are dependent on quite vague parameters
of light sources such as a direction towards the light source to calculate specular
intensity. This makes perfectly sense for a point light, but for an area light,
there is no one direction towards the light source and coming up with one that’s
represent an integral of the specular light from the area light certainly require
the light source to know something about how specular light is computed for
the particular material it is contributing light to. An example of this is available
in[35], but it is only working with the Phong model. For a complex material
such a measured BRDF it would be more or less hopeless to come up with a
reasonable integration for highlights.

A “clean” material-light interaction should probably only work in terms of di-
rected or non directed light like Renderman Shading Language does. It is a nice
that solution mimics rendering equation and all surface shaders only needs to
implement how it responds to this kind of lighting. To handle light sources with
extension it is possible to monte carlo sample them as a set of directed light
contributions. Since maya support is very important for the shading system
and to get identical result with maya and avoid monte carlo noise in area light
highlights we had to introduce functionality to query whether a light contribu-
tion is an area light. This somehow makes the solution less elegant.

The light contribution solution is in itself a general solution, supporting features
such as monte carlo sampling of area lights and importance sampling of HDRI-
lights[36], by letting the underlying implementation of the light contribution
iterator generate multiple light contributions from single light sources.
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4.3.2 Global Illumination and Ambient Occlusion

The light from photon maps, final gather and other indirect light sources are
easy to model as an ambient light source which does the actual lookup in the
photon map or irradiance cache rather than a traditional light computation.

4.4 Render Passes

Rendering passes is done using two systems, one that makes sure it’s possible
to shade using only certain light components, such as diffuse or specular. The
other selects a set of components to use depending on other properties such as
ray type or ray depth.

4.4.1 Shading Components

To render the different light components in separate passes, each one must
be decided to belong to a pass and it should only be considered if it’s in the
active pass. Typically, when rendering passes one renders more than one pass
in a go, and a pass may contain more than one component. To support this
shader components are internally represented as a set which is implemented as
a bitmask where each bit represents a shading component. It may seem like a
limitation to handle only 32 unique components in one rendering, but it seems
reasonable that bitmasks even if larger than a word will be more efficient than
a binary tree for most reasonable number of components.

To be able to create passes on the fly component is specified as a text name.
In the linking phase (see 4.5.2), all text names are converted to bits in the
pass bitmask. Looking if a certain pass is to be rendered or not can then be
evaluated in constant time. When it comes to actually rendering the passes, we
have looked into three different approaches:

e Render each pass as a separate image not sharing any computations.
This approach is nice since it needs only minor changes to the rendering
pipeline, however, a lot of work is duplicated. All pixels are rendered in
each pass, meaning the primary rays and light loop has to be executed for
each pass.

e Shoot the primary rays and shade each fragment with all active sets of
pass configurations.
This solution saves the primary rays, it still needs one light loop per pass
and fragment. It needs the renderer to have a separate framebuffer for
each pass being rendered.

e Shoot the primary rays, and make one shading call that output all com-
ponents separated. The components are then composed to the different
passes outside the shader.

This solution is the best when it comes to computation time since it does
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the shading only once per fragment. The problem is that it would intro-
duce a complex data type to return data from the shader that doesn’t fit
into the rest of the shading system architecture.

Render Passes is another feature that would benefit from partial evaluation.
It would be possible to specialize the shader for a certain set of components.
If for instance only a pass containing the specular components should be ren-
dered, it would be possible to specialize it and avoid even touching conditionals
containing other parts.

4.4.2 Ray Matching

The second part of the pass system is a ray matching system selecting what
components should be enabled for certain types of rays. To support this, the
traced rays needs to carry information about reflection and refraction depths.
This is generally no problems since most raytracers do that anyway to be able to
terminate rays going beyond maximum ray depths to avoid infinite recursions.
Since it is difficult to figure out exactly what kind of overrides users wants to
do, this part is programmable too so it is possible to generate passes that suits
each user.

Currently our only implementations are hardwired solutions to get the reflec-
tions in and refractions in separate passes but it should be possible to create a
user interface customizable version of this that allows the user to do matching
ray type, ray depth etc.

4.5 Initialization of Shaders

The shader initialization is done in several phases to make sure it is possible to
control and customize the behaviour of the system.

