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Abstract

This paper presents a more efficient way of computing single scattering effects in homogeneous participating

media for real-time purposes than the currently popular ray-marching based algorithms. These effects include

halos around light sources, volumetric shadows and crepuscular rays. By displacing the vertices of a base mesh

with the depths from a standard shadow map, we construct a polygonal mesh that encloses the volume of space

that is directly illuminated by a light source. Using this volume we can calculate the airlight contribution for each

pixel by considering only points along the eye-ray where shadow-transitions occur. Unlike previous ray-marching

methods, our method calculates the exact airlight contribution, with respect to the shadow map resolution, at real

time frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Color, shading, shadowing and texture

1. Introduction

Light scattering in air and other participating media is a key

component to generate realistic images for many real-world

scenes. Aside from providing a depth cue to the viewer,

many commonly seen phenomena such as glows around

light sources, volumetric shadows and crepuscular rays (also

known as “god-rays”) are obtained correctly only by consid-

ering how light scatters and is absorbed in the surrounding

media, before reaching the eye.

Simulating true multiple scattering of light in a participat-

ing medium can be done with e.g. path tracing or photon

mapping, but for real-time rendering, neither method can

handle scenes of any complexity. A simpler model, which

only considers single scattering in a homogeneous partic-

ipating medium, is often used, and for optically thin me-

dia (like, for instance, air) this is still a very good approx-

imation [SRNN05]. In the single scattering model, we con-

sider only how the light leaving a point in space is attenu-

ated due to absorption or out scattering along the eye-ray.

At the same time, intensity increases due to photons directly

emitted from the light source that scatter towards the eye

along the same ray. These effects can be formulated as a

comparatively simple integral [NMN87]. While the integral

has no simple analytic solution, several methods suitable for

real-time rendering have been suggested that approximate it

well [SRNN05, PP09].

Figure 1: The Sibenik cathedral lit by a strong yellow light

from outside the window and a large white light from above.

Both light sources cast volumetric shadows constructed from

1024× 1024 shadow maps. The image is also rendered at

1024×1024 and runs at ∼ 40 FPS.
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The single scattering model captures convincingly the ef-

fects of fog and halos around light sources. Light that is scat-

tered towards the observer, making the participating medium

visible, is often referred to as airlight. Parts of the partici-

pating medium may be occluded along the eye ray, which

must be taken into account to capture volumetric shadow-

ing effects. In Section 3, we present a method to correctly

calculate the airlight contribution, given unordered locations

of transitions between lit and unlit regions along an eye-ray.

Section 4 deals with finding these transitions efficiently.

The main contribution of this paper is the realization that

a shadow map generated for a point light actually defines

a volume enclosing the directly illuminated space. A mesh

surrounding this space can be constructed and rendered

in real-time, which allows calculation of the true amount

of airlight for each pixel (limited by the resolution of the

shadow map), without the need for ray-marching. This pro-

duces better quality images at significantly higher frame

rates.

Furthermore, in Section 4.1, we suggest a scheme for

adaptively tessellating the enclosing meshes, allowing us to

render very high quality volumetric shadows at interactive

frame-rates.

2. Previous Work

We will attempt to list the publications most relevant to un-

derstanding this paper, but make no attempt to cover the

complete huge body of work related to scattering in partici-

pating media.

Single scattering in a participating medium was treated

by Nishita et. al. [NMN87], who introduced the airlight in-

tegral. Our algorithm relies on the ability to solve the in-

tegral efficiently, and several papers discuss this problem.

Sun et. al. [SRNN05] find a form of the integral that depends

only on dimensionless parameters and use this to look up a

value in a scene-independent precomputed 2D texture. Pe-

goraro et. al. [PP09] instead present a simplified form of the

integral, which depends on a one-dimensional exponential

integral, of which the solution can be approximated using a

Taylor series expansion.

In an up-following paper [PSP09], that idea is extended

to support anisotropic media and light sources and a GPU

based implementation is presented. In another related paper,

Zhou et. al. [ZHG∗07] handle inhomogeneous media by ap-

proximating the density as a sum of Gaussian functions.

Our implementation, presented in this paper, relies on a

method very similar to that of Sun et. al. [SRNN05], but any

method of computing airlight could potentially be used with

our volumetric shadowing scheme.

