
Graphics Hardware (2003)
M. Doggett, W. Heidrich, W. Mark, A. Schilling (Editors)

An Optimized Soft Shadow Volume Algorithm
with Real-Time Performance

Ulf Assarsson,1 Michael Dougherty,2 Michael Mounier,2 and Tomas Akenine-Möller1

1 Department of Computer Engineering, Chalmers University of Technology, Gothenburg, Sweden
2 Xbox Advanced Technology Group, Microsoft

Abstract
In this paper, we present several optimizations to our previously presented soft shadow volume algorithm. Our
optimizations include tighter wedges, heavily optimized pixel shader code for both rectangular and spherical light
sources, a frame buffer blending technique to overcome the limitation of 8-bit frame buffers, and a simple culling
algorithm. These together give real-time performance, and for simple models we get frame rates of over 150 fps.
For more complex models 50 fps is normal. In addition to optimizations, two simple techniques for improving the
visual quality are also presented.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, Shading, Shadowing, and Texture

1. Introduction

In the 1990’s, most real-time computer generated images did
not contain shadows. However, this started to change in the
late 1990’s, and games begun to use shadows as an important
ingredient in their game play. For example, shadows were
often used to help the player orient herself. Furthermore,
shadows also naturally increase the level of realism. Today,
the majority of games have dynamic hard shadows imple-
mented as a standard component. If one were to remove the
shadows from an application that used to have shadows, it
would immediately be much harder to determine spatial re-
lationships, and the images would get a more “flat” feeling.
After working on dynamic soft shadows for a few years,2, 4, 5

it is our experience that removing the softness of shadows
causes almost as great decrease in image quality as when
one removes hard shadows. Therefore, we conclude that dy-
namic soft shadows are very important for real-time com-
puter graphics.

Our work here focusses on substantially increasing
the performance of our previous soft shadow volume
algorithms.2, 4, 5 In that work, we lacked the hardware needed
to fully accelerate our algorithm. However, after obtaining
graphics hardware, we found that several optimizations were
needed in order to get real-time performance, and those are
described in this paper. More specifically, we now create

tighter wedges around the penumbra volume generated by a
silhouette edge. Furthermore, the pixel shader code has been
made significantly shorter for both spherical and rectangular
light sources. To overcome the 8-bit limitation of the frame
buffer, we present a technique that allows for higher preci-
sion in the frame buffer, where we generate the soft shadow
mask. Finally, a simple culling technique is presented that
further improves performance. Besides these optimizations,
we also present two methods for decreasing the artifacts that
can appear.

The paper is organized as follows. First, some previous
work is reviewed, a brief presentation of the soft shadow
volume algorithm, and then follows a section with all our op-
timizations described. Section 5 describes how two artifacts
can be suppressed. Then follows results, conclusion and fu-
ture work.

2. Previous Work

Shadow generation has become a well-documented topic
within computer graphics, and the amount of literature is
vast. Therefore, we will only cover the papers that are most
relevant to our work. For an overview, consult Woo’s et
al’s survey,16 and for real-time algorithms, consult Akenine-
Möller and Haines.1

c© The Eurographics Association 2003.



Assarsson et al. / Optimized Soft Shadows

The two most widely used real-time shadow algorithms
are shadow mapping and shadow volumes. The shadow
mapping algorithm by Williams,20 renders a depth image,
called the shadow map, as seen from the light source. To
create shadows, the scene is rendered from the eye, and for
each pixel, its corresponding depth with respect to the light
source is compared to the shadow map depth value. This de-
termines whether the point is in shadow. To alleviate res-
olution problems in the shadow maps, Fernanado et al.11

presented an algorithm that increased the shadow map res-
olution where it was needed the most, and Stamminger and
Drettakis presented perspective shadow maps for the same
reason.19 Heidrich et al.10 presented a soft version of the
shadow map algorithm. It could handle linear light sources
by interpolating visibility using more than one shadow map.
Recently, Brabec and Seidel presented a more general soft
shadow map algorithm.17 Their work was inspired by Parker
et al’s15 soft shadow generation technique for ray tracing. In
that work, “soft-edged” objects were ray traced at only one
sample per pixel using a parallel ray tracer. Thus, Brabec and
Seidel presented a hardware-accelerated version of Parker et
al’s algorithm.

