

Colour displays in wireless phones

DAVID FELDTHUSEN
LUDVIG SVENSSON

Master’s Thesis

Computer Science and Engineering Program
Electrical Engineering Program

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Division of Computer Engineering
Göteborg 2005

ii

The content of this report is copyrighted according to the Swedish law
1960:729, and must not be reproduced or distributed in any form without
permission from the authors. The prohibition applies to the whole report as
well as parts of it and includes storage on electronic and magnetic media,
display on screens and tape recording.

 David Feldthusen and Ludvig Svensson, Göteborg 2005.

iii

Abstract

During the last few years, colour displays have become a significant element
on the mobile phone market and have now also made their way to cordless
phones. As a supplier of on-site wireless communication including cordless
phone systems, Ascom has recognized a need for enhancing the user
interface in their handsets.

The aim of this thesis work is to investigate hardware and software
prerequisites for introducing colours displays and a graphical user interface
(GUI) development software module. The report handles some basic display
facts and an investigation of the current situation on the market for displays
and software. A prototype system is then created in a test environment,
including display hardware and development of a demo GUI software.

Experiences from this work shows that one of the biggest issues of
implementing a colour display is the update speed due to a large increase in
pixel data. Furthermore, the complexity of the application determines what
performance the display needs to have. Performance to consider can be
resolution, colour depth, power consumption and so on. Three GUI
development programs using ANSI C or C++ are presented as the best
alternatives. Differences lie mostly in graphical functions but they are similar
in structure and easy to adapt for different hardware targets and OS.

Sammanfattning

Under de senaste åren har färgdisplayer blivit ett framträdande inslag på
mobiltelefonmarknaden och nu har de även dykt upp i trådlösa telefoner.
Som en leverantör av kundanpassade lösningar inom trådlös
internkommunikation, inklusive trådlösa telefonsystem, ser Ascom ett behov
av att förbättra användargränssnittet i deras handenheter.

Målet med detta examensarbetet är att utreda hård- och
mjukvaruförutsättningar för att introducera färgdisplayer och en
mjukvarumodul för utveckling av grafiskt användargränssnitt (GUI).
Rapporten tar upp grundläggande fakta om displayer och en utredning av
den aktuella situationen på markanden för displayer och mjukvara. Ett
prototypsystem skapas sedan i testmiljö inkluderande displayhårdvara och
utvecklandet av en demoversion av GUI-mjukvara.

Erfarenheter från detta arbetet visar att en av de största svårigheterna med
implementeringen av en färgdisplay är uppdateringshastigheten pga. en stor
ökning i pixelinformation. Vidare bestämmer komplexiteten hos tillämpningen
vilka egenskaper displayen behöver. Egenskaper att ta hänsyn till kan vara
upplösning, färgdjup, effektförbrukning osv. Tre GUI-utvecklingsprogram som
använder ANSI C eller C++ anges som de bästa alternativen. Skillnader finns
huvudsakligen i grafiska funktioner men de är likvärdiga i struktur och är lätta
att anpassa för olika hårdvarusystem och OS.

iv

Preface

This master’s thesis is a part of our Master of Science degrees at Chalmers
University of Technology. The project was carried out at Ascom Tateco AB
during the summer and autumn of 2005.

We would like to thank all people at Ascom Tateco that helped us during the
project, especially our tutors Anders Gregow, Jesper Hilmersson and
Magnus Olsson. We would also like to thank our examiner at Chalmers; Ulf
Assarsson.

v

Contents

ABSTRACT .. III

SAMMANFATTNING .. III

PREFACE ... IV

CONTENTS..V

INTRODUCTION...1

BACKGROUND ..1
The company..1
Introducing new displays...1
Developing new graphical user interfaces ..2

THE TASK ...2
IMPORTANT QUESTIONS..2
METHODS ...2

BASIC FACTS...4

DISPLAY TECHNOLOGY...4
Display types ...4
Colour element system...5
LCD lighting..6
Display mode...6
LCD controller and drivers ...8
Chip mounting ...10

INVESTIGATION ..11

DISPLAYS ...11
Trends on the market today ...11
Manufacturers ...12

GUI DEVELOPMENT SOFTWARE ..13
GUI development software vendors ..14
Comparisons..14
Differences between C/PEG and emWin ...15
State machine consideration..17

IMPLEMENTATION...19

EQUIPMENT ..19
PROTOTYPE SYSTEM ...20
System overview...20
GUI..22
Graphical library...24
Output to frame buffer ...24
Data transfer ...24
LCD controller ..25
LCD module ..28
Keyboard interface ..30

PORTING GUI LIBRARY TO PROTOTYPE SYSTEM ...31
PROBLEMS..32
Use of LED booster circuit..32
OMAP LCD controller and display interface..32
Element arrangements...33

TESTING AND VERIFICATION...35

BITMAP CONVERSION ...35
KEYBOARD RESPONSE ..36
LCD UPDATE..36

vi

Speed of software...36
MEMORY REQUIREMENTS...36
ELECTRICAL PERFORMANCE ...37
Power consumption ...37

DIGITAL ERROR TOLERANCE...38

OTHER IMPLEMENTATIONS ...39

DISPLAY CONSIDERATIONS...39
PROCESSOR CONSIDERATIONS ..39
MEMORY DEMANDS..40
GUI CALCULATION PERFORMANCE ..40

RESULTS AND CONCLUSIONS...41

DISPLAYS ...41
GUI DEVELOPMENT SOFTWARE ..41
PROTOTYPE IMPLEMENTATION ...42

DISCUSSION AND FUTURE WORK ...44

USE OF DMA ...44
HOW TO MAKE DATA TRANSFER TO DISPLAY MORE EFFICIENT?..44
FUTURE WORK..45

REFERENCES ..46

ABBREVIATIONS ...48

APPENDIX ..49

APPENDIX A.1. LIST OF TFT DISPLAY MANUFACTURERS ...49
APPENDIX A.2. LINKS TO TFT DISPLAY MANUFACTURERS...52
APPENDIX B. READABILITY TEST ...53
APPENDIX C.1. LCD INTERFACE SCHEMATICS ...54
APPENDIX C.2. LCD APPLICATION CIRCUIT SCHEMATICS...55
APPENDIX C.3. KEYBOARD INTERFACE SCHEMATICS ...56
APPENDIX C.4. COMPONENT LIST...57
APPENDIX D.1. LCD CONTROLLER REGISTER SETTINGS ...58
APPENDIX D.2. DMA REGISTER SETTINGS ...59

1

Introduction

A reliable internal communication system is vital in many companies and
institutions. The information must be delivered fast, accurately and
unambiguously.

Background

The company

Ascom Wireless Solutions is delivering on-site wireless communication
solutions to customers all over the world [ASC]. Areas ranging from industry,
hospitals, prisons and elderly care, to the retail sector and hotels are all using
the integrated, tailor-made systems.

The products are specially developed and designed with respect to the area
of use, to meet the demands of ease-of-use, robustness and functionality.
There are basically four product families:

• Nurse Call System

• Personal Paging System

• Personal Alarm System

• Cordless Telephone System

Nurse Call System

The combination of ease-of-use for both patients and staff in a
hospital with large flexibility and integration is what characterizes
these products. Apart from traditional signalling, also speech and
audio transmission is possible.

Personal Paging System

Integrated with existing systems, the pager can notify employees
about fires, industry process failures or medical equipment alarms
as well as communication between users.

Personal Alarm System

Employees working in environment with risk of personal health and
safety need an instant way of communication in case of
emergencies. The products must be easy to use, robust and be
able to send its position to insure quick responses.

Cordless Telephone System

The largest product family involves not only one application,
rather combines several applications even from other product
families, resulting in products with capabilities of voice and text
communication as well as personal security. The latest products
have large displays and advanced communication systems, like
WLAN, to allow large amounts of data to be received.

Introducing new displays

The displays in Ascom’s products are of a simple black and white type. Up to
today that has been sufficient to cover the customer needs of functionality
and design. Although, as the development advances, there will arise a desire

2

and need for enhancing the user interface with a more advanced type of
display with colour support. Colour displays could make information more
distinguishable and allow the use of photos or even motion pictures from for
example measurement equipment and surveillance cameras.

Developing new graphical user interfaces

The early communication products were simple in both design and features.
The products were a lot less advanced and complex than the successors
developed today. The underlying system functions were fewer and the
amount of data handled was lower. With an increasing demand of new
communication features as well as graphical features, especially with the
introduction of colour displays, the complexity of the graphical user interface
(GUI) increases as well.

The development of the early simple GUI could be programmed on a low
level within a manageable effort. When complexity grows, the need for
supporting software is crucial.

The task

The main task in this master thesis is to investigate the prerequisites for an
introduction of a colour display and a new software module with software that
supports a GUI based on colour and supports advanced elements, such as
icons, bitmaps and radiobuttons.

Both hardware and software prerequisites should be investigated. The target
systems of interest will mainly be future cordless telephones but also current
systems should be considered. All the phones should be able to show colour
icons and at least the future phones should be able to show photorealistic
images.

Important questions

Which colour display types and sizes, drivers and other trends exist on the
market today?

What effect do colour displays have on today’s electronic design and
construction, regarding current consumption, radiation, processor
performance and memory demands?

Which graphical functions should be supported in the GUI software?

Should we write our own graphical package or is it possible to buy one
considering performance and flexibility?

What third-party-softwares are there for GUI development?

What does it take to make the solution reusable in other products?

Can the GUI be made in an OS-independent fashion as well as for several
CPU’s, 32/16 bits?

Methods

To answer the questions stated above, several different approaches will be
taken. To start with, the current situation on the market will be investigated.
Contact may have to be taken with a few interesting display manufacturers
as well as GUI development software vendors.

This will be followed up by building a colour display prototype in a test
environment, where possibilities and difficulties with a colour display will

3

appear. There will be some electrical construction as well as software
development to get the display up and running.

The most interesting GUI programs found on the market will be more
thoroughly investigated, and a demo version running in PC environment will
be produced. This will show what can be done in the GUI and it will also
show what advantages you can get with a more extensive GUI program and
graphical library.

Finally the whole system solution, from GUI program to LCD display, will be
connected together to give a good glance of what a new GUI with colour and
icons can look like on our target.

4

Basic facts

To give an understanding for the rest of the report, it is necessary, or at least
helpful, to give an introduction and some basic facts about displays and
controllers.

Display technology

Display types

When it comes to colour LCDs, there are mainly three different types. One of
them is cSTN (colour Super Twist Nematic), which is a passive matrix LCD
technology. It shares the basic function of displaying colours with the colour
TFT (Thin Film Transistor) which is an active matrix technology. They consist
of liquid crystals between two polarizers and a colour filter letting through red,
blue and green light. The liquid crystals are controlled by a voltage difference
to let a certain amount of light through for each colour element [TOP].

The main difference between cSTN and TFT LCDs is the way each colour
element is accessed and updated [SHLCD]. For cSTN, they are addressed
by a grid of wires above and under the liquid crystals perpendicular to each
other. This way each element can be updated separately but all elements
can not be set at the same time for a frame update. Thus there must be
certain inertia in the crystals so that the state for an element is not changed
before a whole frame has been updated and the element is updated again. In
a TFT the top substrate is a colour filter and the bottom substrate is a TFT
Array (Figure 1). Each element consists of a transistor and a charge
capacitor in parallel to the crystals [IRA]. Each transistor is used to charge
the capacitor and is controlled by a gate voltage that switches it on/off and a
source voltage that supplies the desired voltage level. This way there is less
need for inertia in the crystals which enables elements to respond faster to
changes.

Figure 1. Fundamental structure of a TFT LCD

Generally cSTN has lower power consumption and are cheaper to
manufacture. TFT has superior contrast and update speed compared to
cSTN. But the ability to let through light is low since the transistors are
blocking part of the light even if this ability has increased over time. A special
type of TFT display is the LTPS (Low Temperature Poly-Silicon) TFT
[TOPLT]. By using crystallized silicon instead of amorphous (non-crystallized)
silicon on the glass substrate, the electron mobility will increase several

5

hundred times. This enables integration of circuitry needed for the display
onto the substrate.

