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Figure 1: About half a million line segments rendered with 256 Opacity Map slices and approximate alpha sorting rendered in 7.5 fps.

Abstract

When rendering materials represented by high frequency geome-
try such as hair, smoke or clouds, standard shadow mapping or
shadow volume algorithms fail to produce good self shadowing re-
sults due to aliasing. Moreover, in all of the aforementioned ex-
amples, properly approximating self shadowing is crucial to getting
realistic results. To cope with this problem, opacity shadow maps
have been used. I.e., an opacity function is rendered into a set of
slices parallel to the light-plane. The original Opacity Shadow Map
technique [Kim and Neumann 2001] requires the geometry to be
rendered once for each slice, making it impossible to render com-
plex geometry into a large set of slices in real time. In this paper
we present a method for sorting n line primitives into s number of
sub-sets, where the primitives of one set occupy a single slice, in
O(nlog(s)), making it possible to render hair into opacity maps in
linear time. It is also shown how the same method can be used to
roughly sort the geometry in back-to-front order for alpha blending,
to allow for transparency. Finally, we present a way of rendering
self shadowed geometry using a single 2D opacity map, thereby
reducing the memory usage significantly.
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1 Introduction

Rendering correctly shadowed hair, smoke, fur, foliage and clouds
is a hard and computationally expensive problem and to do so in
real time has until recently been near-impossible. Hair, which we
will concentrate on throughout this paper, is often rendered as hun-
dreds of thousands of lines, representing very thin segments of hair
strands each of which may or may not occlude any of the other
segments. To further complicate the problem, blonde or light hair
strands are highly transparent making correct shadowing impossi-
ble with shadow maps [Williams 1978] or shadow volumes [Crow
1977].

In previous work, Opacity Maps have been used to solve the prob-
lem. The Opacity Map is a 3D texture where each slice contains a
sampling of the opacity at a certain distance from the light source.
Nguyen et al. show how to render and use 16 opacity map slices
in real-time but to achieve good quality renderings, many more
slices are needed. Using too low a number of slices not only pro-
duces banding artifacts, but also does not correctly capture the self-



(a) With 16 Opacity Map slices (b) With 256 Opacity Map slices

Figure 2: The same model rendered under the same conditions with 16 and 256 Opacity Map slices. Here, for each fragment we render only
the visibility calculated from the opacity map.

shadowing detail required for rendering for example hair (See Fig-
ure 2).

In this paper, we show how to sort the hair-geometry into sublists
that contain only primitives belonging to one slice and how this can
be used to solve both the problems of opacity map rendering and
transparency. A novel GPU-algorithm based on quicksort is pre-
sented that can be used to divide the original list of lines into depth-
ordered sublists from the lights point of view and render these, with
additive blending, front to back, copying the result into a new slice
of a 3D texture for every list, to produce the Opacity Map. We
then use the same sorting algorithm to roughly sort the geometry in
depth order from the camera’s point of view and render the geome-
try back-to-front to the screen, achieving high quality transparency
for the alpha blended hair strands. Finally, we show how the alpha
blending can be sacrificed to allow for rendering the hair with self
shadowing without using more than a single 2D texture for storing
the opacity map.

2 Previous Work

An early solution to the problem of self shadowing in hair, fur
and smoke was Lokovic and Veach’s Deep Shadow Map algorithm
[Lokovic and Veach 2000] where they in contrast to the standard
Shadow Map algorithm, for each pixel in the shadow image plane,
stored a visibility function instead of a simple step function. The
visibility at a certain depth is approximated by a piecewise linear
function and the light attenuation for any fragment can quickly be
found by searching in the stored node values. The creation of the
Deep Shadow Maps is not designed for real-time applications, how-
ever. In a recent paper by Hadwiger et al. [Hadwiger et al. 2006]
the GPU is used to generate the Deep Shadow Maps for opaque
objects. They achieve high quality results, but performance is too
low for a real-time application. Also, their method does not support