The shadow volume algorithm by Crow7 is often im-
plemented using a stencil buffer on commodity graphics
hardware.9 The algorithm first renders the scene using am-
bient lighting. In a second pass, each silhouette edge as seen
from the light source creates a shadow volume quadrilateral
which is rendered from the eye. Note that all that is required
for these silhouette edges is that two polygons share that
edge, and one of the polygons is frontfacing, and the other
is backfacing as seen from the light source. The generated
quads are rendered as seen from the eye. Frontfacing quads
that pass the depth test add one to the stencil buffer, and
backfacing quads subtract one. Therefore, at the end of this
pass, the stencil buffer contains a mask where a zero indi-
cate no shadow, and anything else indicates that the pixel is
in shadow. The third pass is rendered with full lighting where
the stencil buffer is zero. Everitt and Kilgard have presented
techniques to make the shadow volume robust, especially for
cases when the eye is inside shadow.12

Our work has focused on extending the hard shadow vol-
ume algorithm so that area and/or volume light sources
can be used.2, 4, 5 Our first paper presented an algorithm
that could render shadow at interactive rates on arbitrary
surfaces.2 However, the set of shadow casting objects was
severely limited. Recently, we have presented a much im-
proved algorithm5 that overcomes the limitations of our first
attempt. Arbitrary shadow casters can be used, and we pre-
sented an implementation using graphics hardware. To speed
up computations, a 4D texture lookup was used to quickly
compute the coverage of silhouette edges onto light sources.
We have also presented a version that can handle the eye-
in-shadow problem, and a speed-up technique targeted for
hardware.4 After we obtained graphics hardware that was
needed for an implementation of our most recent algorithm,5

we realized that several optimizations were needed in order
to get real-time performance.

There are also several algorithms that only can handle
planar soft shadows. For example, Haines presents shadow
plateaus, where a hard shadow, which is used to model the
umbra, is drawn from the center of the light source.13 The
penumbra is rendered by letting each silhouette vertex, as
seen from the light source, generate a cone, which is drawn
into the Z-buffer. The light intensity in a cone varies from
1.0, in the center, to 0.0, at the border. A Coons patch is
drawn between two neighboring cones, and similar light in-
tensities are used. Heckbert and Herf use the average of 64–
256 hard shadows into an accumulation buffer.14 These im-
ages can then be used as textures on the planar surfaces. Ra-
diance transfer can be precomputed, as proposed by Sloan
et al.18, and then used to render several difficult light trans-
port situations in low-frequency environments. Real-time
soft shadows are included there.

3. Soft Shadow Volume Algorithm

In this section, a brief recap of the soft shadow algorithm5

will be presented. The first pass renders the entire scene with
specular and diffuse lighting into the frame buffer. The sec-
ond pass computes a visibility mask into a visibility-buffer
(V-buffer), which is used to modulate the image of the first
pass. Finally, ambient lighting is added in a third pass. The
computation of the visibility mask renders the hard shadow
quads for silhouette edges into the V-buffer. This is done
using an ordinary shadow volume algorithm for hard shad-
ows, and that pass ensures that the umbra regions receive
full shadow. Each silhouette edge is then used to create a
penumbra wedge, which contains the penumbra volume gen-
erated by that edge. The frontfacing triangles of each wedge
is then rendered with depth writing disabled. For each ras-
terized pixel (x,y) with z as a depth value obtained from the
first rendering pass, a pixel shader is executed. Note that z is
made available by creating a texture that contains the depth
buffer of the first rendering pass.

The hard shadow quad from a silhouette edge splits the
wedge corresponding to the same edge, in an inner and outer
half (see Figure 2). For points p = (x,y,z) located in the in-
ner half of the wedge, the pixel shader computes how much
of the light source p can “see” with respect to the silhou-
ette edge of the wedge. This percentage value will be added
to the V-buffer and compensates for the full shadow given
in the umbra pass by the hard shadow quad. For pixels in
the outer half of the wedge, the pixel shader will compute
how much of the light source that is covered with respect to
the silhouette edge, and this percentage value will instead be
subtracted from the V-buffer. For pixels outside the wedge,
the light source will be fully visible or covered, and the mod-
ification value will be zero in both cases. The accumulated
effect of all this, is that a visibility mask, which represent the
soft shadow, is computed.

c© The Eurographics Association 2003.



Assarsson et al. / Optimized Soft Shadows

4. Optimizations

In this section, several optimizations are presented in order
to obtain real-time rendering using the soft shadow volume
algorithm.