The third type, OLED (Organic Light Emitting Display), is based on organic
materials that produce the light themselves and therefore only the active
pixels will emit light [MOH]. This can potentially save power by using a limited
part of the display at a given time, however for colour displays there is
usually a need to use the whole screen. The development of OLEDs is
ongoing and they are getting more popular but are still limited in their field of
applications and disadvantages are mainly reliability issues and short
lifetime.

Colour element system

To create colours in a LCD display, RGB (red, green, blue) colour elements
are used in a colour filter substrate placed above the TFT substrate, as
shown in Figure 2 below [TOPTF].

Figure 2. Colour elements

Every pixel is built up by three elements, one of each colour, with its own
intensity to form different colours [ERC]. The intensity is determined by the
difference in voltage between the TFT and the colour filter. The colour
elements can be positioned differently in respect to each other. The three
most popular techniques are Stripe, Mosaic and Delta. Stripe is the most
common and have the elements positioned in uniform columns, while the two
others have a more non-uniform constellation to make the transitions
between colours smoother (Figure 3).

6

Figure 3. Colour element systems

LCD lighting

Without any lighting, a colour LCD display is often very hard to read.
Therefore some sort of illumination is needed and there are a few main
techniques for this [MOH]. EL (Electroluminescent) backlight consists of a
film that can be cut in any size. The advantages of this is that it can be made
very thin, the illumination is rather strong and even and the power
consumption of the EL film itself is very small. However, the film needs to be
driven by alternating current which requires a few passive components and a
converter which in turn consumes power. CCFL (Cold Cathode Fluorescent
Light) consists of a fluorescent lamp tube that is placed under or on the edge
of the display glass. Its’ advantages are high luminance and long life but
requires a power consuming converter because of its high voltage. The third
technique is to use white LEDs and is common in smaller LCD displays. The
LEDs can be put in a matrix behind the display when using transmissive ones
or in front of the display when using reflective ones. Edge lighting can also be
used. The LED technique gives less luminance and also some heat
development compared to the other techniques, but new materials and
methods has increased the efficiency of the LEDs.

Display mode

An LCD display can be one of the following three types; reflective (Figure 4,
Figure 5), transreflective (Figure 6) or transmissive (Figure 7). The reflective
type can be used without a light source of its own, but then requires
surrounding lights. Usually a front light is applied to the display module
[TOPTY].

7

Figure 4. Reflective TFT-LCD

Figure 5. Reflective TFT-LCD with front light

Figure 6. Transreflective TFT-LCD with backlight

8

Figure 7. Transmissive TFT-LCD with backlight

A transreflective display generally gives better readability without lighting
than a transmissive one. By using incident light in the manner shown in
Figure 6, there is less need for backlight in bright environments. However, to
obtain equal luminance in both types, a transmissive display needs stronger
backlight since the ability to pass through light is reduced by the increase in
film layers.

A commonly used method, to give a transmissive display some level of
reflectance, is to apply a micro reflective layer directly beneath the liquid
crystal. This type of technology is often referred to as Transmissive Micro
Reflective (TMR). The advantages compared to a transreflective display, are
that the ability to pass trough light is not reduced as much and is fairly simple
and inexpensive to implement (according to Anders Swedin at TRULY
Semiconductors).

LCD controller and drivers

A display needs some sort of LCD controller and drivers together with a
software driver to function as intended. For a basic functional overview, see
Figure 8.

Figure 8. Block scheme of the basic LCD controller structure.

CPU

LCD panel

Controller and drivers

Software driver

9

The software driver is used by the CPU to translate the content to be
displayed into pixels in a certain pattern. The controller and drivers are, in
some way, connected to the CPU and handles the update and electrical
driving of the display.

The controller and drivers makes up a driver circuit that consists of a number
of basic parts (Figure 9):

• Drivers connected to each column and row of the LCD matrix that
feed the pixel elements with input [IRA]. For TFT, these are called
gate and source driver. The gate driver, that connects a gate bus line
to all elements of each row, sets display elements on or off. The
source driver, that connects a source bus line to all elements of each
column, controls the voltage level for the elements.

• A timing controller that controls how the data is put out on the source
and gate drivers.

• Some kind of timing generator with access to an oscillator that
generates timing signals used by the timing controller.

• A RAM that can hold the pixel data corresponding to one screen. This
is loaded with data to be displayed and can be seen as a mirror of the
display contents.

• A power supply circuit that generates the voltages needed for the
driver circuit and the display.

Figure 9. Basic parts of LCD driver circuit.

LCD panel

Source driver
Power IC

Gate driver

Timing controller

RAM

Timing generator (with

oscillator)

10

It is important to separate LCD panels and LCD modules. An LCD panel
basically contains the display glass while an LCD module also can contain
backlight and circuitry with all or parts of the driver circuit [NECEL]. There are
single chips for source driver, gate driver and power IC as well as all-in-one
chips. The level of integrated components in the LCD module will decide the
need for external components. They can, for example, interface directly to
the CPU data bus or to an external timing generating LCD controller.

Chip mounting

There are different ways of organizing the chip of a display [MOH]. Mainly
five methods are used for small sized displays:

COB – Chip on board: The traditional method where the chip is positioned on
a board next to the display glass. The connection is done by wire bounding.

COF – Chip On Film: The chip is built-in onto a film that is flexible and
foldable (Figure 10). This also makes the display very thin and a metallurgical
connection is used.

COG – Chip On Glass: By building the chip directly on the glass, the cost per
unit is reduced due to less used material and makes for a relatively compact
LCD module. The connection way is an ACF connection (-> wordlist).

TAB – Tape Automated Bounding: This method is similar to COF but lacks in
flexibility.

SOP – System On Panel: A method used for LTPS TFTs where the driver IC
is integrated onto the same substrate as the LCD cells. This gives less
connections and components and contributes to achieving thinner displays.

Figure 10. COF mounting

11

Investigation

This is the research part of the thesis. The market will be thoroughly
investigated, and the current trends in displays as well as leading vendors
and manufacturers will be presented.

Displays

Trends on the market today

Colour LCD displays in larger formats have been around for quite some time,
perhaps most noticeable in laptops and later on hand held computers. The
breakthrough for smaller sized displays of this type came with the digital
cameras [BEL], where size and image quality is of great importance.

In mobile phones, colour displays were first appeared in a few top-end
models as late as around year 2000. These displays were often of a simple
kind with rather bad readability and high power consumption compared to the
existing black and white ones. The development of colour displays for mobile
phones has since then been very fast and most of the mobile phones sold
today are equipped with one, or two. They exist in all price ranges from small
and simple to large more expensive displays. Generally, however, there has
been an improvement in overall performance rather than an increase in
viewing area. One of the main reasons for the rapid popularity and
performance improvement is the popular trend of built-in digital cameras
where the display also works as a view finder.

The trend with colour displays can also be observed within cordless phones,
although a bit delayed. Only in the past two years, colour displays can be
found on this market, most of which do not have built-in cameras. Despite of
this, a large part of the newly developed cordless phones today are sold with
colour displays. The main reason for this is often the visual appeal of menu
systems in colour and the possibility to show pictures on the phone. Figure
11 shows a cordless phone with colour display.

Figure 11. Topcom Butler 5500 cordless phone

When it comes to different display types within the mobile phone industry,
there has been an increase in the amount of TFT displays compared to cSTN
displays. According to [JAKH], this will continue as seen in Figure 12 where
iSuppli/Stanford Resources’ mobile phone display shipment forecast is
presented.

12

It shows that both the total amount of mobile phone displays will increase at
the same time as the number of cSTN displays will decrease. [JAKH]
explains this development with an estimated average increase in resolution
and number of colours which only TFT displays has enough capacity for.

Prices are expected to fall for all types of displays. However, component
suppliers want to fulfil the requirements for the higher-margin TFT markets
first, and the lower-margin cSTN markets later. This will prevent a significant
reduction in cSTN prices as TFT gains in popularity. An estimated price
development for display panels can be found in Figure 13.

Manufacturers

There are a huge number of display manufacturers on the market. The
Internet was used to find information about manufacturers and their products

Figure 12. iSuppli/Stanford Resources’ mobile phone display shipment forecast

Figure 13. iSuppli/Stanford Resources’ mobile phone display panel pricing forecast

13

to get the latest updated information [SHER]. The investigation had to be
narrowed down to a limited collection of companies that best suited the target
and a decision to only consider TFT displays was made. Another demand
was that there should be at least some basic facts about the displays to
consider that manufacturer.

When comparing displays from different manufacturers, the following
specifications are among the most important:

• Size: Diagonal distance of viewing area in inches

 (1 inch ~ 25 mm).

• Resolution: Number of pixels (width x height).

• Colours: Numbers of different colours that can be used.

• Power consumption: Consumed current times supply voltage.

• Contrast ratio: Difference in light intensity between the brightest

 white and the darkest black.

• Luminance: Measure of light intensity (in Candela per m2)

• Response time: Time for a liquid crystal cell to go from active to inactive

 and back to active again.

According to the task, the displays should handle icons, photos and large
amounts of text. This information must be clearly visible and the display has
to fit the physical design. Thus the investigation was focused on display sizes
around two inches and 65k colours and above. For resolutions, 128x128
pixels was considered a minimum.

Table 1 below shows the most interesting manufacturers. A complete table of
their displays is found in Appendix A.1. List of TFT display manufacturers,
along with a few other manufacturers.

Table 1. The most interesting manufacturers

AU Optronics Wide range of TFT displays

FEMA Electronics Only one 1.75’’ TFT

Genesis Tech (Samsung) Interesting TFTs, partner with Samsung

Goleta Display Systems A few TFTs

Hantronix 1.8’’ and 2.0’’ TFT

Palm Technology Co. Ltd. A couple of interesting TFTs

Picvue Electronics Ltd. A few TFTs

TCI Display Co. Ltd. Several TFTs of different types

Three-Five Systems A couple of 2.2’’ TFTs

TIANMA Microelectronics Some TFTs

Toppoly Optoelectronics A lot of TFTs, specialized in LTPS

Varitronix A few TFTs, most with 262k colours

GUI development software

With more advanced graphical user interfaces, the need for efficiency gains
during development is crucial. The first step might be to create a function
library with commonly used actions and objects. The functions in this library
can then be used and reused when developing the GUI, with considerable

14

efficiency gains. The next step is a stand-alone software where all functions
are collected on a workspace in a PC application. The functions are easily
accessible and there is often a visual representation in real-time of the GUI.
This does not only save a lot of time, but also reduces the need of
programming skills and knowledge of the underlying system.

GUI development software vendors

A number of manufacturers of GUI development software were found and
investigated. All products are royalty free and include source code.

Table 2. GUI development software vendors

Manufacturer /

Product

Distinguishing

features

Prog

lang.

OS indep-

endence

Visual GUI

editor

Price

(SEK)

Segger / emWin Good

documentation

C Yes No 69 000*

Swell Software /

PEG+

Advanced objects

and graphics, large

footprint, visual

editor

C++ Yes Yes, visual

representation,

code

generation

68 000*

Swell Software /

C/PEG

Not the best but

very few

weaknesses, visual

editor

C Yes Yes, visual

representation,

code

generation

49 000*

IBIS Solutions

ApS / easyGUI

Easy to use, few

objects and simple

graphics, visual

editor

C Yes Yes, visual

representation,

object

handling, code

gen.

7 000**

Accelerated

Technology /

Nucleus GRAFIX

Advanced GUI

functions, OS

integration

C Nucleus

recomm-

ended

No ?

Express logic /

PegX

OS integration C++ ThreadX

recomm-

ended

No ?

* License per developed product
** License per user

Comparisons

All GUI development softwares (Table 2) in the study have very similar
characteristics, but there are some differences that are more important to
consider when deciding.

Programming language

The two programming languages of current interest are ANSI C and C++.
Generally speaking, C++ has more features and can handle more complex
actions. C++ is in many aspects also better suited for graphics programming.
On the other hand ANSI C has a significantly lower footprint, the amount of
system resources needed. An estimation is that the ANSI C footprint can be
about 60% of the C++ footprint [DEL]. The only software in the study that
uses C++ is PEG+ from Swell Software.

