
Employing Dynamic Transparency for
3D Occlusion Management:

Design Issues and Evaluation

Abstract. Recent developments in occlusion management for 3D envi-
ronments often involve the use of dynamic transparency, or virtual “X-
ray vision”, to promote target discovery and access in complex 3D worlds.
However, there are many different approaches to achieving this effect and
their actual utility for the user has yet to be evaluated. Furthermore, the
introduction of semi-transparent surfaces adds additional visual com-
plexity that may actually have a negative impact on task performance.
In this paper, we report on an empirical user study comparing dynamic
transparency to standard viewpoint controls. Our implementation of the
technique is an image-space algorithm built using modern programmable
shaders to achieve real-time performance and visually pleasing results.
Results from the user study indicate that dynamic transparency is supe-
rior for perceptual tasks in terms of both efficiency and correctness.

1 Introduction

The ability to utilize the full 3D space as a canvas for information-rich [1] vi-
sualization applications is a mixed blessing—while 3D space on the one hand
supports an order of magnitude of more layout opportunities for visual elements
than 2D space, visualization designers are on the other hand faced with a num-
ber of new challenges arising from the nature of 3D space which do not occur in
2D. More specifically, designers must consider the visibility of objects when users
wish to discover relevant objects, as well as their legibility when the user wants to
access information encoded in a particular object. For instance, whereas objects
that do not intersect can never occlude each other in 2D space, this can very
well happen in 3D space depending on the viewpoint and the spatial interaction
between the objects.

A number of recent solutions to this problem involve the use of dynamic
transparency, also known as virtual X-Ray [2], to make targets visible by turning
intervening surfaces semi-transpareny on-demand as the user moves through the
3D world (see Figure 1 for an example). However, this approach may instead
introduce additional visual complexity and reduce the user’s depth perception.
Furthermore, the actual utility of these techniques remains unknown.

In this paper, we evaluate the usefulness of dynamic transparency for solv-
ing visual tasks in both abstract and realistic environments. Note that dynamic
transparency cannot be realized using the standard model for transparency, and
no real-time performance algorithm exists in the literature that fulfills our re-
quirements. Therefore, we also present an image-space algorithm for dynamic

Fig. 1. Dynamic transparency uncovering an engine inside a jeep.

transparency that makes use of fragment shaders for the new generation of pro-
grammable graphics hardware to perform occlusion detection in the image space
and with real-time rendering performance. The effect is somewhat akin to the
“X-ray vision” of a superhero.

We performed the evaluation by constructing two different application ex-
amples depicting common scenarios within our problem domain: an abstract 3D
environment of simple geometric primitives similar to information visualization
applications, and a 3D virtual walkthrough application for a complex building
environment. We then conducted a quantitative user study in these two scenar-
ios where we compared the time and correctness performance of human subjects
using our technique as opposed to using standard 3D navigation controls. Re-
sults from this study show that dynamic transparency allows for significantly
improved efficiency for perception tasks compared to standard methods, both
in terms of completion times as well as correctness. In general, the approach
seems to be superior for understanding 3D visualizations, although realism, vi-
sual quality and some rendering performance must be sacrificed for this.

The contributions of this paper are the following: (i) a model for dynamic
transparency that captures a natural way of achieving high efficiency for per-
ceptual tasks; (ii) an efficient image-space algorithm for dynamic transparency
using the new generation of programmable graphics hardware; and (iii) results
from a formal user evaluation showing that dynamic transparency significantly
improves both time performance and correctness for visual tasks involving dis-
covery, access, and spatial relation of objects in 3D environments.

This paper is organized as follows: We first discuss the related work in the
field and then present a model for dynamic transparency. In Section 4, we give
our algorithm that realizes the requirements put down in the previous section.
Section 5 and 6 present the user study and our results. We end the paper with
some discussion of the results and conclusions.

2 Related Work

The general dynamic transparency approach makes heavy use of semi-transparent
surfaces to reduce the impact of occlusion as well as to avoid the loss of 3D depth
cues completely. In order to achieve correct results, transparent surfaces must be
rendered in depth order. Everitt [3] discusses the depth peeling image-space algo-
rithm for achieving this on modern graphics hardware based on the virtual pixel
map concepts introduced by Mammen [4] and the dual depth buffers by Diefen-
bach [5]. The blueprints [6] technique uses depth peeling to outline perceptually
important geometrical features of complex models using transparency and edge
detection. However, depth peeling is a computationally demanding method and
interactive frame rates can only be achieved for relatively low depth complexity.