4.1. Tighter Wedges for Rectangular Light Sources

Our previously presented method created wedges from
bounding spheres surrounding the light source.5 The penum-
bra volume corresponding to an edge and a spherical light
source is the swept volume of the circular cone created by
reflecting the light source through the sweeping point that
moves from one edge end point to the other (see Figure 1a).
To handle robustness issues and avoid the hyperbolic13 front
and back wedge surfaces along the edge, the edge vertex fur-
thest from the light center is temporarily moved straight to-
wards the light center to a new location at the same distance
from the light center as the other edge vertex. Then, this new
edge is used for sweeping the wedge volume. This will make
the front and back wedge surfaces planar, and the resulting
wedge will completely enclose the true penumbra volume
(Figure 1c). This process also simplifies the computation of
the wedge polygons.

(a)

(c)

(b)

(d)

Figure 1: a) and b) show the penumbra volume for an edge
for a spherical and a rectangular light source respectively.
c) and d) show the corresponding wedges, which enclose the
penumbra volumes. In c) and d) the inner left cone is the
reflected cone through the left silhouette vertex. The outer
left cone is generated from the relocated edge vertex.

Tighter wedges can be constructed if we exploit that the
light source is rectangular. The penumbra volume is created
as described above, with the exception that the cones now
have a rectangular base, as shown in Figure 1b.

For a spherical light source, a left and a right plane was
used to close the wedge on the sides. Now instead, we use

the two leftmost and two rightmost triangles respectively of
the two end pyramids that are formed by the reflection of
the light source through the edge end points. This will re-
sult in a more tight fitting wedge at the sides. Along the
edge, this wedge will typically be thinner than one created
from a spherical light source (see Figure 1d). A bottom plane
may be added for the z-fail algorithm and culling (see sec-
tion 4.4).

If an edge intersects the light source, that edge should
be clipped against the light source. In this case, all wedge
planes are coplanar, and the wedge will enclose everything
on one side of the plane. This is correct behavior, but is in-
convenient for real-time applications, since rasterization of
such a wedge may be very expensive.

4.2. Optimized Pixel Shaders

We have implemented two optimized pixel shaders that han-
dle both spherical and rectangular light sources.

The shaders were tested on an ATI 9700 Pro. The test
program first generates shadow volumes and wedge geome-
try on the CPU. The plane for the hard shadow quad sepa-
rates the wedge in an inner and outer half. It is worth noting
that on the ATI 9700 Pro, this polygon needed to match the
shadow volume polygon used to determine the shadow ap-
proximation exactly (including culling order) for the stencil
operations explained below to align correctly. The shadow
volume quad itself does not extend all the way out to the
wedge sides. Therefore, one more polygon on either side of
the hard shadow quad is added that lies in the separating
plane and closes the wedge halves (see Figure 2).

The test program then renders the world space per-pixel
positions of shadow receiving objects to a 16 bit per channel
float texture that is used by the wedge pixel shaders. This is
to avoid computing the screen space to world space trans-
formation of the pixel position in the pixel shader, which is
more expensive. It should be noted that if the screen space
position were used, the z-coordinates would have to be avail-
able through a depth texture, which means that a texture
lookup is necessary anyhow. Next, the shadow volumes are
rendered and the V-buffer is incremented and decremented
in the usual fashion to determine the shadow approximation.
Then, the wedges are rendered to produce the soft shadows
in the V-buffer. Each wedge side is rendered separately and
stencil operations are used in order to separate positive and
negative V-buffer contributions and to avoid rendering pix-
els that do not intersect a wedge. This is done by applying
the culling method, described in Section 4.4, on each wedge
half. A final pass uses the resulting V-buffer in a per-pixel
diffuse and specular lighting calculation.

Also, hardware user defined clipping planes were used
since the default guard band clipping on the ATI 9700 Pro
introduced enough error in the clipped texture coordinates
to cause visual artifacts.

c© The Eurographics Association 2003.



Assarsson et al. / Optimized Soft Shadows

(a) (b)

light source

edgeedge

Figure 2: The wedge is split by the hard shadow quad in
an outer and inner half. Since the hard shadow quad does
not extend all the way out to the left and right wedge sides,
two triangles are used on either side to achieve the split.
Together, these three polygons constitute the wedge center
polygons. a) shows an example for a spherical light source,
and b) for a rectangular light source.