Windows

The main use of windows in the GUI is to separate different areas of the
screen both sideways as well as above and under. With extensive window
support there are possibilities to have pop-up windows floating above the rest

15

of the display content, to see content from two different sources at the same
time by placing them side by side and to create drop-down menus. The Swell
Software C/PEG has no actual window support, rather working by the
principle that each screen takes up the whole display. The other softwares
have at least support for resizable and movable windows with clipping,
although the windows in easyGUI are highly primitive. Nucleus Grafix and
PEG+ both have advanced window features like hiding, layering, data type
control, vertical and horizontal scrolling, child windows and multi-line editing
(still to be implemented in Nucleus at time of writing).

Fonts

To look good on a display, the fonts must be proportional and it must be
possible to create new or modify existing fonts to fit the application profile. All
of the software investigated had these capabilities in one way or another, as
a built-in feature or a stand-alone converter.

Real-time image decoding

This feature enables conversion of images from different formats to a format
that can be displayed during program execution. I.e. the user can display a
photo stored in jpg format on the terminal. PEG+, PegX and emWin are the
only programs that have this built in, but it will of course also require relatively
large resources from the application.

Handling of menu systems

This is a very important aspect of creating a dynamical GUI. Many of he
programs have similar ways of keeping track of menu objects and windows.

Nucleus Grafix, PEGX, C/PEG, PEG+ and emWin give the programmer the
possibility to give each item, i.e. a window or a button, their own specific id.
The items can also be parents, children or siblings to other items and
notification messages can automatically be sent between these. This gives a
structured hierarchy of the menu system. With easyGUI it is possible to give
each item their own name, but there is no further structure and it is left to the
programmer to handle all events.

Differences between C/PEG and emWin

After examining the different software packages based on a theoretical
investigation, it was time for a more in-depth investigation. Due to time
limitations, not all softwares could be considered. C/PEG and emWin was
found most suitable and was chosen for this. Some of the distinguishing
features for these were that they use ANSI C and are not integrated with a
certain OS.

Evaluation versions of both C/PEG and emWin were obtained from the
manufacturers. By using them to create GUIs in a PC environment, the
capabilities of each of the softwares could be better understood. From these
experiences some differences were observed.

• A visual editor called “Window Builder” is shipped together with the
C/PEG library (Figure 14). This software gives a visual representation
of the GUI and can generate complete source code in ANSI C.
Bundled with the Window Builder, there are several other tools to
handle images, fonts, text strings and several object properties.

16

• Lists, radio buttons and checkboxes are included in both packages.
When using C/PEG, radio buttons or checkboxes with functionality,
can be added to a list. In emWin there is no direct functionality for
combining these. However, lists can be customized to contain for
example bitmaps along with text via a so called owner draw function.
The programmer can then implement the desired functionality by
creating bitmaps looking like checkboxes etc. //// Lists with the
desired design cannot use checkboxes or radio buttons with the
desired functionality in emWin. Easy to use in C/PEG.

• With emWin, Scrollbars can directly be added to lists with automatic
functionality, and also be set to appear only when necessary. In
C/PEG the scrollbar can only be created separately and its function is
up to the programmer to implement.

• Both programs can convert bitmaps to ANSI C code that is used to
display them in the GUI. C/PEG also has an object called icon which
makes it simpler to display and handle bitmaps directly in real-time.

• EmWin supports real-time displaying of .bmp, .jpg and .gif files which
C/PEG does not. Extra memory is recommended for decoding and
displaying of the compressed formats.

• C/PEG has a “group” feature, which allows objects to logically and
visually be gathered together. This makes it possible to perform
common tasks on all objects in the group or to move as well as
remove and add the whole group on the screen. No such feature in
emWin.

• C/PEG has support for changing language in real-time on all text
strings used in the GUI. Further more, a string editor is available in
the Window Builder software, which allows easy string handling,
including language, font ant size.

Figure 14. C/PEG WindowBuilder

17

• EmWin has a tool for displaying an executable version of the GUI in a
PC environment with the possibility to show different layers or
windows (Figure 15).

Figure 15. emWinView with created emWin GUI

• C/PEG has a bit more code built into the object function, which
reduces the amount of coding for the programmer. Also there are a
few more functions than in emWin.

• EmWin has an extensive and well-written manual, and earlier
experiences say that the company behind the software is competent
and reliable.

• Earlier work has been done in emWin, which means that there are
already knowledge and experience in Ascom, as well as programmed
code for emWin. But the programming principle in C/PEG is very
similar to the one used in emWin, so large parts of the knowledge is
probably fairly easy to apply in C/PEG.

State machine consideration

When creating a GUI, it is desired to make the process as dynamical as
possible. This will, for example, make the menu structure of the GUI easy to
change.

To make the handling of states, events and actions in a menu structure easy
and clear, some sort of visual representation would be helpful. For this
reason, the possibility of combining a GUI program or graphical library with a
state machine similar to Visual State is considered. The aim is to be able to
create all graphical items as windows etc. with the GUI program and manage
the different states in the state machine, with input events that triggers
actions. An event can for example be a pressed key and an action can be to
move from one state to another. A state machine will generate the needed
code and has direct support for events as input and actions as output.

Discussions with Joakim Jarfjord at Ascom, concludes that the possibility has
been explored prior to this thesis work. Jarfjord attempted to combine the

18

GUI program EmWin with Visual State but found this to be complex and time
consuming. The main reasons for this are stated below.

A “bubble” (visual representation of a state) in Visual State does not
necessarily correspond to one screen image in the menu system. For
example, when scrolling through a list with arrow keys, each key event will
make for a state transition. A very large number of bubbles is then needed,
one for each selectable list item. If instead each screen image is defined to
correspond to one state, a considerable number of properties will have to be
set for each bubble, thus eliminating the desired functionality of the state
machine. Furthermore, in a contact list, there should be a possibility to add
items to the list which will further add to the complexity of the visual structure.

The need of changing a menu system structure is practically inevitable due to
changed conditions or demands. Moving a sub menu from one place in the
structure to another will mean that all new transitions for that must be created
and previous transitions changed or removed.

There are also many different types of actions that might occur. For example,
a selection in a menu could result in calling a function like connecting a call.
Another selection could be to select an option with a radio button. Therefore
the visual representation will be inconsistent and far from clear.

One alternative to using a state machine is to define the menu structure in a
header-file, which is used by the code for creating the GUI. By using the
parent-child functionality and callbacks of the GUI program, each item can be
related to the rest. Most of the other code can be written in general way. A lot
of coding is needed for this but the main advantage is that changes to the
structure easily can be made by editing the header-file.

A way to improve the simplicity of creating the menu structures is to write a
program in windows that enables the developer to, in a more easy-to-grasp
manner, build the structure. The program should then simply generate or
update the header-file.

19

Implementation

When all background information is investigated, the next natural step is to
test the theory in practice. This is the part where the systems of theory is
realised, constructed and tested.

Equipment

Display

One part of the thesis was to find the best suited display for the application,
but the need for a display to perform tests arose before that was determined.
A standard display, originally intended for digital cameras, was acquired from
AU Optronics. The specifications for this display are found in [AUO].

OMAP 5912 starter kit (OSK)

This kit was the heart of the project. It consisted of a development board and
a collection of board and chip specific libraries. It also contained an
embedded version of Linux, but that was not used in the project. An Ascom-
developed simple start-up code was sufficient. On the board there was an
abundance of components and connectors. The once used in the project
was; the OMAP 5912 processor, the USB connector, the RS232 connector
and one expansion slot on the back side. There was also a large set of
usable modules, of which these was used; LCD controller, DMA controller, a
serial communications protocol called MicroWire and another protocol called
UART for RS232 communication [TIHW].

OMAP 5912 processor

The processor of type OMAP 5912 is produced by Texas Instruments and is
based on the ARM processor architecture. The processor has three basic
clock frequencies; 12, 13 and 19 MHz and a maximum frequency of 192
MHz. The number of I/O ports is very large, since the processor has a quite
special system of “balls”. One ball can hold up to 8 ports which are
determined with an internal multiplexer. The ports can also be set as pull-up
or pull-down, used to keep either a high or a low value respectively on the
port. The processor has support for 16- or 32-bit instruction sets and an
internal SRAM of 250k bytes [TIDAT].

PC

The PC was a standard machine running “Microsoft Windows XP” operating
system and “Microsoft Visual C++” development environment was used
during programming, but compilation was performed with “gmake”. Two
channels were used to communicate with the OMAP board – one USB
connection and one RS232 connection. USB was used to load the compiled
code into the memory of the processor, and a small Ascom-developed
program handled this loading. RS232 was only used as a feedback channel
where output from the program was visible in “Microsoft HyperTerminal”
which was set up to listen on the serial port COM1 on the PC.

Test board

In the beginning of the project a test board was built to hold the display, the
buttons and some extra components like capacitors, resistors, inductors and
transistors. A small connector was mounted that fitted the cable from the
display and individual cables from a large flat cable (80 pins), that connected
to the OMAP board, was welded onto the test board along with cables from

20

Figure 16. The prototype

the buttons. That structure had several advantages since all separate parts
could be easily disconnected when
welding or testing. It also made it
possible to replace the display or to use
another OMAP board. Furthermore the
structure became very easy to overview
and gave room for testing and fault
localization.

Cables & Contacts

The OMAP board was connected with,
apart from power supply, one USB
cable to the PC, one RS232 cable to
the PC and the flat cable to our test
board. The flat cable was connected to
one of the expansion slots residing on
the back side of the board. The test
board had several small cables,
extracted from the flat cable and
welded onto the board. The cable to
the display was already mounted in the display module, so a special
connector on the test board was all that was needed to connect the display.
A photo of the complete prototype, including OMAP board, test board, display
and all cables, can be seen in Figure 16.

Measuring instruments

To help with testing and evaluation during hardware construction, a Hewlett
Packard 54645D mixed signal oscilloscope was used. It has two analogue
inputs and sixteen digital inputs, which makes it suitable for measuring
standard signals as well as parallel digital signals. The digital measurement
was particularly useful when investigating the parallel signals to the LCD. For
measuring of constant voltages, an ordinary multimeter of type Fluke 83 was
used. There were situations where, for testing reasons, a voltage was
needed to be applied over certain parts of a circuit, and a Hewlett Packard
E3631A DC power supply satisfied those needs.

Prototype system

The realisation is done by constructing a prototype consisting of all the
investigated elements. Both software and hardware should be tested in the
prototype.

System overview

21

Figure 17. Prototype system overview.

The complete prototype system is visualized in Figure 17 above. It spans
from the pure software part in the top left corner to the hardware in the
bottom right.

The software is a GUI, created with a GUI development tool that can handle
objects of different kinds, such as windows, buttons, icons, text fields etc.
These objects together make up a visual appearance of a GUI, and when
adding functionality to the objects, such as click events and menu trees, the
GUI is complete.

All objects are visualized on the LCD by combining single pixels in different
colours. How these pixels should be combined to form a button, icon or any
other object is determined by the graphical functions. This is a library that
contains some basic drawing operations, like dots, lines, rectangles, circles
etc. Several basic operations are used together to form an object. There are
also operations to draw text strings in predefined fonts. One could see a font
as a translation key, from a letter code in the software to a pixel formation on
the display.

When the objects have been visualized with the graphical functions, they are
stored in the frame buffer. The way the data is stored is tailor-made to suit
the LCD controller. The frame buffer is a temporary storage area, from which
the LCD controller reads when it updates the display. This reading is realised
with DMA, which is a transfer method that runs outside the processor and
therefore does not load the processor at all.

The display used is a LCD module with power IC, integrated drivers and
timing controller. Thus there is a need for an external timing generator which
in this case will be the LCD controller of the OMAP. It performs a display
update by sending synchronization and control signals to the LCD module
along with the pixel data. There are three synchronization signals: The pixel
clock is used to clock pixel data into the display and its frequency will

(DMA)

control

 data

LCD module LCD

controller

 GUI

 tool

Graphical

functions

Output

to

frame

buffer

22

basically determine the update frequency of the display. HSYNC is a line
clock that toggles each time all of the pixels in a line have been displayed
and works as a horizontal synchronization signal in active mode. VSYNC is
correspondingly a frame clock that toggles when all the lines in a frame have
been displayed.

GUI

The graphical user interface in the prototype system consists of a set of
screens, linked together in a certain structure to allow navigation between
them. The main purpose of the prototype screens is to demonstrate and test
the functionality of the GUI development software as well as pointing out
some of the advantages when using a colour display compared to the
currently used displays in Ascom’s products.