Dynamic transparency is also commonly used in 3D games and virtual envi-
ronments to allow users to see through occluding surfaces; Chittaro and Scagnetto [7]
investigate this practice and conclude that see-through surfaces are more efficient
than normal 3D navigation, although not as efficient as bird’s-eye views.

Diepstraten et al. introduce view-dependent transparency [8] for use in in-
teractive technical illustrations. While closely related to our work in regards to
the general method, Diepstraten employs a fixed two-pass depth peeling step to
uncover the two foremost layers of transparent surfaces, whereas our method is
based on iterative back-to-front rendering and blending, and is thus not limited
to a specific depth.

In another paper, Diepstraten et al. also present their work on computer-
based break-away views [9], where interior objects are made visible through the
surface of containing objects through image-space holes. While again similar to
our work, Diepstraten’s technique is simplified by semantic knowledge of inside
and exterior objects, and the fact that the break-away view is realized by a single
hole. To this end, their method is to compute the convex hull of interior objects
in a pre-processing step and use it as a clipping volume. More importantly, their
approach does not handle the case when several targets line up and occlude each
other, a necessary requirement for dynamic visualizations with a high target
density. Our method requires no off-line preprocessing and derives spatial infor-
mation through sorting and rendering the scene back-to-front, smoothly blending
the gradient outline of targets to the scene buffer in an iterative fashion.

Looser et al. [10] describe a 3D magic lens implementation for Augmented
Reality that supports information filtering of a 3D model using the stencil buffer,
allowing the user to utilize a looking glass to see through the exterior of a house
and into its interior, for instance. This approach relies on the 3D model having
semantically differentiated parts, whereas our method requires no such extra
information. Coffin and Höllerer [11] present a similar technique with active
interaction where the user is controlling a CSG volume that is dynamically sub-
tracted from the surrounding world geometry, again using the stencil buffer.
This work does not rely on any semantic target information at all and facilitates
exploratory interaction like active dynamic transparency. However, the depth of
the volume cutout is limited and user-controlled, and no depth cues from the
world geometry are retained other than the cutout border area. With dynamic

transparency, as described in this paper, we are guaranteed to always discover
occluded objects regardless of depth, and some depth cues are retained using
semi-transparency.

Finally, importance-driven rendering assigns importance values to individual
objects in a 3D scene and renders a final image that is a composite of not only the
geometrical properties of the objects, but also their relative importance. Viola
et al. employ it for volume rendering [12] (IDVR) to actively reduce inter-object
occlusion in the same way that we do in this work. While clearly using a more
powerful interest model than our work, Viola’s implementation (besides being
aimed at volume rendering applications) does not provide interactive framerates,
whereas our implementation makes use of modern graphics hardware to deliver
real-time performance.

Dynamic transparency can also be used in 2D windowing systems (see for
example [13–15]) instead of 3D worlds, but this is beyond the scope of this paper.

3 Model for Dynamic Transparency

In this section, we present a model for the dynamic transparency approach.
See [2] for a more in-depth treatment of general occlusion management.

3.1 Model

We represent the 3D world U by a Cartesian space (x, y, z) ∈ R3. Objects in the
set O are volumes within U (i.e. subsets of U) represented by boundary surfaces
(typically triangles). The user’s viewpoint v = (M,P) is represented by the view
and projection matrices M and P .

An object can be flagged either as a target, an information-carrying entity,
or a distractor, an object with no intrinsic information value. Importance flags
can be dynamically changed. Occluded distractors pose no threat to any analysis
tasks performed in the environment, whereas partially or fully occluded targets
do, resulting in potentially decreased performance and correctness.

The surfaces defining an object volume have a transparency (alpha) function
α(x) ∈ [0, 1]. A line segment r passing through a surface at point p is not blocked
if α(p) < 1 and the cumulative transparency value αr of the line segment is less
than one. Passing through a surface increases the cumulative transparency of
the line segment accordingly (multiplicatively or additively, depending on the
transparency model).

3.2 Dynamic Transparency

The general idea behind dynamic transparency is simple: we can reduce the
impact of occlusion by dynamically changing the transparency (alpha) value of
individual object surfaces occluding (either partially or fully) a target object.
This results in fewer fully occluded objects in the environment and thus directly
affects the object discovery visual task.

The fact that the dynamic transparency mechanism operates on the trans-
parency level of individual points of surfaces and not whole objects or even whole
surfaces is vital; if whole surfaces or objects had been affected, important depth
cues would have been lost. With the current approach, unoccluding parts of a
surface will retain full opacity, providing important context to the transparent
parts of the object. To give additional context, even occluding surface parts are
not made fully transparent, but are set to a threshold alpha value αT in order
to shine through slightly in the final image. There is a tradeoff here: the use
of semi-transparent occluders will make object access difficult since intervening
surfaces will distort targets behind them. However, it is a necessity in order to
maintain the user’s context of the environment.