4.2.1. Spherical Light Source Shader

The spherical light source shader uses the cone defined by
the point to be shaded and the spherical light source as
shown in Figure 3 to clip the silhouette edge. The clipped
silhouette edge is then projected to the plane defined by the
light source center and the ray from the light source center
to the point to be shaded. The projected points are used to
determine the coverage.

The shader first transforms the silhouette edge from world
space into light space where the light center is located on
the z-axis at z = 1, the light radius is one, and the point to
be shaded is at the origin. The line described by the trans-
formed points is then clipped against the light cone which is
now described by the cone equation x2 + y2 = z2 (see Fig-
ure 4). Solving the quadratic resulting from the equation of
the intersection of the line and cone, with intersection points
below the xy plane being rejected, does the clipping. The
clipped points c0 and c1 are projected on the z = 1 plane by
a simple division by z.

The resulting 2D point values (p0 and p1 in Figure 5) are
used in two separate texture lookups into a cube-map that
implements atan2(y,x) to obtain θ0 and θ1. atan2(y,x) re-
turns the arctangent of y

x in the range -π to π radians. The
two angles characterize the minor arc defined by the inter-
sections of the rays from the light center to p0 and p1 and
the unit circle. θ0 and θ1 are then used in another 2D texture
lookup (Figure 5b) to obtain the area defined by the circle
center and the minor arc. The area derived from the cross
product of p0 and p1 is subtracted from this value and di-
vided by the area of the unit circle to give the final coverage
(shaded in gray on Figure 5a).

4.2.2. Rectangular Light Source Shader

To compute coverage it is necessary to project the edge onto
the light source and clip it to the border of the light source.

Light Center 

Point to be Shaded 

Silhouette Edge 

Z 

X 

Y 

Projection Plane 

Figure 3: The spherical light source clipping cone and pro-
jection plane shown in world space.

 

 

  

 

 
 

 

 

 

p1p0
Light Center

Y
X

Z

c0

Point to be Shaded

Silhouette Edge
c1

Figure 4: The clipping of the silhouette edge with the light
cone in light space. The clipped edge end points c0 and c1
are then projected onto the plane z = 1, which gives p0 and
p1.

For robustness it is better to clip the edge first and then
project it; otherwise points behind the origin of the projec-
tion will be inverted. Both clipping and projection can be
done efficiently using homogenous coordinates. The end-
points of the edge are initially transformed so that the point
to be shaded is at the origin and the normal to the light source
plane is parallel to the z-axis. The matrix for the projection
is computed with the point to be shaded as the origin of the
projection and the near plane as the rectangular light source.

 

 

 

 

 

 

 
p

0

p
1

θ0

θ1

Light CenterX

Y

(a) (b)

Figure 5: a) The coverage is computed from the projected
2D points p0 and p1 in projected space. b) Area lookup tex-
ture.

c© The Eurographics Association 2003.



Assarsson et al. / Optimized Soft Shadows

The endpoints of the edge are then transformed into clip
space using the projection transform, followed by homoge-
nous clipping to each side of the rectangular light source.
After clipping, the endpoints are projected by dividing by
the homogenous w-coordinate. The endpoints can then be
used to look up the area in a 4D coverage texture or be used
for analytic computation of the area.

For non-textured rectangular light sources, the coverage
of the projected silhouette edge quadrilateral can be com-
puted analytically instead of being computed using a 4D
coverage texture. The advantage of computing the coverage
analytically is that higher accuracy is possible using less tex-
ture space. The area covered by the projected edge quadrilat-
eral is equal to the light source area between the two vectors
of infinite length from the center of the light source through
the projected clipped endpoints of the edge minus the area
of the triangle defined by the center of the light source and
the projected clipped endpoints of the edge (Figure 6a). The
area of the triangle defined by the center of the light source
and the projected clipped endpoints is computed using a 2D
cross product. The light source area between the two vectors
of infinite length is looked up in a 2D texture (Figure 6b)
based on the angles of elevation for the two vectors (θ0 and
θ1). A cube-map that implements atan2(y,x) is used to look
up the angles to the two vectors.

 

(a) (b)

c

p0

p1

θ
0

θ
1

Figure 6: a) The area covered by the silhouette edge (p1p0)
projected onto the light source is equal to the area of the
light source covered by the triangle defined by the light cen-
ter c and the two vectors (c,p0) and (c,p1) extended to infin-
ity minus the area of the triangle (c,p0,p1). b) Area lookup
texture.