Shadows for single scattering in participating media have

been thoroughly researched as well. One approach is to ray-

march through the medium, either by drawing alpha blended

planes [DYN02, IJTN07] or by explicitly looping in a frag-

ment shader. Among the latter is the work by Toth and

Umenhoffer [TU09], who suggest that a few samples are

taken for each pixel and nearby pixels may borrow results

from each other. In [ED10], the ray-marching is done instead

along the epipolar lines from the light source, and the final

airlight contribution is found for each pixel by interpolating

between these samples.

Another approach is to use the shadow volumes cast by

occluders to find the points along the eye-ray where airlight

contributions must be evaluated. One such method is the one

presented by Venceslas et. al. [VDS06], where the shadow

planes are sorted back to front before rendering. Similarly,

James [Jam03] orders the shadow planes through depth peel-

ing.

Wyman et. al. [WR08] present a hybrid of these two ap-

proaches. Shadow Volumes are used here to limit the range

in which ray-marching is required, significantly improving

performance for some scenes. In their Future Works section,

a method much like the one we present here, is suggested,

but not implemented or evaluated.

Finally, one method that falls into neither category is pre-

sented by Mitchell [Mit07]; this method operates entirely in

screen space. One limitation of this approach is that the light

source must be visible.

The first paper suggesting the extrusion of shadow vol-

umes from shadow maps was [McC00]. That paper observes

that such a volume has no nesting or overlapping, which al-

lows generating shadows using a single parity bit unlike tra-

ditional shadow volumes where shadow-polygons must be

counted in a stencil buffer. This same property is what allows

us to dispose of ray-marching as explained in Section 4.

3. Single scattering using Light Volumes

Our goal is to compute the amount of light, from a point

source, that is scattered towards the observer in a homoge-

neous participating medium, taking into account occlusion

of the light source along the eye-ray. Figure 2 shows an ex-

ample scene with a single light source, an observer and two

objects.

The view ray marked in Figure 2 passes through two dis-

tinct illuminated regions. Only these regions contribute to

the total airlight observed along the view ray. Occluded re-

gions will, under the single-scattering approximation, not

contribute to the airlight; the medium in those regions re-

ceives no direct light that may be scattered.

The airlight contribution from a line segment, d0 to

d1, along the view ray, is given by the integral [NMN87,

SRNN05]

La (d0, d1) =
Z d1

d0

βk (α)
I0 e−β d(x)

d(x)2
e
−β x

dx. (1)
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Figure 2: Example scene with a light source, a viewer and

two objects. A single view ray is considered, starting at the

eye, x = 0, and passing through an unlit region between

x = x0 and x = x1, and finally ending at the second object,

x = x2. The ray thus passes through two lit regions, each

contributing to the airlight independently.

Using this integral, we can express the airlight contribution

in Figure 2 as

L
total
a = La (0, x0)+La (x1, x2) .

More generally, to compute the airlight contribution, we

need to evaluate Equation 1 for each lit region along the view

ray and sum the results. Finding these lit regions efficiently

is tricky. Instead, using additivity of integration on intervals,

Equation 1 can be rewritten as

La (d0, d1) = La (0, d1)−La (0, d0) . (2)

The example in Figure 2 becomes with Equation 2

L
total
a = La (0, x0)−La (0, x1)+La (0, x2) ,

i.e. it is sufficient to identify the boundaries between lit and

unlit regions. The order in which the boundaries are pro-

cessed does not matter, and the boundaries no longer need

to be grouped into intervals along the view ray.

Generalized to an arbitrary number of lit regions, the

airlight contribution, Ltotal
a , along a view ray is

L
total
a = ∑

n

sn La (0, xn) , (3)

where sn equals one if the n-th boundary at xn represents

a transition from a lit region to an unlit one. Otherwise sn

equals negative one. An example is provided in Figure 3a.

The sum in Equation 3 requires that there is no overlap

between regions. Overlapping regions will cause problems

with false contributions that incorrectly remove too much

airlight, as demonstrated in Figure 3b.

It is possible to find the lit regions using a shadow volume

algorithm, where silhouette edges of meshes are extruded

to form the boundaries of lit regions. However, this gener-

ally results in several overlapping regions. It is possible to

eliminate these overlapping regions by sorting the shadow

volume’s polygons, as demonstrated by Venceslas et. al.

[VDS06] and James [Jam03]. However, since the polygons

can intersect with each other, the sorting must be performed

per pixel for accurate results.