semitransparent geometry such as hair on current hardware. Opac-
ity Shadow Maps [Kim and Neumann 2001] is a similar technique
but where the opacity is instead sampled at regularly spaced depths
and stored in a 3D texture. To generate this texture, the geometry
is rendered once for each slice, each time moving the far clip-plane
away from the light source. At the time the paper was written,
it was impossible to render even a small number of slices in real
time. In the Nalu demo [Nguyen and Donelly 2005] Nguyen et al.
use 16 slices of opacity maps in real time by encoding each slice
in one color channel of one of four MRTs. Thus, they can render
the opacity of each slice in a single pass, but to obtain an opacity
for a certain fragment, they need to sum the opacity values of all
contributing slices in the fragment shader, which would quickly be-
come a bottleneck as more slices were used. To reduce the number
of slices required for good quality images, Yuksel et al. [Yuksel and
Keyser 2007] suggest using a depth map to find a per-pixel starting
depth for the slice distribution, but it’s not clear how this will help
in situations where, for example, some geometry is close to the light
but the majority is far away.

Alpha blending is a common technique in real-time computer
graphics to simulate the effect of semi-transparent, non-refractive
materials, and for rendering sub-pixel sized geometry. Since hair-
strands are rendered as very thin cylinders, each strand should only
contribute slightly to the pixels being drawn, or the hair will look
too thick. This can be alleviated somewhat by using a good mul-
tisampling scheme, but to our knowledge the only technique that
correctly captures the thinness of hair is to draw the strands back
to front with a very low alpha value. Hair, especially blonde hair,
is also highly transparent, which in itself requires alpha blending to
be done correctly no matter how good multisampling is available.
Sorting the geometry by depth has for a long time been consid-
ered impossible for complex scenes in real time, and other solu-
tions to the alpha blending problem have been used. One popular
solution is the depth peeling algorithm, described in [Everitt 2001]



(a) Hair rendered without alpha blending. (b) Hair rendered with alpha blending (α = 0.2).

Figure 3: Hair rendered with and without alpha blending.

and [Mammen 1989]. The scene is then rendered several times,
each time using the depth buffer of the last pass as the qualifier for
the depth test. In this way, each depth layer in the image is peeled
off until an occlusion query responds that no fragments are drawn.
This will require as many passes through the geometry as there
are primitives occupying the same fragment in the scene, making
it unsuitable for rendering hair, where the geometry is complex and
hundreds of hair strands are likely to contribute to the same pixel.
Recently, an acceleration of the depth-peeling technique was pre-
sented [Liu et al. 2006], where the fragment shader is used to apply
several peelings in a single pass. Even with only around 20 trans-
parent layers and a few thousand polygons, however, the technique
does not run in real-time on a GeForce 6800.

Another factor of great importance when rendering hair is obvi-
ously the shading model used. Two different models have been
widely used, the first being Kayija and Kay’s phenomenological
model [Kajiya and Kay 1989] which provides a simple formula
for simulating the diffuse component and first specular reflection
of a hair strand, when modeled as an infinitely thin cylinder. A
more complex, and more physically correct, model was presented
by Marschner et al. [Marschner et al. 2003]. Here, two additional
phenomena are taken care of, namely the light that due to the trans-
parency of the strand reflects on the inside of the strand, creating a
colored highlight at some offset from the primary highlight, and the
light transmitted through the hair creating a strong forward scatter-
ing component. For the sake of simplicity, the Kayija Kay model
has been used through this work.

3 Algorithm

Our solution to speed up both opacity map rendering and trans-
parency sorting is to quickly sort the input geometry, on the GPU,
based on the primitives’ distances from some plane. In both cases,
the geometry need not be completely sorted, but simply partitioned
into sufficiently thin slices. We first introduce a GPU based quick-
sort implementation that does such a partitioning, in O(n log s),

where n is the number of primitives and s is the number of slices,
making it trivial to then render the geometry either to the individ-
ual opacity maps, or, in back to front order to the screen in linear
time. In the last section of this chapter we suggest a way of ren-
dering the roughly sorted geometry to the screen in front-to-back
order from the light’s point of view while keeping only the cur-
rently needed opacity map in memory, making it possible to render
self-shadowing hair without using more memory than that required
by a standard shadow map.