Screen handling

The navigation in the GUI is performed by changing screens. A screen is a
complete display area and can neither be resized nor moved. There are
several ways of changing screens though, four of them are presented in
Table 3. The rows denote the structure of the relation between the screens.

A flat structure means that all screens are on the same level and are all
siblings to one parent. To change screen in such a structure, one simply
make the new screen visible instead of the old. Logically this is a simple
solution but the navigation becomes quite complex, since there are no
relationships between new and old screens.

A hierarchical structure on the other hand, allows easy navigation because a
new screen is then a child to the old screen. This means that navigating back
is simply going back to the parent.

Either one chooses a flat or hierarchical structure, there is a choice of
creating all screens when GUI starts or create them when needed and
destroy them when not. If creating at GUI start, the principal is to hide all
screens but the current one. When changing screens, the old one is hidden
and the new one is shown. To handle dynamic data, like posts in a
phonebook, the screens must be updated with the new data when they are
shown.

The other approach is to start out with no screens at all, and then create
them when needed. Then dynamic data is no problem but there will be some
extra delay when changing screens. The memory requirement is hold down
though, and to keep it down all screens not needed are destroyed and the
memory is freed.

Table 3. Comparison of different methods to change screens

 Create all at GUI start Create new and destroy old

Flat structure • Memory demanding

• Complex navigation

• Complex dynamic data

• Memory efficient

• Complex navigation

• Simple dynamic data

Hierarchical structure • Very memory

demanding

• Simple navigation

• Complex dynamic data

• Medium memory

requirement

• Simple navigation

• Simple dynamic data

For the prototype GUI, a hierarchical design were chosen, no screens are
created when GUI is started. First when the user is navigating to a new

23

screen, that screen is created. The screen is kept in memory as long as the
user is navigating below that screen in the hierarchical structure, but is
destroyed as soon as the user have has navigated passed that screen when
stepping back through the structure.

The C/PEG software used to build the GUI, supported a maximum of 16 bits
per pixel, so that mode had to be used although the display supported 24 bits
per pixel.

Main screen

There is a main screen in the GUI, which
is created at start up time, and is in the
top of the hierarchy. This screen is never
destroyed and the user cannot navigate
away from it, just open new screens. On
the main screen, phone status, like
battery power, signal strength and current
user is shown. Current time and date is
also shown, even though they are static in
the prototype.

Apart from the main screen, there are a
handful other screens, from which some
important are presented below.

Icon menu

The appearance of this screen is almost
the same as the icon menu used in the
newest of Ascom’s phones, but with
colour icons and labels. The high
resolution in the target display also
allows borders and higher quality on the
graphics overall. Because of the similar
design with existing GUI, one can study
the gains with using colour and high
resolution.

Phonebook and contact details

The phonebook has a list of names, with
one name per row, where all rows can
have their own style and colour to
improve readability. When user clicks a
name, details of that person is shown in a
new screen. The details consist of a
colour picture of the person and a text
field that, thanks to the high resolution,
can show a large amount of information.

24

Message editing

One of the weaknesses of the C/PEG package, is the lack of multi-line
editing capabilities. This is very obvious on the message editor screen, where
only one row of input is supported. To support multi-line, extra work from the
programmer is needed.

Settings and profiles

These two screens demonstrate the built-in objects radiobuttons and
checkboxes. There are simple functions to set them in on and off positions,
and the package also keeps track of the state. It also makes sure that only
one radiobutton is in on position at any given time.

Graphical library

All objects in the GUI development package consists of a set of primitive
drawing functions, like rectangles, circles, lines and so on. There is also a set
of bitmap drawing functions. All drawing functions are built-in to the package
and are ready to use, but one might have to adjust some of them slightly to fit
the current target system though. In the prototype no changes to the original
code were needed.

Output to frame buffer

This is a function that is called when the display should be updated, either a
whole screen or a smaller part of the screen. To find out what area of the
display that should be updated, there is a variable called “Invalid” and is a
rectangle defining the area to update.

The overall algorithm in the prototype consists of the following steps;
calculate the starting point in memory, loop through odd and even rows
separately, extract data from the internal structure, convert the 16 bit internal
data into three bytes to fit the target display and finally write the pixel data in
the SRAM frame buffer.

Data transfer

Figure 18. Data transfer block scheme.

The principle of the data transfer from the processor to the LCD is described
in Figure 18. The data is stored in a dedicated memory area in a special
structure to suit the controller. There are eight input pins on the LCD, but the
controller can not output less than sixteen bits at a time for an active TFT

25

display. Due to this, the data can only be stored on every second address,
leaving every second address unused [TIDMA].

To unload the processor as much as possible, the transfer is done by direct
memory access (DMA). The DMA transfer runs outside the processor, and
therefore it does not load the processor at all. The transfer is just triggered to
start by the processor, and then it runs by itself. The trigger occurs when the
LCD controller is enabled.

The DMA controller is set up with the start and stop address of the dedicated
memory area, as well as the number of columns and rows of the LCD. The
other important settings in the DMA controller are:

DMA LCD Channel Source Destination Parameters Register (DMA_LCD_CSDP)

Burst Enable = 1 (access 4 words at a time)

Pack Enable = 1 (pack 4 bytes in a single 32-bit-word)

DATA_TYPE = 01 (16 bits scalar word size)

DMA LCD Control Register (DMA_LCD_CTRL)

BLOCK_MODE = 0 (1 block)

BLOCK_IT_IE = 0 (no block done interrupt)

BUS_ERROR_IT_IE = 0 (no bus error interrupt)

LCD_SOURCE_PORT = 00 (memory source is SDRAM)

LCD_DEST_PORT = 0 (OMAP built-in controller)

DMA LCD Channel Control Register (DMA_LCD_CCR)

ADRMODE = Post-increment (default mode)

OMAP3_1_Compatible_disable = 1 (currently using version 3.2)

AutoInit = 1 (automatically initiate transfer when end is

reached)

Repeat = 1 (auto restart transfer when end is reached,

 only if AutoInit is set)

High Prio = 1 (not needed, can increase display update speed)

Bursting and packing is not necessary but increases the transfer speed. The
data type must be 16 bits though, otherwise there will be an error when
receiving the data in the LCD controller. The DMA transfer should be
disabled before the initialization is performed.

The first 32 bits of the memory area is the palette. It is not used by the LCD
but is needed for the controller to know which format to use. The palette is
transferred first to the display, and then waiting for an acknowledgement
before start sending the data.

The data is sent repeatedly, since “AutoInit” and “Repeat” are set, which is
necessary since an active display must be fed with new pixel data at all
times. The transferred data is stored in a first-in-first-out (FIFO) buffer,
allowing the LCD controller immediate access to the data it outputs to the
LCD. The DMA transfer uses a dedicated physical channel to the LCD
controller, so there are no conflicts on the data bus.

LCD controller

The development board contains a built-in LCD controller that connected to
the display makes up the display interface. The LCD controller can be
programmed to support pixel resolutions up to 1024x1024, graphics modes
up to 16 bits per pixel and both STN and TFT technologies.

26

The controller consists of a number of functional blocks according to Figure
19.

Figure 19. Block scheme of the built in LCD controller.

In the upper left corner the pixel data is obtained from the DMA channel.
Because the display used is of active matrix type, several of the blocks will
not be used. The palette RAM is normally used to store colour values which
are indexed by encoded pixel data used as pointers. In this case the palette
will not be used in the normal sense but will be zero filled apart from a 3 bit
value telling the controller what number of bits per pixel it should support.
The dithering logic will be bypassed together with the output FIFO and the
pixel data will be sent directly from the palette to the output pins without
further processing [TIDISP].

The output signals that are connected to the display in our design are pin 0:7
of the pixel data, the pixel clock, HSYNC and VSYNC (see schematics in
Appendix C.1. LCD interface schematics).

The operation and function of the LCD controller is programmed by setting
and reading from a number of registers described in [TIDISP]. In order for the
controller to work properly, it is crucial that it is correctly configured for the
display. The most relevant register settings for the controller along with brief
explanations can be viewed below. Complete settings are found in Appendix
D.1. LCD controller register settings.

LCD control register

This register contains bit-fields for basic settings like display type and turning on/off the

controller.

LCD TFT (LcdTFT) = 1 (Active display control mode)

LCD Control bit 0 (LCDCB0) = 0 (Together with LCDB1 sets the mapping

of graphics data on the output pins. 00

means 8 bits per pixel or above for either

passive monochrome and colour, or active

displays)

LCD Control bit 1 (LCDCB1) = 0 (see LCDB0)

Gated pixel clock (pxl_gated) = 0 (The pixel clock will always toggle)

Palette loading (PLM) = 01/10 (01: the frame buffer should contain only

the palette data, which is then placed in

27

the palette. 10: the frame buffer should

contain only the pixel data, which will be

send out directly to the display.

LCD Timing 0 register

This register contains four bit fields that control the HSYNC-signal generation and are set to

binary values. For more details, see Figure 20.

Pixels-Per-Line (PPL) = 1001111111 (640* pixels per, in other words, the

horizontal resolution of the display)

Horizontal Synchronization (A HSYNC pulse will be 1* VSYNC

clock long)

Pulse Width (HSW) = 000000

Horizontal Front Porch (HFP) = 10111011 (send 188* dummy pixel clocks after a

complete row of pixels has been

transmitted to the display before a new

HSYNC pulse is sent)

Horizontal Back Porch (HBP) = 00011100 (wait 29* pixel clock periods before

sending pixel data after a HSYNC pulse)

LCD Timing 1 register

This register is similar to the previous timing register except it controls the VSYNC-signal

generation and time values are defined in HSYNC periods instead of pixel clock periods. For

more details, see Figure 20.

Pixels-Per-Line (PPL) = 0011101111 (240* lines per frame, in other words, the

vertical resolution of the display)

Horizontal Synchronization (a VSYNC pulse will be 1* HSYNC

clock period)

Pulse Width (VSW) = 000000

Vertical Front Porch (VFP) = 00000000 (wait 0 HSYNC clock periods before

sending pixel data after a VSYNC pulse.

I. e. no horizontal front porch.)

Vertical Back Porch (VBP) = 00010101 (wait 21 HSYNC clock periods before

sending pixel data after a VSYNC pulse)

*Note: value is set to desired value – 1.

LCD Timing 2 register

This register contains bit fields for setting the function of the timing.

Pixel clock divider (PCD) = 00000010 (the generated clock frequency will be

divided by 2 to give a resulting clock

frequency that meets the specifications on

refresh rate of the display)

Invert VSYNC (IVS) = 1 (The polarity of VSYNC is inverted to

active low)

Invert HSYNC (IHS) = 1 (The polarity of HSYNC is inverted to

active low)

Invert Pixel Clock (IPC) = 1 (The edge of the pixel clock that drives

pixel data out onto the LCD data lines is

set to falling edge)

28

Figure 20. Timing of the OMAP LCD controller

The choice of gated pixel clock is a power saving option that is available for
passive displays, which means that the clock only will toggle when there is
relevant data to display. For the display used, a pixel clock is always needed
during operation and is also used by the LED driver circuit (Appendix C.2.
LCD application circuit schematics.). Without the clock signal the display
will automatically be set in standby mode.

All three of the timing registers are set to make the timing specifications end
up within the limits for the display. These specifications can be found in
[AUO].

While performing settings for the controller, it must be turned off in order for
changes to take affect. After the controller is enabled first time, the palette
data is read from the frame buffer (with PLM = 01). It will be 32 bytes (16 by
16-entry Palette’s) but only contain 3 bits of useful data and the rest will be
zero-filled. Bit 14:12 in the first entry is set to 1xx, which will work for 16 bits
per pixel encoding (Figure 21). After this is done, the controller is turned off,
PLM is set to 10, and then it is turned on again. The rest of the data will only
be pixel data.

Figure 21. First palette entry (out of 16)

One important thing to notice is that we set up the controller to send out 16
bits of pixel data at a time. However, the display supports 24 bits per pixel
with an 8 bit RGB interface. This means that only one 8 bit colour element (R,
G or B) will be sent at a time. Therefore, there will be 8 bits of “dummy“ data
sent each time data is clocked out to the display. All timing settings are made
treating each colour element as a pixel.