Instead we use shadow maps to reconstruct a light volume

with no overlapping regions. This light volume encloses the

parts of the participating medium that are directly illumi-

nated. We will refer to these parts of space as the directly

illuminated volume.

4. Extruding Directly Illuminated Volumes from

Shadow Maps

Consider a polygonal mesh that represents the directly illu-

minated volume, as shown in Figure 4d. If we have such a

mesh, calculating the airlight contribution for each pixel is

greatly simplified: we can render the mesh from the point of

view of the camera, effectively running a fragment shader for

each eye-ray intersection with the boundary of the directly

illuminated volume. Each intersection represents a term in

Equation 3, i.e. each invocation of the fragment shader cal-

culates one term of the sum. The sign of the contribution is

determined by the facing of the polygon: if the polygon is

back-facing, we are entering an unlit region, and set sn to

one. Else, if the polygon is front-facing, we are entering a lit

region where sn equals negative one.

We use a GPU implementation of McCool’s shadow vol-

ume extrusion [McC00] to generate the directly illuminated

volumes from a shadow map. McCool observes that such a

(a) (b)

Figure 3: Example scenes with two distinct unlit regions (a),

and two overlapping unlit regions (b). Transitions between

lit and unlit regions along the view ray are considered. When

entering an unlit region, a positive airlight contribution is

registered (marked blue in the figure). When entering a lit

region, a negative airlight contribution is added (marked in

red). The total airlight along the view ray is marked in green.

In (b), the overlap gives rise to a false negative airlight

contribution, marked orange, which demonstrates why using

plain shadow volumes could lead to an incorrect result.
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(a) (b) (c) (d)

Figure 4: Creation of the polygonal mesh representing the directly illuminated volume. In (a) a shadow map is rendered, then

(b) a pre-generated rectangular mesh is rendered displaced by the depth values in the shadow map (c). Finally, in (d), the border

edges are connected to the light sources origin in order to construct a closed volume.

volume, unlike traditional shadow volumes generated from

the scene geometry, has no nesting or overlapping.

The directly illuminated volume is constructed by us-

ing a base geometry, e.g. a grid, where the shadow map is

used to displace each of the vertices (see Figures 4a through

4c). For an omnidirectional light source, six such displaced

grids form the complete light volume. For a directional light

source, the borders of the shadow map are connected to the

position to the light source in order to form a closed light

volume (Figure 4d).

The resulting mesh is clearly an approximation to the true

volume’s surface, as only a discrete set of samples are taken

in the shadow map and distances between samples will be

linearly interpolated. Generating the volume from a too-low

resolution shadow map will lead to visible aliasing artifacts,

especially for moving light sources. However, in many cases,

as demonstrated in Section 6, due to the smooth nature of

airlight, fairly coarse approximations to the true surface can

still produce visually pleasing volumetric shadowing effects.

4.1. Adaptive Tessellation

High resolution shadow maps will produce a large amount

of geometry, e.g. a shadow map with a resolution of 1024×

1024 will generate a mesh with more than two million trian-

gles.

In some cases it is possible to simply reduce the shadow

map resolution. However, this is not ideal in all cases. Many

scenes produce shadow maps with sharp edges between

fairly large flat regions.

We can adaptively tessellate the generated mesh to pro-

vide higher resolution in regions with a high variance, and

use lower resolution for the remaining parts. Our tessellation

algorithm relies on edge detection performed with a Lapla-

cian filter. From the original shadow map, we create an edge

map which in turn is used to build a simple tree, similar to

a mip map hierarchy. Each texel in the hierarchy represents

a quad in one possible tessellation level and contains infor-

mation on: (a) Whether the quad needs further subdivision

(given some threshold) and (b) Which of the quad’s neigh-

bors are further subdivided. The information about neigh-

bors is used to ensure that the final tessellation level between

connected quads never differs by more than one level. This

avoids T-junctions.

Adaptive tessellation starts with a coarse grid of quads,

which corresponds to a specific level in the edge map hierar-

chy. Each quad checks if the corresponding texel in the edge

map indicates that the quad should be further tessellated. If

further tessellation is required, four new quads are emitted

for further processing. If no further tessellation is required,

a number of triangles are emitted instead; these triangles are

part of the final mesh representing the light volume.