4.3. Frame Buffer Blending

Current generation consumer graphics hardware
(GeForceFX and Radeon 9700) can only blend to 8-bit per
component frame buffers. The previous implementation of
the soft shadow algorithm either 1) used 32-bit float buffers
and circumvented the blending by rendering a wedge to a
temporary buffer, using the frame buffer as a texture, and a
following copy-back pass to the frame buffer, or 2) used the

lower 6 bits of single 8-bit component while reserving the
upper 2 bits for overflow. It is desirable to have at least 8
bits of precision when the final results are displayed using
8-bit RGB-components to avoid precision artifacts. Additive
frame buffer blending can be accomplished with greater
than 8-bit precision by splitting values across multiple
8-bit components of the frame buffer. A number of the
most significant bits of each component are reserved to
allow for overflow. The number of bits reserved is based
on the expected maximum number of overlapping wedge
polygons. n bits allows for up to 2n levels of overlap.

In our implementation, two ordinary 8-bit per component
rgba buffers are used for the V-buffer. One of the buffers
contains the additive contribution and one of the buffers con-
tains the subtractive contribution. The additive contributions
are computed by drawing the back half of all wedges into
the additive buffer and the subtractive contributions are com-
puted by drawing the front half of all wedges into the sub-
tractive buffer. An alternative implementation could use the
multiple render target support of current generation graph-
ics hardware to draw into both buffers simultaneously. We
have found that on complex models more than 16 levels of
overlap occur, requiring that 5 bits be reserved for carry, so a
12-bit coverage value is split across the four components of
each buffer. For each of the four 8-bit components, the upper
5 bits are reserved for overflow and the lower 3 bits contain
3 bits of the 12-bit value.

Future generations of graphics hardware may be able to
blend to 16-bit per component frame buffers making split-
ting up values unnecessary.

4.4. Culling

A consequence of the soft shadow volume algorithm is that
the rendering of the wedges only affects those pixels whose
corresponding points (formed as (x,y,z), where (x,y) are the
pixel coordinates, and z is the depth at (x,y)) are located
inside the wedges. Put differently, the rendering of a wedge
can only affect a point if it is inside the penumbra region.
Still, the wedges normally cover many more pixels whose
corresponding points are not inside wedges. For these points,
it is unnecessary to execute the rather expensive pixel shader.

Therefore, ideally, the pixel shader should only be exe-
cuted for points inside the wedge, and culling should reject
all other pixels whose corresponding points are outside the
wedges. This culling can be done using two passes and com-
bining the depth-test and the stencil test.

The culling is also used as the mechanism to separate the
inner and outer wedge half contributions from each other,
since points in an inner wedge half should give positive V-
buffer contribution and points in an outer half should give
negative contribution. In our first approach, when render-
ing a wedge, the plane equation for the hard shadow quad
was used in the pixel shader to classify a point as being in

c© The Eurographics Association 2003.



Assarsson et al. / Optimized Soft Shadows

the inner or outer wedge half. However, that approach can
lead to precision errors for points that lie in or very close
to the hard shadow quad plane, resulting in visual artifacts.
Instead, each wedge half (depicted in Figure 2) is rendered
separately, as follows.

First, the frontfacing triangles of the wedge half are ren-
dered into the stencil buffer, while setting the stencil buffer
elements to one for each fragment that passes the depth test.
The depth test is set to GL_GREATER, i.e., only passing for
fragments with points farther away than the frontfacing tri-
angles. Then, the backfacing wedge half triangles are ren-
dered into the V-buffer using the pixel shader and with both
the stencil test and the depth test enabled. The stencil test is
set to only pass for stencil values equal to one, and the depth
test is set to GL_LESS. i.e., only passing for fragments with
points closer to the eye than the backfacing triangle planes.
If either of these tests fail, the point at that pixel is located
outside the wedge half, and the fragment is culled from ren-
dering. Early rejection in the hardware can then avoid exe-
cuting the shader for culled fragments.

It should be noted that for this culling to be successful, it is
required that the hardware is capable of doing early depth re-
jection and early stencil rejection. In general, a pixel shader
may affect the depth value which will affect the outcome of
the depth test, which in turn may affect the outcome of the
stencil test, depending on what stencil function that is used.
In our case, the pixel shader does not affect the depth val-
ues, and thus, the depth and stencil tests can be done before
executing the shader.