LCD module

Serial control of the display

The display has a serial control interface, consisting of an enable signal, a
data input and a clock input. Through this interface all communication to
control the display, apart from the pixel data transfer, takes place. Through

29

the OMAP board, several serial interfaces and protocols are available. Three
different ways of achieving the connection were considered:

The I2C module of the OMAP uses the I2C protocol that includes a clock
signal line and a data signal line similar to that of the display. The connected
I2C devices can be configured as a transmitter or a receiver and are
recognized by unique addresses. However a two-way communication is
needed because acknowledgments must be sent back from the receiver.
This is not supported by the display that can only receive signals via its
interface.

Another method is to manually generate all three signals for the interface by
setting GPIO pins. As it turned out, the transitions between a logical 0 and 1
of the GPIO outputs were to slow, resulting in the data not being correctly
clocked in.

MicroWire is another serial interface protocol that can be used in a similar
manner as I2C. A difference is that there is no need for acknowledgements,
making it suitable for the application. By using the clock signal and data out
signal of the MicroWire interface together with a GPIO as the enable signal,
the interface is complete (Appendix C.1. LCD interface schematics).

Via the interface, 16 bit long serial commands are sent to set registers in the
display module. This way initializations, as well as settings of the display, are
made. A serial command is clocked bit by bit during an active enable signal
[AUO]. The VSYNC signal is also needed since the serial commands are
established by its pulse. This means that commands are only valid when sent
during the inactive part of a VSYNC pulse and that when setting the same
register more than once during a VSYNC period, only the last setting will be
executed.

When supplying the display with power, it will first be in standby mode,
meaning the pixel elements will be turned off and nothing will be shown on
the screen. It will, however, accept serial commands as well as clock signals
(DCLK, HSYNC, VSYNC) and pixel data. To disable the standby mode, a
certain sequence of serial commands is recommended:

• Reset register settings

• Set panel resolution

• Set scan direction (Defines the order in which the elements should be

updated. Up-to-down or down-to-up and left-to-

right or right-to-left.)

• Release standby

• Flip scan direction (Both horizontally and vertically.)

The display module has a built-in timing controller that supports different
panel resolutions and therefore, the correct resolution must be set before
releasing standby. Also, the flipping of scan direction is needed for initializing
the bi-direction control circuit of gate and data driver.

Display related circuits

The external power supply for the display is achieved from a 3.3V pin of the
OMAP and is enough to generate all needed voltages for needed for its
operation. It has a built-in driver IC that provides a DC-DC charge pump, a
VCOM driver and a LED boost controller.

30

The DC-DC charge pump circuit is responsible for generating the positive
(VGL) and negative (VGH) power supply and needs seven external passive
power setting capacitors. These are connected as shown in Appendix C.2.
LCD application circuit schematics. and capacitance values are chosen
according to recommended values in [AUO].

A common voltage is generated by the VCOM driver and its output pin FRP,
is connected directly to the input VCOM pin.

A LED booster controller in the LCD module can be used to drive a booster
circuit that generates the voltage needed for the backlight. The backlight, in
this case, consists of three white LEDs integrated in the module. The circuit
is of the type step-up converter and is connected as shown in Appendix C.2.
LCD application circuit schematics.. It is based on the application circuit
found in [AUO]. A NPN switching transistor similar to the suggested is used
and a regular diode is used instead of a schottky diode. Component values
and descriptions can be found in Appendix C.4.

DRV generates a square wave used to switch on/off the transistor T1 that
works as a switch. When in closed state the left part of the circuit will be
shortened and the inductor L1 will be charged by VCC. When in open state
L1 will discharge through the diode D1 and provide an output current through
and a voltage over the LEDs and the resistor R2. D1 and the capacitor C3
make sure the output voltage and current will remain constant also when the
switch is closed [RAM]. The reason for having R2 is to give FB a feed back
voltage that is used by the LED booster controller.

In order to measure the obtained amplification of the circuit without risking
damage to the LEDs, a resistor with an equivalent resistance is connected
between the point after the diode and FB. Thus the LEDs are bypassed and
the voltage drop of the resistor can be measured.

For reasons presented in the “Problems” section, this circuit was, however,
not used. The objective in this case was to supply power for the backlight to
make the display readable. Since using a boost circuit to achieve this was not
a high priority in this project, it was put aside. Instead a DC power supply
generator was connected to VLED and ground with alligator clips. On this the
output voltage and current could easily be set as required.

Keyboard interface

A GUI needs some kind of input and when it comes to wireless phones,
mainly keypads are used. The OMAP processor contains a keyboard
interface with specific I/Os supporting up to eight rows and eight columns of
buttons [TIKB]. This is used to connect the keypad of a wireless phone
(Appendix C.3. Keyboard interface schematics).

The input pins for columns (KBC), drive a low level while the input pins for
rows (KBR) are pulled up to VCC. When pushing a button, the circuit for a
certain row and column will be shorted and a low level is input on one of the
KBR pins. This generates an interrupt and by finding out which button is
pressed, it can be used to trigger desired actions.

Only the columns and rows corresponding to the buttons needed for menu
navigation are connected. The interface then contains two columns and five
rows resulting in ten available buttons:

31

• Three softkey buttons

• A four-way navigation button

• A mute button

• Digit buttons 2 and 5

Porting GUI library to prototype system

The pre-written GUI library was adapted to run in a windows environment. To
be able to run the GUI on the OMAP development board with the target
display, some adaptations had to be made.

Display functions

In the GUI development package, the primitive drawing functions are already
written. They update an internal structure that holds the current appearance
of the display. The parts that have to be adapted to the target are the ones
handling memory management, colour palette and writing to display.

Memory management deals with allocation and release of memory, which is
performed differently on different systems. It is mainly used when initializing
and destroying GUI objects. For the OMAP processor the standard ANSI C
function to allocate and free memory is sufficient.

The colour palette is used for two reasons; to tell the target display controller
which mode of colour depth and number of output pins used, and to handle
conversions of low quality bitmaps in the GUI to the target display. In the
prototype system, these settings are already set in the boot up code.

When updating the display with a new screen with its objects, a target
specific function is used. This function reads from the internal structure of the
display data and writes to either the display RAM directly or to a frame buffer
for later transfer to the display. Because of the 8 bits per pixel serial RGB
interface used in the target display of the prototype, this function has to be
rather complex. Several bit operations is needed to divide the 16 bits internal
data per pixel into 8 bits for each of the three colour element. Furthermore,
the delta pixel configuration on the display requires different element ordering
for odd and even rows, this must also be taken care of in this function.

The built-in OMAP LCD controller uses DMA to read all data from a frame
buffer, and then transfer the data to the display in a synchronized manner. A
major drawback with that LCD controller is that there is no support for 8 pin
output in TFT mode, just 12 pin or above. To use a 24 bpp display with 8 pin
input, one is forced to use 16 pin output mode on the controller and write the
display data on every second byte instead of every single byte. This will of
course leave half the memory area filled with unused data, and the total
memory requirement will double.

Keyboard driver

To be able to use all the built-in features in the GUI development package, a
target-adapted keyboard driver should be written. Features like automatic
logic for traversing lists and other objects as well as button presses and
scrolls are all written in the package, but need to be triggered by external
keyboard signals.

The prototype GUI system has no target-adapted keyboard driver, rather a

32

special function that handles the key input outside the GUI package. The
function figures out which key was pressed and calls suitable functions inside
the package. This approach is certainly possible but is very inefficient when
handling many different keys and a large variety of actions to perform.

Problems

Some difficulties and problems occurred during the development of the
prototype system. The most important areas is presented and explained
here.

Use of LED booster circuit

Results of the voltage measurement over the equivalent resistance,
described in “Display related circuits”, showed that the obtained amplification
did not reach the expected value. Several different transistors and two
different inductors were tried out without success. As stated in “Display
related circuits”, a DC power supply generator instead was used to supply
LED power. This is not considered to be a problem in future designs as it is
only a matter of choosing suitable components.

There are many possible reasons why the intended amplification was not
achieved:

• The 3.3 V power supply of the OMAP expansion connector is limited
to 125 mA. Although an average current of appr. 69 mA is needed for
the amplification, the inductor may need more than that when it is
charged.

• The transistors used may not be capable of providing a big enough
current for the inductor in the closed circuit (in closed state).

• A schottky diode has better performance for higher frequencies than
an ordinary one. The diode used may not start to conduct fast enough
when the inductor is discharged during the time of an open state
since the switching frequency is rather high (appr. 370 kHz).

OMAP LCD controller and display interface

The LCD controller supports many different ways of how data is stored in the
frame buffer [TIDISP]. It can be in 1, 2, 4, 8, 12 or 16 bits per pixel
configurations. Still there is a rather limited amount of display panel types
that are directly supported (for which the output is available on the right
number of data pins):

• 1 BPP for monochrome panels, packed onto 8 (or 4) data lines.

• 3 BPP (1 bit each for red, green, and blue) for passive matrix
technologies (output of dithering logic), packed onto 8 data lines.

• 12 BPP for STN (4, 4, 4) panels.

• 16 BPP for TFT (5, 6, 5) panels.

The display used is a 24 BPP TFT with an 8 bit serial RGB interface, which in
this case can be considered equivalent to a 8 BPP TFT. Since there is no
direct support for this, a different method must be used. Due to timing issues,
the controller must be set for TFT operation which means that 16 bits will be
output either way. Pixel configurations of either 8 or 16 bits per pixel in the

33

frame buffer are then the two best alternatives. 8 bits per pixel will
correspond to two 8 bit pixels being output on the 16 pins at the same time
while 16 bits per pixel will correspond to one 16 bit pixel at the same time.
The latter alternative was chosen because it will bypass the palette and
simplify the design. Thus half of the pixel data input and output to the
controller will be dummy bits. Because of the 8 bit interface, there will also be
three times as many transfers to the display as there are pixels.

Element arrangements

The display has a delta colour configuration and because the interface allows
for one element at a time to be transferred, a way to group elements together
to form pixels must be determined. Three different element arrangements,
according to Figure 22, Figure 23, Figure 24, were considered.

R G B R G B R G B R G B R G B ... R G B R

G B R G B R G B R G B R G B R ... G B R G

Figure 22. Rectangles

R G B R G B R G B R G B R G B ... R G B R

G B R G B R G B R G B R G B R ... G B R G

R G B R G B R G B R G B R G B ... R G B R

G B R G B R G B R G B R G B R ... G B R G

R G B R G B R G B R G B R G B ... R G B R

G B R G B R G B R G B R G B R ... G B R G

Figure 23. Triangles (lined up)

R G B R G B R G B R G B R G B ... R G B R

G B R G B R G B R G B R G B R ... G B R G

R G B R G B R G B R G B R G B ... R G B R

G B R G B R G B R G B R G B R ... G B R G

R G B R G B R G B R G B R G B ... R G B R

G B R G B R G B R G B R G B R ... G B R G

Figure 24. Triangles (shifted)

These arrangements will have an impact on how content on the screen is
perceived. In Table 4 the conceptions of a number of attributes for the
different arrangements are presented.

34

Table 4. Comparison between different element arrangements

The shape of a pixel (and the resolution) will also be determined by the
element arrangement. Because each colour element is twice as high as it is
wide, none of the arrangements gives perfect square pixels but will have
rectangular shapes according to Figure 25.

For all of the arrangements, an average of one colour element on each row
will be unused. Theoretically, all 640x240 colour elements could be used to
make up 51200 pixels, but instead a number of 51120 pixels is achieved in
each case.

The rectangles arrangement was chosen because it gave the best over all
visual performance for the attributes. In order to avoid a distorted picture due
to the pixel shape, compensation had to be maid both for bitmaps, text and
GUI objects. This was made by simply reducing the pixel width of the picture
data with 50 % on the desktop to make it appear with the right proportions on
the screen.

Arrangement

Rectangles Triangles

(lined up)

Triangles

(shifted)

Colour Good Good Good

Text Good Acceptable Bad

Resolution Acceptable Bad Good

Attribute

Sharpness Good Acceptable Bad

Figure 25.

a) Rectangles 3:2 (w:h)

c) Triangles (shifted) 2:3 (w:h)

b) Triangles (lined up) 3:8 (w:h)

35

Testing and verification

Apart from ensuring that the prototype was activated correctly, a set of other
tests and verifications had to be made, to confirm a correct behaviour of the
more specific functions of the prototype.