4.5.1 Conversion

The shaders used in the system are described as Maya Shading Networks. By
implementing our own shader blocks that emulates the ones in maya, we can
instantiate our own versions of the shading networks. This is done by traversing
the networks, create blocks and set up references between outputs and inputs.
These references are only text string references to make sure it is not coupled
at all with sources for implicit streams and to make it easy to apply transforms
to the networks if some node needs special treatment after conversion. Even if
we only support Maya at the moment, it should be possible to use any source
of shader networks here.

4.5.2 Linking

The linking phase converts the text references between the input and output
nodes into pointer references, to make sure that no string matching needs to
take place when executing the shaders.
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The linking routine recursively visits all blocks in the network and looks up
and type checks all references needed, implicit references are provided by the
renderer so the network can access the data of the fragment it shades when it
executes.

Custom Render passes are converted from text strings into bitmasks to make
sure querying whether a component should be rendered or not is possible to do
quickly.

4.5.3 Post Linking

The post linking phase is done after all links are created. It is available to give
the shader writer the possibility to do finishing touches. After the post link the
shader is ready to execute.

A typical thing done in this phase is constant propagation. It is possible to
query if a shading node is constant. It is up to the node to implement how
this is determined, but if the shader only depends on constant nodes it may
safely assume that it is constant itself. There is currently no automation for
this, so it has to be done manually. Data such as inputs to color ramps and
transformation matrices are often static and it is therefore a good idea to cache
these values in the post link phase to make sure they are not recomputed for
each fragment.

4.6 Execution of Shaders
4.6.1 The Shader Context

The shader context is the source of data for the shaders, it contains informa-
tion about the fragment, what components being rendered, the light sources to
consider etc. It is the only parameter passed to a shader when executing it. It
is important to notice that this is the only state that’s allowed for a shading
session, for instance caching data in shading networks or writing to global data
is prohibited because it is not thread safe.

Implicit streams are actually links into the shader contexts that accesses frag-
ment information. Also all secondary rays are traced through calling methods
on the shader context.

If making the shader context abstract it should be the only way data is passed
from the renderer to the shading system. To deploy the shading system in a new
renderer this class should be reimplemented. From a performance point of view
this may not be optimal since a lot of calls are made to access things such as
fragment normal, UV’s and tangents. It is not abstract in our implementation
to allow these accesses to be inlined.

4.6.2 The Override Manager

The shader override manager sets up render passes by overriding the choice of
components to be rendered and what shader to use. It can basically override
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everything, but typically it just passes the shader call through or disables com-
ponents depending on the ray type. Another typical use is to discard the shader
for the surface and use for instance a surface normal shader or an ambient
occlusion shader to render a normal or ambient occlusion pass.

4.6.3 Execution

The simplest approach to shading network execution is probably the depth first
execution order in which every node is executed when it is read from.

If shading a group of surface fragments another approach would be to execute
each node for all fragments in a dependency order. This would probably give
better cache performance since both the code and the data is more local in the
node than the entire network. On the other hand it would be difficult to handle
conditionals efficiently in this kind of setup since it is impossible to know whether
an input is actually used or not at the time of execution. Another interesting
thing about this is that it is probably easier and faster to cache values if reading
the same input multiple times in the same shader if using this approach, it
would conflict with usage of upstream writing though (see 4.2.7).

In the system built, depth first execution is used, mainly because it is simpler
and more predictable in performance for conditional nodes. However it would
be interesting to investigate the possible performance gains to cache locality if
using breadth first execution.

4.6.4 Threading Consideration

Making shaders thread safe is very much about making sure that all of the
execution context are stored in data local to the thread such as the stack or in
thread local storage.

Another problem is that the heap is shared between threads. This means that it
has to be locked by a mutex, making dynamically allocated memory expensive
if used in the internals of the shading system. To avoid this as much data as
possible has to be stored on the stack or allocated using thread local memory
pools to avoid threads fighting about the memory allocation mutex.

When executing using multiple threads, caching of data is more complex. If for
instance two identical texture reads are connected to the same shader node it
would be convenient to check if the last access was identical with the current
and then return the stored value instead of doing the computation all over.
The problem is that there might be race conditions if two threads use the same
shader. However it is possible to make thread specific caches which uses the
shader state as key to lookup previously calculated values.

Another performance issue we ran into when implementing the shading system
was variables shared between threads. Even if using atomic operations when
writing to it, there were severe performance penalties using it. It’s likely that
the reason was that the processors had to reload the cache line the variable
belongs to every time the other processor had changed it since when it was last
read.
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5 Results and Future Work

5.1 Performance

Comparing shading systems in different renderers is not perfectly straightfor-
ward because it is a component in a larger pipeline. The actual interesting thing
to measure is the overhead in propagating data between shading nodes and the
cost of getting data from the renderer such as fragment normals and points. The
other things such as performance of the code executed in the actual shader, the
speed of secondary rays and speed of texture lookups are not directly dependent
on the shading system being used.