3.1 Quicksorting lines on the GPU

The original Quicksort algorithm [Hoare 1961] is fairly straightfor-
ward. A a pivot element is chosen from the list. The list is then
reordered so that all elements smaller than the pivot element come
before that element and all elements that are larger come after it.
This process is then recursively repeated on the two lists on either
side of the pivot element. We can use a similar approach to sort
points into regularly spaced subsets in order of their distance from
some plane:

1. Find the bounding box of the points and the near and far
distance of that box from the lightsource. The middle dis-
tance is near + (far − near)/2

2. Now partition the points into two subsets so that one subset
contains all points closer than middle and the other subset
contains the rest.

3. Recursively partition the two subsets using near = near and
far = middle for one of them and near = middle and
far = far for the other.

4. Terminate when the correct number of subsets are generated.

Note that while completely sorting a list with quicksort has a bad
theoretical worst case complexity (O(n2)), using quicksort to par-
tition n elements into s sublists like this will always have the com-
plexity O(n log(s)). Furthermore, other sorting algorithms, such



as radix-sort or merge-sort will not give useful results after a par-
tial sort. Bucket-sort could be used. While it has been shown
how to implement GPU-based bucket-sort [Sintorn and Assarsson
2007], that implementation requires atomic operations, currently
only available on NVIDIA’s mid-end hardware Geforce 8500 and
8600.

Implementing the algorithm above on the GPU is also quite simple,
given the Geometry Shader and Transform Feedback extensions to
the OpenGL programming API. To partition a list of points into
two sublists as above, we need only run the input points through
two passes in the geometry shader; One where we discard the points
closer than the middle distance and one where we discard the other
points. The output stream of both passes is caught by transform
feedback and the number of elements in each sublist can be found
with a query.

For the purpose of rendering hair, we will want to sort line segments
in this manner, instead of simple points. This complicates matters
somewhat since a line may be part of both sublists. If the geometry
shader finds that the line segment it is working on is split by the
plane defined by middle, it will output the line in both sublists, but
will clip it on that plane (see Figure 4). This means that the sum
of the number of elements in the two sublists can be larger than
the number of elements in the original list. To be certain that our
algorithm will not need a huge amount of memory, or become very
slow, we must thus impose some restriction on the maximum length
of a line segment. If, for example, we say that a line segment can
not be longer than the minimum width of a slice, we can be sure
that the fully partitioned list will not be larger than 2n. In practice,
such a restriction is not unreasonable since hair, especially curly or
wavy hair, requires fairly high tessellation to be realistic.

If the lines are sorted breadth first, we will only need to allocate two
buffers for storing the lines during the sorting. The two first sublists
from buffer A are generated into buffer B. Then, the four sublists
of the second pass from buffer B are generated into buffer A and
so on.

To account for cases where a low memory footprint and perfor-
mance is more important than correctness, we have also imple-
mented a version where we instead assign the line segment to the
slice it most occupies, and do not clip it at all. The result is a more
”rough” partitioning but the sorting has the nice property of always
using the same amount of memory, and generating the same amount
of hair segments. The performance of this version is slightly better,
and the results are almost indistinguishable from the correct version
(see Figure 6).

3.2 Rendering Opacity Maps

Since we now have a method for sorting the line segments into sub-
lists representing regularly spaced slices of the frustum, the opacity
maps can easily be rendered in time proportional to O(n). The sub-
lists are simply rendered in order into a framebuffer with additive
blending and between rendering each sublist we copy the current
result into a 3D texture slice. Each slice of the 3d texture will then
contain the opacity, o, at that point in space, that is the sum of all
the previous slices plus the opacity of the hair segments in that slice.

The visibility, v, of the fragment is calculated as v = e−k/o, where
k is some constant. The fragment color, calculated by the shading
model, is then multiplied by this visibility value (see Figure 5).