5. Improving the Visual Results

We have reported that the soft shadow volume algorithm can
suffer from two types of artifacts.5 The first is that the soft
shadows are created incorrectly for overlapping geometry,
and the second is due to that only a single silhouette is used
for the shadow casting objects. In this section, two very sim-
ple techniques, which can improve the visual results, are pre-
sented.

5.1. Overlap Approximation

The soft shadow volume algorithm can accurately render
soft shadows for a single closed loop. However, the combi-
nation of soft shadows from several objects is more difficult,
as can be seen in Figure 7.

The left part shows two pieces of gray-shaded geometry
projected onto a square light source. The geometry does not
overlap on the light source. Our algorithm handles this case
correctly. However, it always assumes that the geometry is
non-overlapping, so for the situation in the right part of Fig-
ure 7, the same geometry with different positions should cre-
ate another coverage. Unfortunately, our algorithm treats the
situation to the right in the same way as to the left, i.e., the
result is the same.

light source light source

Figure 7: Overlap problems due incorrect combination of
coverage. The light gray shadow caster covers 16 percent of
the light source, while the darker gray shadow caster cover
4 percent. To the left, the shadow casters together covers 20
percent, while to the right they cover 16 percent.

To ameliorate this, a probabilistic approach is taken. Each
silhouette loop is rendered separately, so that a visibility
mask is created for each silhouette loop. Next, these two
visibility mask images should be combined per pixel. Now
assume, that A covers cA percent of the light source, and B
covers cB percent. Since no information on how the geom-
etry overlaps is available, it appears to be advantageous to
produce a result that is in between the two extremes. There-
fore, the following combined result is used per pixel:

c = max(cA,cB)+
1
2

min(cA,cB), (1)

which implies that a result in between the two extremes
shown in Figure 7 is obtained.

Splitting the silhouettes into single silhouette loops is easy
to do in real time. It is worth mentioning that a vertex of a
silhouette edge always is connected to an even number of sil-
houette edges 3, which simplifies the task. The algorithm will
have to render each silhouette loop separately and merge the
visibility result with the result from the other rendered loops.
To avoid using several buffers, the soft shadow contribution
of a silhouette loop can be rendered into, for instance, the
r- and g-component of the frame buffer. Then the result for
the affected pixels could be merged, according to Equation 1,
with the total result residing in the b- and α-component. This
merging can be done by an intermediate pass between ren-
dering each silhouette loop. The pass should also clear the
values in the r- and g-components.

5.2. Single Silhouette Approximation

The silhouette edges are generated from only one sample
location on the light source. This is obviously not physically
accurate, since the silhouette edges, as seen from the sample
location, may vary for different samples on the light source.

It is possible to reduce the effect of both the single sil-
houette artifact and the overlap approximation by splitting
a large area light source into some smaller. The rationale
for this is that the quality of the soft shadows are good for
small light sources, but gets worse for larger. For a large light

c© The Eurographics Association 2003.



Assarsson et al. / Optimized Soft Shadows

source, the probability is higher that several independent sil-
houette loops contribute to the soft shadow at pixel, than for
a small light source. Since more sample points for the silhou-
ettes are added, the single silhouette artifact will be reduced
as well.

It is possible to achieve a correct result by increasing the
number of splits to infinity or to a point where there is no
longer any visual change in the result. This is closely related
to the technique that uses multisampling of hard shadows
to get a soft result. However, for a visually pleasing result,
our penumbra wedge method typically requires two orders
of magnitude fewer sample locations. Figure 8 shows a worst
case scenario for the single silhouette artifact, now improved
by splitting one large area light source into four smaller of
equal size, together covering the same area as the larger. The
reference image to the right shows the result of using 1024
samples points and blending hard shadows.

It should be emphasized that using n small light sources,
covering the same area as one larger light source, is not nec-
essarily n times as expensive than using the single larger
light source. The cost of the soft shadow algorithm is pro-
portional to the number of pixels with points located inside
the wedges, and the wedges generated from each smaller
light source will be significantly thinner than those gener-
ated from the larger light source.

Figure 9 shows an example of a more complex scene.
Near the center of the shadow in the leftmost image the over-
lap artifact is pronounced. There are a lot of silhouette edges
that are in shadow and falsely give shadow contribution. This
results in an overly dark shadow, which can be seen when
comparing to the more correct result in the rightmost refer-
ence image. Here, it can clearly be seen that, typically, very
good quality is achieved by splitting the larger light source
into only a few smaller ones.