The tests were performed on a Dual Opteron 1.6GHz with 2GB of ram running
Windows XP Professional. Maya 7 was used for the test.

5.1.1 Test 1, Multiplications

A huge network of multiplication nodes being used as color on a very simple
object. Since a multiplication node is very simple and likely to be implemented
in a more or less optimal way in all renderers a network of multiplications con-
nected as color to a simple piece of geometry should give some idea of what
kind of overhead there are in transferring data between nodes. To make sure
no constant propagation is used the data to be multiplied is the fragment posi-
tion in world and camera space (to make sure that renderers producing data in
different coordinate systems should not lose performance in transforming data
to a non native system). This test tests both data transfer between nodes and
data transfer from the renderer to the shading system.

The network is built as a tree in n levels where each input are connected to a
multiplication output except for the leafs that are sampler info nodes providing
world and camera space positions. The number of multiplication blocks are
2" — 1 and the number of sampler info blocks are 2™ where n is the level. A
network of level 3 is shown in Figure 6. The object used is a box, that’s zoomed
in to a level where only one face is visible, the test resolution is 640x480, 1
sample per pixel is used for all renderers. The running times are in seconds.
The results for world space and camera space are found in figure 7 and 8 re-
spectively.

The most remarkable in the results are the poor performance of Mental Ray.
Our shading system performs slightly worse than Maya. Note that the doubled
rendering time in each level is predictable since the number of nodes doubles in
each level. The slightly higher performance in Turtle World Space than Camera
Space is likely to be related to that Turtle tends to produce sample data in
World Space.

The difference between the renderers seems to be quite large, but for real life
situations networks larger than 20 nodes, which lies somewhere between level 3
and 4, are not very common. Also more complex nodes hides the overhead in
data passing making the actual code executed in the nodes more influential.
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Figure 6: Figure of a multiplication network of level 3. The blocks to the left
are the leafs supplying points, the blocks to the right are multiplication blocks

25



| Level || Maya | Mental Ray | Turtle (Dual Proc) | Turtle (Single Proc) |

1 1 3 1 2
2 1 4 1 2
3 1 ) 1 2
4 2 8 2 2
5) 2 15 2 3
6 3 26 3 4
7 ) 54 4 8
8 10 105 9 17
9 18 215 19 34
10 36 500 44 73

Figure 7: Running times in seconds for multiplication test in World Space

| Level || Maya | Mental Ray | Turtle (Dual Proc) | Turtle (Single Proc) |

1 1 3 1 2
2 1 4 1 2
3 1 ) 2 2
4 2 8 2 3
) 2 15 2 3
6 3 26 3 )
7 ) 52 ) 9
8 9 105 11 18
9 18 215 21 43
10 35 525 51 81

Figure 8: Running times in seconds for multiplication test in Camera Space
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| Level || S. Preproc. | S. Rendering | S. Total || D. Preproc. | D. Rendering | D. Total |

7 0.38 6.65 7.03 0.39 3.54 3.93
8 0.89 15.53 16.42 0.86 8.17 9.03
9 2.36 30.83 33.20 2.34 16.38 18.72
10 10.21 61.62 71.84 10.14 33.24 43.38

Figure 9: Running times in seconds for different phases. S denotes single proces-
sor D denotes dual

| Level || Dual Render / Single Render | Dual Total / Single Total |

7 1.90 1.82
8 1.90 1.82
9 1.88 1.77
10 1.85 1.66

Figure 10: Shows how much faster a dual processor rendering are compared to
a single processor

5.1.2 Test 2 Multiprocessor Scaling

Looking at the first test it seems like the shading system scales quite poorly
when the shading networks gets larger, to take a more detailed look at this, the
rendering times for World Space renderings are broken down to preprocessing
time and rendering times. Some parts of the time such as raytracing data
structure building and shading system loading is not done in parallel. This data
has somewhat more precision in the timing than the previous test since we had
access to more advanced timing features in Turtle than the other renderers.
The results are found in Figure 9. As we can see the rendering scales good, but
the pre processing is more or less constant. It’s interesting that the preprocessing
time of 9 and 10 level shading networks seems to explode. This is not much to
bother about in real life since that size of shading networks are not realistic for
anything else than stress testing. This is likely to be the the cause of that Maya
outperforms turtle more on level 10 than previous levels.