To create a convincing image of a head with hair, we must make
sure that the semi-transparent geometry shadows the opaque geom-
etry and vice versa. The shadows that the hair casts on the body
and scalp are important visual cues, and if ignored can make the
hair look ”glued on” to the head. The opacity map can be used in
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Figure 4: One step of the Quicksort algorithm is done with two
passes through the Geometry Shader.

combination with a normal shadow map for opaque objects, so that
whether we are rendering hair or opaque object, we first look in
the shadow map to see if the point is shadowed by an opaque ob-
ject (such as the head) and otherwise we use the opacity from the
opacity map.

Figure 5: The opacity maps store, for each pixel, how much of the
light has been blocked.

When rendering hair, the tangent of the hair is needed at each frag-
ment so that the angles of the incoming light can be calculated for
the hair shading model, and this tangent may be stored with each
vertex. In our implementation, to minimize the amount of data shuf-
fling required by the sorting algorithm, we simply calculate the re-
quired angle for each vertex in a first pass, and encode it in the
w-component of each vertex. One might however also want to store
other data about the hair segments such as color or thickness and
in that case it would make more sense to quicksort key/value pairs,
where the key is a pointer to the hair segment and the value is its
current distance from the plane. This would be easy by just storing
the key in the w-component instead of the angle.



(a) The hair is rendered with the complete model. (b) The hair is rendered with the ”rough” parti-

tioning scheme described in section 3.1

(c) The hair is rendered with the two-dimensional

approach described in section 3.4

Figure 6: Three approaches of rendering

3.3 Transparency sorting

Hair strands, especially in blonde hair, are semi transparent which
presents another challenge when rendering hair. Also, since hair
strands are actually much thinner than the pixel-size, unless the
camera is very close to the hair, drawing opaque lines for each
strand will make the strands look much too thick. The common
solution to both problems is to render the hair segments with alpha
blending. With alpha blending, the fragment f with some trans-
parency α which is drawn to screen will be blended with what is
already in the framebuffer, b, as:

bnew = α ∗ f + (1 − α) ∗ b.

For this to work, it is important that the transparent geometry is
rendered in order, back-to-front from the camera’s viewpoint. For
complex geometry, this has for a long time presented a problem
and the solutions so far include sorting the geometry per frame on
the CPU, which strongly limits the amount of geometry that can
be rendered in real time, or using techniques such as depth-peeling
[Mammen 1989], which can be run entirely on the GPU but is not
fast enough to handle many depth slices in real time.

The quicksorting routine presented above, however, allows us to
quickly sort the primitives into 256 slices in back to front order
for every frame, offering a solution to the transparency-sort prob-
lem when rendering lines or points (see Figure 2). Note that we
have not yet tested alpha sorting of triangles, although sorting with
the ”rough” partitioning scheme explained above could trivially be
used for any geometric primitives as long as their size is small com-
pared to the depth of a slice.

3.4 Two dimensional Opacity Maps

The Opacity Map algorithm relies on the light-transfer function be-
ing sampled into a 3D texture, and since both the resolution of each
slice and the number of slices need to be quite large for good qual-
ity renderings, this texture will occupy quite a lot of GPU memory.
With 32-bit opacity samples, using 256 slices of 512x512 texels, the
memory usage will be about 64MB, which is a significant amount
of the total memory available on many consumer level graphics
cards. In addition, often only 4-float component 3D textures are
supported, requiring four times as much storage or using some cus-
tom storage and filtering. We will here suggest a different approach
to rendering geometry with high resolution opacity maps, without
using much more memory than a standard shadow-map.

The idea is simply to draw the geometry to screen in the same or-
der as it is drawn into the opacity map, i.e. front-to-back from the
light-source. That is, we sort the geometry, then draw the first slice
to the screen and opacity map simultaneously. We then draw the
second slice to screen, now using the opacity map that was created
by the first slice, and so on through the slices. The opacity map will
be built while drawing to the screen and will at any point in time
contain the opacity values needed to draw the next slice to screen.
This way, we can do correct self shadowing without using more
than a single double-buffered 2D opacity map. If we want to have
filtering between slices, which we get for free with 3D textures, we
will need to store the last result in one more opacity map and do the
filtering in the fragment shader. We have not yet implemented this.