Bitmap conversion

To test the LCD’s ability to display images, a software converter had to be
built. The converter took an image file in BMP format and converted it into 24
bits per pixel, 8 bits per colour, suitable for the format used in the LCD.

An image in BMP format has the following structure [HET]:

In the BMP file format every row of data is inverted (Figure 26). This means
that a converter software has to read the headers to find out the length of
each row and then start reading from the last pixel in each row. The colour
elements are positioned in the order blue, green, red and must also be
inverted. The tricky part is that the number of bytes in each row must be a
multiple of four and if not, the row is padded with zeros. These zeros have to
be ignored by the converter software.

 <>

pixels displayed on the

screen
pixels stored in .bmp-file

Figure 26. BMP pixel data storage

14 bytes

40 bytes

4 * number of colours

36

Keyboard response

The prototype built had key support and to test this, a simple image switching
function was implemented. The basic idea was that when a button was
pressed the image displayed on the LCD was changed. There was no need
for any dynamics, so a specific image was statically connected to each
button. The key response should be able to occur at any point in the
execution, and was therefore activated with a key interrupt, caught in the
general interrupt handling routine.

LCD update

Previously used display solutions on the company, had some problems with
slow update rates. This became obvious when scrolling and only the top row
was updated. So the speed with which the software updated the LCD was
tested as well as the correctness of the image on the LCD. This test was
achieved by studying the LCD when the image changed due to above
described key response test.

Speed of software

Measured execution times with OMAP processor

Raw data (fixed data to frame buffer):

 Slow coding design (with if-clauses inside loops):

 Full screen: 125 ms

 Half width: 95 ms

 Half height: 92 ms

 Fast coding design (without if-clauses inside loops):

 Full screen: 55 ms

 Half width: 27 ms

 Half height: 28 ms

GUI (internal structure to frame buffer, fast coding design):

 Full screen: 93 ms

 Group: 66 ms

 Pop-up: 30 ms

 List (2 rows): 6 ms (per list element) · 2 = 12 ms

 List (4 rows + scroll): 40 ms

GUI (key press to after frame buffer update):

 Full screen (depending on content): 117 ms (less text and small bitmaps)

 136 ms (more text and large bitmaps)

 One step in a list (content-dependent): 15 - 19 ms

 Checkbox state change: 7 ms

Memory requirements

The memory required for the produced GUI is presented below:

 GUI images (icons) 24 kB

 GUI (incl. fonts) 74 kB

 Main routine 13 kB

 OSK files + start-up 15 kB

 Total: 126 kB

 With lib-files (cpeg, c, gcc) 240 kB

These values are only valid for this specific implementation but give a hint
about the memory size of a simple colour GUI. In addition to this, during run-

37

time, an internal memory area of the current screen will be allocated. In this
case it will be 213*240*16 bits.

 Internal screen memory 102 kB

Electrical performance

Power consumption

To obtain values for the power consumption of the display, a number of
different measurements are made, both on the display board and on the
OMAP board. Since steady-state values are of most interest, a digital
multimeter is used.

The OMAP board has so called test points where the current consumption of
the 3.3V Vcc voltage rail which works as main power supply for most of the
circuitry on the board. By measuring the voltage drop over a 0.1 Ω resistor
connected in series with the power supply, the passing current, and thus
power consumption can be calculated according to the following equation:

[],W V
U
 VIP cc

R
cc3.3V3.3V

R
==

where I3.3V is the current through the resistor R and UR is the voltage drop
over it.

The power consumption for the display is determined in the same manner as
above. A resistor of low impedance (1 Ω) is connected between the 3.3V
output pin of the OMAP connector and input power supply pin of the display.
The voltage drop is measured over this and power consumption calculated
using the equation above.

Results of the measurements for the OMAP 3.3V voltage rail as well as the
display can be found in Table 5.

Table 5. Measured current consumption

Conditions I3.3V_display

(mA)

I3.3V_OMAP

(mA)

LCD enabled showing GUI main screen, backlight off. 8.4 229

LCD in standby mode. 0.5 221

LCD in standby mode, LCD controller/DMA disabled. 0.0 230

Display not connected, LCD controller/DMA enabled - 220

Display not connected, LCD controller/DMA disabled - 230

Display board not connected, LCD controller/DMA enabled - 219

Display board not connected, LCD controller/DMA

disabled

- 230

The measurements show that the LCD module consumes significantly less
power when in standby mode and uses a non-measurable current when the
OMAP LCD controller is turned off. However, the 3.3V voltage rail of the
OMAP consumes approximately 10 mA more when the LCD controller is
turned off. The reason for this is unknown but it should be possible to solve.

38

What type of content is displayed when LCD is enabled also affects the
power consumption. Measurements where made for three cases according to
Table 6.

Table 6. Measured display current consumption for different screen contents.

Content displayed I3.3V_display (mA)

White screen 8.2

Grey screen (middle value) 8.9

Black screen 10.4

Differences in current consumption depending on what is displayed are due
to the voltage supply to the transistors in the display. When a pixel is black it
is in the most active mode, and a white pixel means it is in the least active
mode. This can also be observed when the backlight is enabled during
standby mode of the LCD where the screen is perceived as white.

Determining the power consumption of the backlight is made separate from
the other measurements because of the use of a DC supply generator. A
value can be calculated directly by reading the voltage and current output on
the display of the generator. This gives:

mWVIP gengenbacklight 21787.10020.0 =⋅==

Note that this value is based on the recommended backlight driving
conditions. Only a fraction of the power is necessary to obtain some
luminance of the display. The accuracy of the generators displayed values
was also verified by connecting and measuring the voltage drop over a
resistor of low resistance in series with the LEDs.

Using equation x, a total power consumption of the display module for a
typical case with backlight on, can be written as:

mWPPP backlightdisplayVtyptotal 7.2442177.27_3.3_ =+=+=

Digital error tolerance

When updating the display with new pixel data, there is a small time
difference between the input pins when the bits changed. The flanks are not
exactly aligned. The difference is never larger than approximately 10 percent
of the pixel clock pulse width, so as long as data is read in the middle of each
clock pulse, no errors occur.

39

Other implementations

Display considerations

Table 7 presents the data amount in bytes of one screen picture for
commonly used resolutions and number of colours. It also includes the
values of two presently used cordless phone displays at Ascom as well as
the prototype display.

Table 7. Data amount for different resolutions and number of colours.

Number of

colours

/Resolutio

n

b/w

(1bpp)

4-level

greyscale

(2bpp)

256

(8bpp)

4 096

(12bpp)

65 536

(16bpp)

262 144

(18bpp)

16 777 216

(24bpp)

101x80 1 010 2 020 8 080 12 120 16 160 18 180 24 240

128x64 1 024 2 048 8 192 12 288 16 384 18 432 24 576

128x128 2 048 4 096 16 384 24 576 32 768 36 864 49 152

128x160 2 560 5 120 20 480 30 720 40 960 46 080 61 440

176x208 4 576 9 152 36 608 54 912 73 216 82 368 109 824

176x220 4 840 9 680 38 720 58 080 77 440 87 120 116 160

176x240 5 280 10 560 42 240 63 360 84 480 95 040 126 720

213x240 6 390 12 780 51 120 76 680 102 240 115 020 153 360

240x320 9 600 19 200 76 800 115 200 153 600 172 800 230 400

Processor considerations

If the prototype application is directly transferred to a system with less
processing power, an approximation of the execution time based on number
of clock cycles for a frame buffer update can be made (Table 8).

Table 8. Source code for frame buffer update:
Assembler

Instruction

Numbers used

in code

Clock cycles needed per instruction (National

Instruments Processor) [CR]

Assignment x·y·8+y·4 1

Compare x·y·2+y·2 1

Memory write x·y·3 2 (memory aligned) / 3 (memory not aligned)

Addition/Subtr. x·y·9+y·7 1

Multiplication y·2 2

Bit shift x·y·3 1

Bit logic x·y·6 1

x = display resolution width; y = display resolution height

memory aligned = all 16 bit words start on even addresses in memory

Aligned: x · y (8+2+6+9+3+6) + y (4+2+7+4) = 34xy + 17y

Not aligned: x · y (8+2+9+9+3+6) + y (4+2+7+4) = 37xy + 17y

For a resolution of 213 · 240:

Aligned: 1 742 160 clock cycles

Not aligned: 1 895 520 clock cycles

Minimum execution time with a clock frequency of 20 MHz:

Ascom cordless phone display 1

Ascom cordless phone display 2

Prototype display

Values in bytes

bpp=bits per pixel

40

Aligned: 87 ms

Not aligned: 95 ms

These results are not realistic due to the assumption that the processor is
used exclusively for this job but can serve as a pointer for the required
processing power for different resolutions.

Memory demands

Obviously a high resolution colour display requires a lot more memory to
store all pixel information. As seen in Table 7, the amount of data for a
screen varies rapidly with the type of display used. The needed memory is
based on the space needed by the GUI together with some memory area
containing pixel data of a screen.

GUI calculation performance

Provided that a 16-bit processor and a colour depth of 16 bits or less is used,
an increase in resolution and colour depth will have a negligible impact on
the performance of GUI calculations. This is because a screen consists of
objects that are defined by certain parameters. The size of objects is defined
by coordinates which means that different sizes will claim the same space.
Colours of objects are defined by bit values and different colour depths will
only give small changes in the space required. The exception is the data
used by bitmaps, where colour depth will be proportional to the memory
space.

Display update

After GUI calculation is done, the update of the display can be divided into
two steps.

There is a memory writing to a frame buffer or a display RAM for the part of
the screen that is to be updated. This step needs to be taken cared of
outside the driver circuit and will largely be dependent of the data amount.

The second step is the update of the display panel from the frame buffer (or
display RAM). If a one-chip driver IC is used, this will be handled by the
display module and the update speed will mainly be limited by the
performance of the driver IC itself.

LCD driver circuit and interfaces

As explained in the “Basic facts” section, an driver IC for an LCD can contain
a different number of built in components. If no external LCD controller is
available, a driver IC with a built-in display RAM is needed. It should also
contain all other parts of the driving circuit such as timing generator and
timing controller.

A built-in display RAM is commonly accessible trough an MPU interface.
There are often 8 or 16 pins for data (8 for 12 bpp and below and 16 for
16bpp and above) that can be used for parallel or different serial interfaces.
Other signals may vary and are specific for different driver IC’s.

41

Results and conclusions

The thesis has included the graphical user interface as well as the LCD
display. The important parts are on one hand the software difficulties and
possibilities related to high resolution colour displays, and on the other hand
the hardware. As it turns out, the software seems to be quite adaptable and
will most likely not have as large impact on the early decisions in a future
colour display project than the hardware. The hardware decisions are vital to
keep complexity, cost and workload down.

Displays

The investigation on colour displays showed that there is a huge growth in
small-sized displays thanks to the mobile phones. The recent development
on this market has been that TFT displays are taking over the role as
standard displays from cSTN displays. However, cSTN still has a major
advantage in price.

Because of this, there are very many manufacturers of TFT displays. Many of
them offer a wide variety of different displays with performances similar to
other manufacturers’ displays. Choosing a manufacturer is thus more a
question of earlier experiences and prices.

Because there are many fields of application for small colour displays, it is
important to know what it should be used for. It will also place requirements
on the application hardware. The largest requirements will be on the handling
of large data amounts depending on resolution and colour depth. TFTs are
available in the higher range of this with good overall performance while
CSTN is found in the lower range.

The WLAN phone has high processing power, large memory capacity and
should be able to show photographic images. An example of display:

TFT with a resolution of 176x220 and a colour depth of 65k colours.

The DECT phones with lower processing power and small memory capacity
should support colour icons and menus. An example of display:

CSTN with a resolution of 128x128 and a colour depth of 256 colours.

For the DECT phones, extra memory must be added. To achieve a fast
enough display update, an extra processing unit or a driver IC with built in
timing generation and addressable RAM will be needed, maybe even both.