The configuration of emitted triangles depends on the

neighborhood. If all neighbors have the same tessellation

level, a quad consisting of two triangles is created. If a neigh-

bor has a higher tessellation level, the common edge has to

be subdivided. In the worst case, all four edges need to be

subdivided. There are 16 distinct configurations possible. We

identify the configuration and emit a matching triangle-mesh

in order to avoid T-junctions. At most, six triangles are emit-

ted for a single quad.

The current implementation uses multiple passes of trans-

form feedback in conjunction with geometry shaders. Each

tessellation level requires two passes. In the first pass, quads

that require further tessellation are filtered. The second pass

emits the final triangles, as described above.

5. Algorithm

As explained in Section 4, the light volume is rendered in a

separate pass, to add airlight to the image. Naturally, there

will be no airlight contribution from segments of the eye ray

that lie beyond the first intersection with the scene (that is, at

depths greater than that stored in the depth buffer) and care

must be taken to handle this correctly. It is therefore tempt-

ing to render the volume with depth-testing enabled (but not

updating depth). However, as the shadow map is inexact, the

light volume polygons that in reality should lie exactly on
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Figure 5: 2D Illustration of a light volume and its inter-

sections with the eye-ray. When the volume is rendered,

fragments representing intersections beyond the depth buffer

will be generated (white circles on the eye-ray). These are

clamped to the depth buffer value (orange square) and pro-

cessed as usual.

the lit surfaces will in practice have depths that are some-

times beyond and sometimes in front of the depth buffer (see

Figure 5) and so artifacts similar to the well known "surface

acne" would appear.

A simple solution is to bias the extrusion of the light

volume so that the volume is pushed closer to the viewer.

In many simple cases (e.g. light cast on flat surfaces) this

would work and would allow us to render the volumes

with depth-testing enabled, but it requires careful scene-

dependent tweaking. Since the airlight contribution is found

by adding and subtracting potentially very large values, in-

sufficient biasing leads to very unpleasant artifacts.

Instead, in our implementation we simply disable depth-

testing but present the depth buffer as a texture to the

fragment-shader. When a fragment of a light-volume poly-

gon has a depth that is larger than that stored in the depth

buffer, it is simply clamped to the value from the depth buffer

and then treated as usual. This solution introduces no visible

artifacts, but does require us to process parts of the light vol-

ume that do not contribute to the airlight for the pixel.

To summarize, the algorithm consists of the following

steps:

1. Render shadow map (or shadow-cube for omnidirectional

light sources).

2. Render scene as seen from the observer with diffuse light-

ing, attenuating incoming and outgoing light due to ab-

sorption and scattering in media. Hard shadows are cal-

culated using a standard shadow map.

3. Construct the geometry representing the directly illumi-

nated volume, with or without adaptive tessellation.

4. Render that geometry with depth testing disabled and ad-

ditive blending enabled. The fragment shader evaluates

one term of Equation 3 with xn clamped to the z-buffer

depth.

Table 1: Frame rates for adaptively versus statically tessel-

lated light volumes. Frame rates include time required by

rendering of the view and shadow maps. These times are

not included in the detailed breakdowns. Detailed times are

shown for Laplacian edge detection, building of the edge hi-

erarchy, the adaptive tessellation passes and the final ren-

dering of the light volume. The current implementation of the

tessellation algorithm becomes viable first at high shadow

map resolutions. The Sponza view (66k tris) is shown in Fig-

ure 8a; the Yeah Right view (188k tris) in Figure 8c.

Static Adaptive

Tessellation Tessellation

Sponza sm = 10242 86 FPS 64 FPS

Laplacian - 0.66 ms

build edge map - 0.68 ms

tessellate - 3.11 ms

render volume 9.0 ms 7.51 ms

sm = 20482 35 FPS 35 FPS

sm = 40962 10 FPS 18 FPS

Laplacian - 10.11 ms

build edge map - 9.14 ms

tessellate - 4.13 ms

render volume 93.9 ms 17.75 ms

Yeah Right sm = 10242 32 FPS 29 FPS

Laplacian - 0.74 ms

build edge map - 0.68 ms

tessellate - 2.59 ms

render volume 9.0 ms 12.27 ms

sm = 20482 21 FPS 21 FPS

sm = 40962 8 FPS 12 FPS

Laplacian - 10.19 ms

build edge map - 9.11 ms

tessellate - 15.54 ms

render volume 96.35 ms 27.54 ms

6. Results

We have implemented three different light volumes, one for

an omni light source and two for directed point light sources

(with and without adaptive tessellation). All tests were per-

formed on an NVIDIA GTX280 GPU.