When using this approach, however, we will not be able to do trans-
parency sorting. The reason is that the geometry is now rendered
as sorted from the lightsource, instead of from the camera, and at
no time, the entire contents of the opacity map is known. With a
good multisampling scheme, the results can still be quite appeal-
ing though (see Figure 6c). Some degree of alpha sorting can be
performed by rendering the final image into multiple render targets,
passing the fragment to the target representing its slice, and then
blending these rendertargets back to front.

When using a two-dimensional opacity map together with a stan-
dard shadow map for opaque objects, the shadow-map is created
first. Then, the opacity map is updated only if the fragment is not
in opaque shadow (checked by using the standard shadow map).
When rendering to screen, the values in the opacity map are unim-
portant if the fragment is in opaque-shadow, and when rendering
a fragment of an opaque object that is unshadowed by any opaque
objects, it is important that the fragment is only shadowed by the
transparent geometry with lower depth values.

4 Results

In Figure 7, we present some performance and picture quality re-
sults that we have obtained when testing our implementation. All
tests have been performed on a 2.66 Ghz Intel Dual Core system
with a GeForce 8800 GTX graphics card. For the tests, the same
model has been used in three versions with different amounts of hair
strands. The number of segments per strand were 30 in all cases, but
the number of strands were, in Small: 5000, in Medium: 10000 and
in Large: 20000, resulting in 150k, 300k and 600k line segments re-
spectively (see Figure 8). For each model, timings have been made
when rendering hair with the full model, with the ”rough” partition-



Model TSO TSA TRO TRS Frametime

Small 19.5 19.5 22 22 87

Medium 30 34 22 34 120

Large 56 56 22 60 195

(a) Full Opacity Maps model

Model TSO TSA TRO TRS Frametime

Small 17 17 22 20 80

Medium 24 24 22 27 100

Large 40 40 22 44 147

(b) Rough Opacity Maps model

Model TSO TRO + TRS Frametime

Small 19 72 104

Medium 30 71 114

Large 57 69 140

(c) 2D Opacity Map model

Figure 7: The time taken, in milliseconds, for various parts of the al-
gorithm, for three different approaches to rendering and three mod-
els of different complexity. TSO is the time taken to sort geometry
for the opacity map rendering, TSA is the time taken to sort for al-
pha blending, TRO is the time taken to render the hair into the opac-
ity maps and TRS is the time taken to render the model to screen,
with alpha blending.

Figure 8: The small, the medium and the large model in left-to-right
order, with 150k, 300k and 600k line segments respectively.

ing scheme presented in section 3.1 and with the two-dimensional
opacity map scheme explained in section 3.4.

5 Conclusion and Future Work

This paper has presented a method using the GPU for rough sorting
of primitives for the rendering of opacity maps, used for self shad-
owing, and also for the transparency blending. We demonstrate the
algorithm on hair rendering for real-time applications. The method
allows us to use more than an order of magnitude more slices for
the opacity maps, which is significant for increasing the quality.
It also relieves the CPU from having to do any transparency sort-
ing. In addition, we also present an opacity maps based method
for self shadowing requiring only the same amount of memory as
standard shadow maps, with the trade-off of not being able to use
transparency sorting but using far less memory. We demonstrate
how GPU-based quicksort can be implemented and used for the
sorting. The result is self shadowed and transparency sorted hair
with a higher quality than previously has been possible outside the
offline rendering community.

In the future, we would like to test the algorithm not only on hair,
but also for smoke, fur, foliage and clouds.

(a) (b)

Figure 9: Two examples of other hair styles, rendered in 12 fps
for (a) and 10 fps for (b), using the rough partitioning described in
section 3.1.
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