The power consumption will be higher than for monochrome displays, both
with and without lighting. The latter especially applies for TFTs, but a
common solution is to put the display in standby mode while not using it,
saving most of the power consumption.

GUI development software

The investigation has shown that the number of products for GUI
development is actually quite limited. The diversity between them is even
smaller. Most of the products are very similar in structure and even syntax.
There are a few requirements in the task that are not fulfilled in all products.
One of the requirements was OS independence, which only four of the
investigated softwares had, and one of these four did not fulfil the

42

requirement about event handling and advanced objects like radiobuttons.
Left is two products using ANSI C:

C/PEG

emWin

and one product using C++:

PEG+

Generally PEG+ has more features than the other two, like advanced window
handling and real-time image conversion. Of course this comes with a price
of larger footprint, both in memory requirement and CPU load.

The impression of C/PEG is that it is easy to work with, which the visual
tools, like Window Builder and the string editor, contribute to. The string
editor also allows real-time language switching. A major drawback is the lack
of multi-line editing objects, although the vendor says that this will be
included in a new version coming soon.

The main advantages for emWin are the extensive documentation and that
previous work has been done in the company, but the conclusion is that
C/PEG is so similar that the knowledge is easily applied there too. The
emWin software does support the use of image files in runtime, as well as
multi-line editing.

Since all three products fulfil the requirements, the choice between them will
be based on the target system performance and the features of the GUI to be
developed. However, none of them has support for building logical menu
trees. Combining the software with a state machine was found inadequate
but the menu tree can be defined in a header file with relatively good results.

Prototype implementation

The prototype system consists of all parts investigated in the thesis, from the
graphical user interface to the hardware connections of the LCD display. All
parts gave valuable practical experiences for the theory, and the tests will be
a base for future construction of colour display systems.

One of the positive experiences was how much more information that could
be fitted onto the display while still retaining a good readability. This was
thanks to the high resolution, but also because of the colours making the
objects more distinguishable. The large colour depth made photos look good
even with a lot of details, although the conclusion is that the colour depth is
unnecessary high for the current application.

The display used in the prototype had no built-in timing generator, but
fortunately this was a built-in feature of the processor. Without this support,
an extra component for timing generation would have been necessary,
resulting in a lot more work. The investigations have shown however, that
there are display modules with built-in timing generators, and the conclusion
is that this should be a preferred choice if the processor cannot provide it.

Major difficulties occurred in the prototype work, when trying to set up the
serial communication with the display, to initiate the start up sequence. The
communication had to be of one-way type and have the correct frequency.

Another problem, at least as large, was to get the timing settings correct.
There were a lot of registers to be setup, both in the LCD controller and the

43

DMA control unit. Even a very small error made the display scrambled or
rolling.

Finally, the fact that the display had 24 bits per pixel and a special type of
colour element configuration, made the software for data transfer quite
complex. The conclusion here is that 16 bits per pixel with 16 input pins on
the display is recommended.

44

Discussion and future work

This project has shown that implementing colour displays in wireless phones
has no single general solution. The problems that one encounter can have
several solutions. The discussion will handle a few problems together with
possible solutions.

Use of DMA

The total time for updating the LCD depends not only on GUI execution,
memory writing and bus transfer, but also on how these different areas are
connected together in the complete system solution.

The ideal solution could seem to be a dedicated and addressable display
RAM in the LCD controller chip. This way there would only be one memory
block to be written, with the total size of one screen size, which is the current
resolution times the colour depth used. This however, could cause problems
when loading the CPU with other processes, probably several with higher
priority than the LCD update. The CPU has to temporarily leave the display
updating job, and as a result the display screen can get an incorrect
appearance.

Two alternative ways to avoid interrupted display updates are discussed
below:

• If introducing a memory between the CPU and the display RAM, a so
called frame buffer, the CPU can take its time to update this frame
buffer and, when ready, trigger a DMA transfer that silently and
without processor load, will transfer the data to the display RAM. The
drawback will be increased times where no screen changes are
visible for the user, and of course the DMA still uses the data bus.
The memory requirement in this case would be twice the screen size.

• One could have a display controller with two separate display RAMs.
The display panel is updated from the first while the second is loaded
from DMA and not until the second RAM is completely updated, the
controller changes to that RAM as update source.

If one uses DMA for the transfer to the display and a process with higher
priority wants to access the data bus, the DMA must stop at once, but without
giving rise to extra execution time for stopping and reinitialize the DMA and
without leaving the display looking like scrambled eggs.

In the national instruments processor, there is a feature called DMA freeze,
which could solve the stopping problem. By simply setting a single bit in a
register the DMA is automatically stopped at the current point and can be
resumed as easily by setting a bit in another register.

How to make data transfer to display more efficient?

Much time and processing power is spent on writing pixel data for a screen to
a memory. Say that every screen has its own memory block. For small
changes in the screen, like selecting checkboxes and moving in lists, the
memory for that screen is updated. When changing screens, instead of
updating memory, the DMA pointers are updated to transfer from the memory
block of the new screen instead.

45

The advantage of this system is a vast improvement in display update times,
but of course suffers from heavy memory requirements. But since memory is
easier and cheaper to add to a system, this solution may be possible. Even
though the solution could be hard to implement in practice, it certainly is an
interesting thought, to get the GUI data logically closer to the display.

Future work

For systems with high performance, like Ascom’s new WLAN phone, the
thesis should cover most, if not all, of the areas. The conclusion that almost
any colour display is possible, even though necessarily not needed, in this
type of phone should be without doubt.

For older systems, like the DECT phone, the answer is not that obvious. To
be certain, a more thorough investigation as well as prototype testing is
definitely needed. Not only in an isolated test environment as in this thesis,
but with other processes running and interrupts occurring. The area of
interest is mainly the display update speed – what does it take for the display
to be fast enough?

Regarding software, there could be of some interest to test a simple GUI, but
the real use of such a work is probably quite limited. A simple bitmap transfer
to the display, similar to the one used in this thesis, is most likely sufficient.
The programming challenges will probably concern the initializations and
settings to get the display interface up and running.

Finally, the last area that has not been covered to satisfaction is market
research about simpler displays of cSTN type. The manufacturers and their
different alternatives in colour STN displays as well as approximate prices, is
scarcely covered in the report, but will be highly interesting in a future colour
display project. Meetings with TFT display manufacturers have been held in
connection with the thesis and similar meetings should be held about cSTN.

46

References

[ALL] Allan R., Flat-Panel Displays: Poised To Take Over Large And
Small Screens, ED Online ID #5380, 2003-07-21

[ASC] Ascom Wireless Solutions, Products,
http://www.ascom.com/ws/solutions_ws/products_ws.htm, 2005-10-31

[AUO] AU Optronics, Product specifications 2.0” color LTPS TFT-
LCD module, 2004

[BEL] Bellis, M., History of the Digital Camera,
http://inventors.about.com/library/inventors/bldigitalcamera.htm, 2005-11-14

[CR] CompactRISC, CR16C Programmer’s Reference Manual,
2002

[DEL] DeLisle J. A. and Maxwell Kenneth G., Choosing the PEG+ or
C/PEG Libraries, Swell Software, Inc., 2005

[ERC] Express Repair Center, Learn about LCD TV and TFT LCC
displays, http://www.ercservice.com/learning/fabricating-tft-lcd.html, 2005-11-
13

[HET] Hetzl S., The .bmp file format,
http://www.fortunecity.com/skyscraper/windows/364/bmpffrmt.html, 2005-11-
14

[IRA] Iranli A., Pedram M., DTM: Dynamic Tone Mapping for
Backlight Scaling, University of Southern California, 2005,
http://www2.dac.com/data2/42nd/42acceptedpapers.nsf/0c4c09c6ffa905c487
256b7b007afb72/d077653203817ebb87256fc40070c03a/$FILE/38_1.pdf,
2005-10-31

[JAKH] Jakhanwal V., Big Growth Ahead for Small-Sized LCDs,
http://www.usdc.org/resources/DisplayTrends_summer2004/biggrowthahead.
htm, 2005-11-08

[MOH] Mohamed Y., LCD displays and touch screens, Ascom Tateco,
2004

[MÖL] Möller J., Bakgrundsbelysning av LCD, EmComp Scandinavia
AB, 2004

[NECEL] Nec Electronics, LCD Driver ICs-keeping pace with ever-
changing mobile phone, Volume 2, Scoop Eye – Innovation Channel,
http://www.necel.com/en/channel/pdf/se_vol2.pdf, 2005-10-31

[NECPR] NEC Europe, NEC Enhances Lineup of TFT Colour LCDs for
Mobile Telephones, Press release October 5 2001,
http://www.nec.co.uk/index.aspx?id=191&pressid=197, 2005-10-31

[PDD] Pacific Display Devices, LCD Module Interface Information,
http://www.pacificdisplay.com/lcd_mod_if.htm, 2005-11-11

[RAM] Ramaswamy V., Step-up swith mode power supply: Ideal
boost converter,
http://services.eng.uts.edu.au/~venkat/pe_html/ch07s3/ch07s3p1.htm, 2005-
10-31

[SHEN] Shenzhen Pilot Technology CO, COG & TAB,
http://www.pilotech.cn/Page.aspx?guid=2513&iid=2513, 2005-10-31

[SHER] Fontok, www.Sherlab.com,
http://www.sherlab.com/electronics/opto_lcd.html, 2005-10-31

47

[SHFL] Sharp Microelectronics of America, Flat Panel Technologies,
http://www.sharpsma.com/lcd/lcdguide/Technologies/Tech_index.php, 2005-
11-11

[SHLCD] Sharp Microelectronics of America, Introduction to Liquid

Crystal Displays, http://www.sharpsma.com/lcd/lcdguide/Primer/lcd-Intro.php,
2005-11-11

[TIARCH] Texas Instruments, OMAP5912 Multimedia Processor Device
Overview and Architecture Reference Guide, 2004

[TICLK] Texas Instruments, OMAP5912 Multimedia Processor Clocks
Reference Guide, 2004

[TIDAT] Texas Instruments, OMAP5912 Applications Processor Data
Manual, 2004

[TIDISP] Texas Instruments, OMAP5912 Multimedia Processor Display
Interface Reference Guide, 2004

[TIDMA] Texas Instruments, OMAP5912 Multimedia Processor Direct
Memory Access (DMA) Support Reference Guide, 2004

[TIDSP] Texas Instruments, TMS320C55x DSP CPU Programmer’s
Reference Supplement, 2004

[TIGPIO] Texas Instruments, OMAP5912 Multimedia Processor
General-Purpose Interface Reference Guide, 2004

[TIHW] Texas Instruments, OMAP Starter Kit (OSK) OMAP5912
Target Module Hardware Specification, Revision 2.2, 2004

[TIINI] Texas Instruments, OMAP5912 Multimedia Processor
Initialization Reference Guide, 2004

[TIIRP] Texas Instruments, OMAP5912 Multimedia Processor
Interupts Reference Guide, 2004

[TIKB] Texas Instruments, OMAP5912 Multimedia Processor
Keyboard Interface Reference Guide, 2004

[TIPIN] Texas Instruments, OMAP5912 Multimedia Processor Pinout
Reference Guide, 2004

[TISER] Texas Instruments, OMAP5912 Multimedia Processor Serial
Interfaces Reference Guide, 2004

[TITIM] Texas Instruments, OMAP5912 Multimedia Processor Timers
Reference Guide, 2004

[TOPTY] Toppoly, Introduction of LCD display type,
http://www.toppoly.com/Toppoly/Technology/LCD_Type.asp, 2005-11-14

[TOPTF] Toppoly, What is TFT LCD?,
http://www.toppoly.com/Toppoly/Technology/TFT.asp, 2005-11-14

[TOPLT] Toppoly, LTPS technology,
http://www.toppoly.com/Toppoly/Technology/LTPS_Tech.asp, 2005-11-14

[USDC] United States Display Consortium, Display Technologies,
http://www.usdc.org/resources/GDN_tutorials.htm, 2005-10-31