Other than the standard rendering of the scene for viewing

and for the shadow map, the performance is largely indepen-

dent of the number of triangles in the scene. Instead, frame

rates depend mostly on the shadow map resolution. Fig-

ure 6 shows a simple scene rendered three times with varying

shadow map resolutions. Frame rates vary from about 230

FPS (32×32×6 shadow map), to ∼ 165 FPS (128×128×

6), and finally reach ∼ 25 FPS for a 512× 512× 6 shadow

map.

Ray-marching based methods are currently the only rea-

sonable alternative solution for real time algorithms capa-

ble of producing high quality results for participating me-
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dia. In Figure 7, we compare our algorithm to ray-marching.

The ray-marching is performed in a fragment shader, which

evaluates a constant number of samples, starting at the fur-

thest depth. An airlight contribution is only calculated when

a transition between a lit and an unlit region is detected. Note

that the ray marching implementation is not fully optimized,

i.e. performance could be improved.

For the view in Figure 7, approximately 400 samples are

required for results with equivalent quality to our algorithm;

400 samples per pixel would be quite slow on any current

hardware and ray-marching implementation. Our algorithm

calculates the exact solution, with respect to the shadow

map, at about 96 FPS.

Also note that this scene would benefit very little from

the optimizations suggested by Wyman et. al. [WR08], as

the closest and furthest shadow planes span the entire depth

range visible in the image. Generally, our method is faster for

equal quality images. Unlike Wyman et. al. [WR08] and En-

gelhardt and Dachsbacher [ED10], our method will always

be exact with respect to the shadow map.

Table 1 displays frame rates for several shadow map res-

olutions with and without adaptive tessellation for the views

shown in Figures 8a and 8c. An example of an adaptively

tessellated mesh can be seen in Figure 8b. The current adap-

tive tessellation algorithm, based on geometry shaders, has

a large overhead. Therefore, benefits are first observed for

large shadow maps.

If the scene contains a large amount of very irregular ge-

ometry, e.g. Figure 8c, the adaptive tessellation also becomes

less beneficial.

7. Future Work

Adaptive Tessellation Our current implementation of the

tessellation algorithm, based on geometry shaders and trans-

form feedback, has quite large overheads. It is possible

to decrease these overheads somewhat with newer API

and hardware functionality, e.g. the recently announced

GL_ARB_transform_feedback3.

It would also be interesting to experiment with the new

shaders specifically targeting tessellation.

Generalized Light Sources Several papers discuss more

general environments, for instance textured light sources

[PP09] and non-uniform and anisotropic participating media

[ZHG∗07]. Our method should be adaptable to non-uniform

or anisotropic participating media, as long as Equation 1 can

be solved efficiently for these configurations.

Textured light sources might be more problematic, as the

textures must be sampled at regular intervals. At that point,

ray-marching algorithms become a natural choice of solu-

tion.
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(a) 32x32x6 (b) 128x128x6 (b) 512x512x6

Figure 6: A simple scene with an omni light source. Shadow map resolutions (for each cube face) are 32×32 (a), 128×128 (b)

and 512×512 for (c). At the lowest resolution, 32×32, aliasing is clearly observed in both the airlight and the cast shadows.

In (b), the airlight is already very smooth, while the cast shadows still display some aliasing. In (c), the airlight is mostly

indistinguishable from (b). Frame rates are, from (a) to (c), ∼ 230 FPS, ∼ 165 FPS and ∼ 25 FPS.

(a) (b) (c)

Figure 7: A foggy Sponza hallway. From left to right: Ray-marching with 150 samples uniformly distributed along the view-rays

(25 FPS), Ray-marching with 400 samples (10 FPS) and our method (96 FPS). The images were rendered at a resolution of

1024×1024, and the shadow map was set to 512×512.

(a) (b) (c)

Figure 8: Figures (a) and (c): views demonstrating the tessellated light volumes (at 18 and 12 FPS, respectively). The shadow

map size is 4096× 4096, which would yield over 32M triangles. The middle image (b) shows a cutout of the tessellated light

volume from (a). Flat surfaces use a quite low tessellation level, whereas edges are successfully located and tessellated much

more aggressively.
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