Figure 10 shows how much faster a dual processor rendering are compared to
a single processor and when disregarding preprocessing time, the results looks
much better.

This test would be much more interesting if we had access to machines with
more processors than 2.

5.2 Possible Extensions
5.2.1 Performance Improvements

Implementing a dependency tracking system where it is possible to for the shader
to communicate what implicit streams it actually needs would probably be use-
ful since the implicit streams could be more restrictive in what data it should
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generate. For instance it could skip generation of a tangents for the surface
fragment unless the shader accesses it. A more advanced caching system where
implicit streams are lazily evaluated and results are cached could handle this
transparently. However it should be used with care on really complex shaders
since it may give severe performance penalties if different data that are accessed
multiple times are fighting about the same cache slots.

Implementing a more advanced constant propagation system would be useful.
The current querying system requires the shader writer to manually handle this.
It is possible to automatically avoid virtual shading calls for constants by stor-
ing the value with the reference to the node, and if the node is constant it reads
this value instead of the evaluating the node.

Another interesting thing to explore is the difference in performance when pass-
ing data by letting the shader write to a variable rather than returning the result
as a value. In particular large data such as matrices should gain performance
from this unless the compiler can do some kind of return value optimization.

5.2.2 API

Constructing a solid cross platform API for C++ is not trivial. First of all the
actual functionality to expose is a difficult question. It would probably be a
good idea to start looking at other solutions such as Mental Ray. The second
problem is to make sure data is passed transparently from dynamically linked
code to the renderer. Since calling conventions and naming conventions for
C++ object code is different for different compilers and even compiler versions
and it is difficult to get classes work properly. It is likely that a solution using a
C-interface or a CORBA-solution is the most practically useful. Another prob-
lem to consider is the fact that dynamic linking is done differently on different
platforms. To sum it up, it would be easy do get fed up by the platform specific
parts of this problem.

An interesting way of handling the platform specific issues would be to use a
custom language such as Lua for the API. It would of course introduce overhead
but the scripts would be platform independent.

5.2.3 Graphics Hardware Rendering

Graphics hardware would be a very interesting to use for shaders in offline ren-
dering. It is currently being used in Gelato[37]. Gelato is a scanline renderer
making it easier to exploit coherence than in a raytracer. It is developed by
NVIDIA which means that the people creating it may take advantage of know-
ing the internals of their graphics cards. If undertaking a similar project there
are a lot of things to consider such as resource virtualisation, mapping of func-
tionality to graphics hardware, batching data etc. A lot of work has been done
on this such as SH[38][39] and brook for GPU’s[25] which both would be good
starting points for this kind of work.

The interaction between the shaders and external data such as photon maps,
irradiance caches and point clouds may be a tough challenge since these struc-
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tures may be difficult to look up data in from the GPU. It is likely that lookups
in this kind of structures has to be done before executing the GPU shader. A
starting point could be an approach similar to the SPOT shaders in the Kilauea
renderer where the shaders are broken down into parts depending and not de-
pending on external data such as secondary rays. The parts not depending on
external data may be executed on the GPU and the rest on the CPU.

5.2.4 Coherence Analysis and Reorganization of Rendering

The key to fully make use of stream processing hardware such as GPU’s in ray
tracing contexts is coherence in shading calls. It is likely that there is high co-
herence in the primary rays, but for reflections and refraction, scenes with many
different shaders may actually get choked by the overhead in transferring small
batches of surface fragments to the cards. In particular sampling of hemispheres
which is important in final gathering generates a lot of incoherent rays spawning
random shading calls.

It is an interesting challenge to create a rendering pipeline that hides the over-
head in transferring data to graphics cards and handles secondary rays effi-
ciently. A possible key element in this kind of pipeline may be to have shaders
in a high level representation that are possible to compile for many different
processors. This would make it possible to use the high overhead, high per-
formance back end when having large batches and the low overhead but lower
performing back end for small batches.

5.3 Results

We'’ve implemented a shading system capable of executing material and light
shaders in a renderer that supports most of the features of Maya and a lot of
other features such as global illumination. The performance in just propagating
data is comparable to Maya. It has been successfully used for creating images
and baking lighting and surface features on models in commercial projects. The
approach has afterwards been extended to support “shading” of photon bounce
features of surfaces.
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