[WIKI] Wikipedia, LUX, http://www.wikipedia.org, 2005-10-31

48

Abbreviations

ACF Anisotropic Conducting Film

ANSI C American National Standard Institute C

BMP windows BitMaP

BPP Bits Per Pixel

COB Chip On Board

COF Chip On Film

COG Chip On Glass

CPU Central Processing Unit

cSTN colour Super Twist Nematic

DC Direct Current

DECT Digital Enhanced Cordless Telecommunications

DMA Direct Memory Access

GPIO General Purpose Input/Output

GUI Graphical User Interface

IC Integrated Circuit

LCD Liquid Crystal Display

LED Light Emitting Diode

MCU Memory Control Unit

MPU Micro Processor Unit

OLED Organic Light Emitting Display

OMAP Open Multimedia Access Platform

OS Operating System

OSK OMAP Starter Kit

PC Personal Computer

PEG Portable Embedded GUI

RAM Random Access Memory

SOP System On Panel

TAB Tape Automated Bounding

TFT Thin Film Transistor

USB Universal Serial Bus

WLAN Wireless Local Area Network

49

Appendix

Appendix A.1. List of TFT display manufacturers

Manufacturer

/ Model

Size Reso-

lution

Col-

ours

Cont-

rast

ratio

Lumin-

ance

Comments

AU Optronics

H019HT01 1,9” 176x220 100:1 190 cd/m2 Transflective

H018IN01 1,8” 128x160 200:1 180 cd/m2 Transmissive

H018HN01 1.8” 176x220 200:1 180 cd/m2 Transmissive

H020HN01 2,0” 176x220 200:1 150 cd/m2 Transmissive

H022QL01 2,2” 240x320 200:1 220 cd/m2 LTPS

A020BL01 2,0” 640x240 262k 200:1 240 cd/m2 LTPS

FEMA Electronics

GM280220A-18

-TTX1NCW

1,75” 280x220 100:1 140 cd/m2

Genesis Tech (Samsung)

LTS190QC-E02 1,9’’ 176x220 262k 250:1 180 cd/m2 Transflective

LTS190QC-F06 1,9’’ 176x220 65k 250:1 200 cd/m2 TMR

LTS200QV-F02 2,0’’ 240x320 262k 300:1 150 cd/m2 TMR

LTS200Q2-HF1 2,0’’ 176x220 262k /

65k

300:1 170 cd/m2 TMR

Goldentek Display Systems

GG1216N2AUW1T 1,79” 128x160 65K 200:1 180 cd/m2 Transmissive

GG1722N1AUW1T 2,0” 176x220 262K 200:1 145 cd/m2 Transmissive

GG1722N0AUW2T 2,2” 176x220 262K 200:1 145 cd/m2 Transmissive

Hantronix

HDA180 1,8” 128x160 65k 300:1 150 cd/m2 Transmissive

HDA200 2,0” 176x220 65k 150:1 150 cd/m2 Transmissive

Palm Technology Co. Ltd.

PFG18AW-TCLW 1.8’’ 128x160 Transmissive

PFG20A-TCLW
2.0’’ 176x220 Transmissive

PFG22A-TCLW
2.2’’ 176x220 Transmissive

Picvue Electronics Ltd.

SN077IKL01
1.8’’ 128x160 262k 190 cd/m2 Transmissive

SN055IKL01 2.0’’ 176x220 262k 190 cd/m2 Transmissive

50

TCI Display Co. Ltd.

 1.79’’ 128x160 65k /

262k

130:1 200 cd/m2 a-Si TFT

Transmissive

 1.93’’ 128x160 65k 130:1 215 cd/m2 a-Si TFT

Transmissive

 1.79’’ 176x220 262k 130:1 200 cd/m2 QCIF+

Transmissive

 2.0’’ 176x220 262k 130:1 205 cd/m2 QCIF+

Transmissive

 2.2’’ 176x220 262k 100:1 70 cd/m2 QCIF+

Transmissive

 2.2’’ 240x320 262k 150:1 100 cd/m2 LTPS TFT

Transmissive

Three-Five Systems

TFS1722-018 2.2’’ 176x220 262k 200:1 150 cd/m2 Transmissive

TFS3224-017 2.2’’ 240x320 262k 150:1 150 cd/m2 Transmissive

TIANMA Microelectronics

TM128160ANFWG 1.86’’ 128x160 262k 150:1 100 cd/m2

(min)

Transmissive

Toppoly Optoelectronics

TD018SHED2 1.8’’ 128x160 65k /

262k

80:1 110 cd/m2 Transflective

LTPS

TD022SHEB4 2.2’’ 176x220 65k /

262k

80:1 110 cd/m2 Transflective

LTPS

TD022SHEE1 2.2’’ 240x320 262k /

65k

150:1 220 cd/m2 Transflective

LTPS

TD022SREC4 2.2’’ 240x320 65k 150:1 190 cd/m2 Transflective

LTPS

TD018THEE3
1,8” 128x160 65k /

262k

300:1 220 cd/m2 TMR

LTPS

TD018THEG1
1,8” 128x160 65k /

262k

300:1 190 cd/m2 TMR

LTPS

TD019THZC1
1,9” 176x220 65k /

262k

300:1 TMR

LTPS

TD020THEE1
2,0” 176x220 262k 400:1 240 cd/m2 TMR

LTPS

TD022THEC1
2,2” 240x320 262k 300:1 250 cd/m2 TMR

LTPS

TC020THEA1
2,0” 558x234 16M 180:1 250 cd/m2 TMR

LTPS

TD020THED1
2,0” 640x240 16M 300:1 360 cd/m2 TMR

LTPS

51

Varitronix

COG-TF128160L 1.8’’ 128x160 262k 200:1 150 cd/m2 Transmissive

COG-TF176220L 2.0’’ 176x220 262k 200:1 150 cd/m2 Transmissive

COG-MOBI3007-01 2.2’’ 176x220 262k 200:1 200 cd/m2 Transmissive

COG-MOBI3015-01 2.2’’ 240x320 262k 200:1 Transmissive

52

Appendix A.2. Links to TFT display manufacturers

 Ampire http://www.ampire.com.tw/

 AU Optronics http://www.auo.com/

 BeyondTek Inc. http://www.beyond-tek.com/

 Citizen Watch Co. [Japan] http://www.citizen.co.jp/

 Densitron International PLC http://www.densitron.com/

 Excel-Display Corporation http://www.excel-display.com/

 FEMA Electronics http://www.femacorp.com/

 Giantplus Technology http://www.giantplus.com.tw/

 Goldentek Display Systems http://www.goldentek.com.tw/

 Hainan Qinghua LCD Technology Limited http://www.hnqhlcd.com.hk/

 Hantronix http://www.hantronix.com/

 Lanser Displaytech Inc. http://www.lanserd.com/

 Microtips Technology http://www.microtips.com.tw/

 NEC Semiconductors USA http://www.nec.com/

 Ocular, Inc. http://www.ocularlcd.com/

 OPTREX CORPORATION http://www.optrex.co.jp/

 Palm Technology Co. Ltd. http://www.palmtech.com.tw/

 Picvue Electronics Ltd. http://www.picvue.com.tw/

 Purdy http://www.purdyelectronics.com/

 TCI Display Co. Ltd. http://www.tcidisplay.co.kr/

 Three-Five Systems http://www.threefive.com/

 TIANMA Microelectronics (U.S.A) Inc. http://www.tianma.com/

 Toppoly Optoelectronics Corp http://www.toppoly.com/

 Truly http://www.truly.net/

 United Radiant Technology http://www.urt.com.tw/

 Varitronix http://www.varitronix.com/

 Vbest electronics Ltd. http://www.vbest.com.tw/

 Wintek http://www.wintek.com.tw/

53

Appendix B. Readability test

In order to get a general idea of the importance of display modes, a test of
three handsets with different display modes is done. For the test, a lux light
meter with a range of 200-50000 lux is used and the three test objects are:

Topcom Butler 5500: Wireless phone with 1.5” 4096 colour TFT display.

Sony Ericsson K500i: Mobile phone with 2.0”, 65k colour, micro reflective
TFT display.

Qtek 2020i: PDA with 3.5”, 65k colour, transreflective TFT display.

Office without

fluorescent light

(200-220 lux)

Office with

fluorescent light

(580-590 lux)

Outside, daylight,

cloudy

(~11 000 lux)

Outside, daylight,

sunny

(~50 000 lux)

w.o. BL w. BL w.o. BL w. BL w. o.

BL

w. BL w. o.

BL

w. BL

Topcom

Butler

5500*

4a 6b 4a 6b 3b 4-5a 4a 4a

Sony

Ericsson

K500i

3b 7b 4b 7b 4-5b 5-6b 5a 5-6b

Qtek

2020i

2b 7b 3b 7b 4b 5-6b 4-5a 4-5a

w.o. BL = without backlight

w. BL = with backlight

1 – Not readable at all

2 – Only readable with effort

3 – “Just” readable (general variations in light and dark shades can be perceived)

4 – Somewhat readable (black text on white background ok)

5 – Average readability (also pictures are ok)

6 – Good readability

7 – Very good readability

a – Only readable in a certain angle

b – Small difference in readability from different angles

*Note: The Topcom phone never completely turns off the backlight but the
brightness is reduced to a relatively low level. This is enough to read the
display in dark environments without the higher level of backlight luminance.

54

Appendix C.1. LCD interface schematics

55

Appendix C.2. LCD application circuit schematics.

56

Appendix C.3. Keyboard interface schematics

57

Appendix C.4. Component list

Component id Description Value

C1 Power setting capacitor 4.7 µF

C2 “ 1 µF

C3 “ 1 µF

C4 “ 1 µF

C5 “ 1 µF

C6 “ 1 µF

C7 “ 4.7 µF

C8 Capacitor 10 µF

C9 Capacitor 1 nF

C10 Capacitor 10 µF

L1 Inductor 33 µH

R1 Resistor 10 kΩ

R2 Resistor 30 Ω

T1 NPN switching transistor -

D1 Diode -

58

Appendix D.1. LCD controller register settings

LCD Control Register (LcdControl)

Descr. Reserved 565

ST

N

TF

T

M

AP

LC

D

C

B1

PLM FDD

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reset X X X X X X X 0 0 0 0 0 0 0 0 0

Value 0 0 0 0 0 0 0 0 0 0 0/1 1/0 0 0 0 0

Descr. FDD PX

L

_G

A

TE

D

LIN

E

_INT

_CL

R_S

EL

M8

B

LC

D

C

B0

Lc

d

TF

T

lin

e

_in

t

_m

a

sk

Lin

e

_int

_ni

rq_

ma

sk

Loa

d

Mas

k

Do

ne

M

as

k

VS

Y

N

C_

ma

sk

L

c

d

B

W

Lc

dE

n

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Value 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0/1

LCD Timing 0 Register (LcdTiming0)

Descr. HBP HFP

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Value 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1

Descr. HSW PPL

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Value 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1

LCD Timing 1 Register (LcdTiming1)

Descr. VBP VFP

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Value 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

Descr. VSW LPP

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Value 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1

LCD Timing 2 Register (LcdTiming2)

Descr. Reserved ON_

OFF

RF IEO IPC IHS IVS ACBI

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Value 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0

Descr ACB PCD

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

59

Appendix D.2. DMA register settings

DMA LCD Channel Source Destination Parameters Register (DMA_LCD_CSDP)

Descr. BURST_

EN_B2

PA

CK

_

EN

_B

2

DATA_
TYPE_
B2

RESE
RVED

BUR
ST_
EN_
B1

PA
CK
_
EN
_B1

RESE
RVED

DATA_
TYPE_
B1

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 ND ND 0 0 0 ND ND ND ND 0 0

Value 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1

DMA LCD Control Register (DMA_LCD_CTRL)

Descr. RESERVED

L
D
P

LSP

BU
S_
ER
R
OR
_
IT_
CO
ND

BLO
CK_
2_IT
_

CON
D

BLO
CK_
1_IT
_

CON
D

BUS
_
ER
R
OR_
IT_I
E

BL
O
CK
_
IT_I
E

BLO
CK_
MO
DE

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 ND ND ND ND ND ND

Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DMA LCD Channel Control Register (DMA_LCD_CCR)

Descr. SRC_
AMODE

_
B2

SRC_
AMODE_

B1

en
d_
pro
g

OMA
P

3_1_
disa
ble

RE
P
EA
T

AUT
O
INIT

EN
A
BL
E

PRIO

RE
SE
RV
ED

BS

RESERVED

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Value 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0