6. Results

The pixel shader for spherical light sources requires 59 arith-
metical and 4 texture load instructions. The optimized pixel
shader program for a textured light source, using the 4D
coverage texture lookup, consists of 61 arithmetic instruc-
tions and 2 texture load instructions. The optimized shader
for a non-textured light, using the analytic coverage texture,
consists of 60 arithmetic instructions and 5 texture load in-
structions. Code for all the three shaders are available online
at http://www.ce.chalmers.se/staff/uffe/NonTexturedRect.txt,
http://www.ce.chalmers.se/staff/uffe/TexturedRect.txt, and
http://www.ce.chalmers.se/staff/uffe/Sphere.txt.

Note that our original code for rectangular light sources
consisted of 250 instructions.5 Figure 10 and Figure 11
shows two scenes with a comparison of image quality and
frame rate between using hard shadows, soft shadows from
a spherical light, square light and large rectangular light. Our
original implementation renders the cylinder scene in about

8–10 fps and the alien scene in 3–4 fps for both spherical
and rectangular light sources. With our optimized algorithm,
the frame rate is 15-20 times higher, as can be seen in the
two figures.

The optimized wedge generation method for rectangu-
lar light sources creates tighter wedges that typically im-
prove the overall frame rate with 1.2-2 times, which, for
Figure 9a) gives an overall speedup of 1.5 times. Regarding
the culling optimization (see Section 4.4), we have only ob-
served a small performance increase of about 5%, but since
this is scene and hardware dependent, we believe that there
are situations when it can perform better. Worth noting is that
culling comes for free since it is the mechanism to separate
the contributions from the inner and outer wedge halves.

The optimized shader for the non-textured spherical light
source uses about 324KB of texture memory in total. A six-
face cube-map of 128× 128 16 bit values per face is used
for the angle lookups. A 256×256 single channel 16-bit tex-
ture is used for the area lookup. A 1024 1D texture of four
8-bit channels is used to convert the coverage value into a
subtractive or additive visibility value split over the r,b,g,a
components.

For the non-textured rectangular light source shader,
about 270KB of texture memory is used. A six-faced cube-
map of 128×128 16-bit values per face is used for the angle
lookup. A 256×256 single channel 8-bit per texel texture is
used for area lookup, and the same 1024 entries texture as for
the spherical light is used for splitting the visibility contribu-
tion over the rgba-components. A textured rectangular light
source requires 1MB of texture memory for the 4D coverage
texture for a single-colored light source, and 3MB if the light
source is rgb-colored, as before.5

7. Conclusions

We have presented several optimizations to our original soft
shadow algorithm that greatly improves the performance.
The old algorithm typically rendered the scenes shown in
this paper in 1-10 fps. With the optimizations presented
here, frame rates of up to 150 fps are achieved (see Fig-
ure 10). The main improvements consist of three modified
fragment shaders; one for spherical and two for rectangu-
lar light sources, that lowers the number of shader instruc-
tions from 250 to 63, 63 and 65 respectively. The fragment
shaders also utilize an ordinary frame buffer with 8 bits
per rgba-component to get 12 bits of precision for the soft
shadow contribution. This circumvents the problem that, on
current hardware, blending typically cannot be done to a
frame buffer with 16 or 32 bits per rgba-component. The
old algorithm had to use extra rendering passes or lower the
precision to 5 bits for the soft shadows.

Furthermore, a method is presented for creating tighter
wedges, which typically improves the overall frame rate with
1.2 to 2 times. A culling technique is also described that

c© The Eurographics Association 2003.



Assarsson et al. / Optimized Soft Shadows

can increase performance a bit. Finally, we show how to im-
prove the visual quality by reducing the effects of the over-
lap and single silhouette approximations. With the improve-
ments presented in this paper, real-time soft shadows with
very good quality can now be used in, for instance, games
and virtual reality applications.

8. Future Work

The wedge generated for a small silhouette edge is often
quite large. A silhouette edge simplification algorithm could
be implemented to save a significant amount of wedge over-
draw. One easy win would be to collapse two connected sil-
houette edges which are roughly parallel into a single edge.

By using vertex shaders for the wedge generation, the
CPU will be offloaded so that it can do other more useful
work (game logic, collision detection, etc). We will imple-
ment this shortly.

Acknowledgements

We wish to give a great thanks to Greg James and Gary
King for sharing their technique of combining buffer chan-
nels with few bits to achieve a virtual buffer channel with
many bits. Their technique is similar to the one described in
this paper, which was developed independently by Michael
Mounier. We also want to thank Randy Fernando, Mark Kil-
gard, and Chris Seitz at NVIDIA.

References

1. T. Akenine-Möller and E Haines, Real-Time Rendering,
2nd edition, June 2002.

2. T. Akenine-Möller and U. Assarsson, “Rapid Soft
Shadows on Arbitrary Surfaces using Penumbra
Wedges,” Eurographics Workshop on Rendering 2002,
pp. 309–318, June 2002.

3. T. Akenine-Möller and U. Assarsson, “On Shadow Vol-
ume Silhouettes,” submitted to Journal of Graphics
Tools, 2003.

4. U. Assarsson and T. Akenine-Möller, “Interactive Ren-
dering of Soft Shadows using an Optimized and Gener-
alized Penumbra Wedge Algorithm”, submitted to the
Visual Computer, 2002.

5. U. Assarsson and T. Akenine-Möller, “A Geometry-
Based Soft Shadow Volume Algorithm using Graphics
Hardware”, to appear in SIGGRAPH 2003, July 2003.

6. P. Bergeron, “A General Version of Crow’s Shadow
Volumes,” IEEE Computer Graphics and Applications,
6(9):17–28, September 1986.

7. F. Crow, “Shadow Algorithms for Computer Graphics,”
Computer Graphics (Proceedings of ACM SIGGRAPH
77), pp. 242–248, July 1977.

8. D. Eberly, “Intersection of a Line and a Cone,”
http://www.magic-software.com, Magic Software Inc.,
October 2000.

9. T. Heidmann, “Real shadows, real time,” Iris Universe,
no. 18, pp. 23–31, November 1991.

10. W. Heidrich, S. Brabec, and H-P. Seidel, “Soft Shadow
Maps for Linear Lights”, 11th Eurographics Workshop
on Rendering, pp. 269–280, 2000.

11. R. Fernando, S. Fernandez, K. Bala, and D. P. Green-
berg, “Adaptive Shadow Maps”, Proceedings of ACM
SIGGRAPH 2001, pp. 387–390, August 2001.

12. C. Everitt and M. Kilgard, “Practical and Robust Sten-
ciled Shadow Volumes for Hardware-Accelerated Ren-
dering”, http://developer.nvidia.com/, 2002.

13. E. Haines, “Soft Planar Shadows Using Plateaus”,
Journal of Graphics Tools, 6(1):19–27, 2001.

14. P. Heckbert and M. Herf, Simulating Soft Shadows
with Graphics Hardware, Carnegie Mellon University,
Technical Report CMU-CS-97-104, January, 1997.

15. S. Parker, P. Shirley, and B. Smits, Single Sample Soft
Shadows, University of Utah, Technical Report UUCS-
98-019, October 1998.

16. A. Woo, P. Poulin, and A. Fournier, “A Survey of
Shadow Algorithms”, IEEE Computer Graphics and
Applications, 10(6):13–32, November 1990.

17. S. Brabec, and H-P. Seidel, “Single Sample Soft Shad-
ows using Depth Maps”, Graphics Interface 2002, pp.
219–228, 2002.

18. P-P. Sloan, J. Kautz, and J. Snyder, “Precomputed Ra-
diance Transfer for Real-Time Rendering in Dynamic,
Low-Frequency Lighting Environments”, ACM Trans-
actions on Graphics, (21)(3):527–536, July 2002.

19. M. Stamminger, and G. Drettakis, “Perspective Shadow
Maps”, ACM Transactions on Graphics, 21(3):557–
562, July 2002.

20. L. Williams, “Casting Curved Shadows on Curved Sur-
faces”, Computer Graphics (Proceedings of ACM SIG-
GRAPH 92), pp. 270–274, August 1978.

c© The Eurographics Association 2003.



Assarsson et al. / Optimized Soft Shadows

Figure 8: One area light source, 2×2 area light sources, 1024 point light sources.

Figure 9: One area light source, 2×2 area light sources, 3×3 area light sources, 1024 point light sources.

Figure 10: Comparison of appearance and frame rate for a cylinder with hard shadow, soft shadow from a spherical light
source, soft shadow from a square light source, and soft shadow from a wide rectangular light source .

Figure 11: Same situations as for Figure 10, but for a more complex shadow caster.

c© The Eurographics Association 2003.