We define the model for dynamic transparency through a number of discrete
rules governing the appearance of objects in the world:

(R1) All targets in the world U should be visible from any given viewpoint v.

The first rule is the most basic description of dynamic transparency, and
stipulates that no targets should be fully occluded from any viewpoint in the
world. Note that a target may still be hidden from the user if it falls outside the
current view.

(R2) An occluded object is made visible by changing the transparency level
of points p ∈ P of each occluding surface s from opaque (αs(p) = 1) to
transparent (αs(p) = αT).

The second rule describes the actual mechanics of how to make targets visible
through occluding objects. The selection of the set P is not fixed; depending on
the application, this could be a convex hull, circle, or ellipse that encloses the
occluded object, or the occluded object’s actual outline.

(R3) Surfaces can be made impenetrable and will never be made transparent.

The third rule provides a useful exception to the initial rule; in some cases,
we may want to limit the extent of the dynamic transparency mechanism using
impenetrable surfaces (and objects).

(R4) Objects are allowed to self-occlude.

The fourth and final rule provides another refinement of the previous rules;
dynamic transparency is performed on object-level, even if transparency man-
agement is performed on individual surface points. This means that even if a
part of a target is occluded by other parts of itself, none of its surfaces will be
made transparent to show this.

4 Image-Space Dynamic Transparency

Since none of the previously presented methods fulfills our requirements, we here
present a new algorithm for 3D dynamic transparency: image-space dynamic
transparency.

An important observation that follows from our model of occlusion from the
previous section is that occlusion can be detected in the image space by simply
shooting a ray through the scene for every pixel that is rendered and checking
the order it intersects objects in the scene. In modern graphics hardware, this
essentially amounts to detecting whenever we are overwriting pixels in the color
buffer or discarding pixels due to depth testing. In other words, programmable
fragment shaders are perfectly suited for realizing dynamic transparency.

However, correct blending of transparency is order-dependent, and thus our
algorithm, as well as most algorithms for transparent objects, requires the ob-
jects to be rendered in back-to-front order. This is a classical problem, since
current graphics hardware cannot do the sorting for us, although suggestions for
solutions exist [16]. Usually, depth sorting is performed on triangle-level. In our
algorithm, for non-intersecting objects, it is sufficient to sort on object-level for
normal objects that are opaque by default. For intersecting objects, sorting must
be performed on a per-triangle-level. Intersecting objects are however rare and
usually non-physical. As explained below, objects fully contained within other
objects, like objects in a suitcase or nested Russian dolls, can be correctly treated
by specifying a fixed sort order between a group of objects.

We divide the scene into groups. By default, a group contains one object. All
groups are sorted with respect to their center point, which is precomputed once.
The sorting metric is the signed distance to the group from the eye along the view
vector. This is better than sorting by only the distance from the eye, because the
former corresponds to how the z-buffer works. We use bubble sort, since frame
coherency brings the resorting down to an average cost corresponding to O(n).

In certain cases, like for Russian dolls, the sort order between the dolls should
be from the innermost to the outermost. A fixed rendering order between the
dolls is then user-defined by putting them into the same group with a predefined
rendering order, for instance by the order of appearance in the group. In other
words, the innermost doll should be rendered first and the outermost doll last.
This results in correct transparency, since only the frontmost triangles of the
dolls are visible (unlike for classic transparency). This mechanism gives the user
a tool to specify which objects that should be regarded as solids and not.

Here is an overview of our algorithm:

1) The groups are rendered back-to-front.
2) All objects are blended into the frame buffer using the value in the alpha-

channel of the frame buffer, which defaults to 1 (opaque), as blending factor.
3) Target objects also post-modify the values in the alpha-channel to a value

< 1.

The algorithm needs to fulfill these criteria:

Algorithm 1: Main
Input: set of groups G.
Output: correctly rendered dynamic transparency scene.
BubbleSort(G), taking advantage of frame coherence.1

for all groups g ∈ G do2

for all objects o ∈ g do3

if o is a target then4

renderTargetObject()5

else6

renderDistractorObject()7

– Render all parts of objects (target or distractor) in front of a target object
as transparent.

– Render each object as a solid, i.e. only the front-most surfaces should be
visible. Thus, the objects cannot be rendered as transparent in an ordinary
sense. Back-facing triangles, or more distant front-facing triangles, should
not be visible through transparent frontmost triangles.

– Draw a gradual transition from no transparency to a predefined transparency
in an n-pixel outline region around each target object.

Algorithm 1 shows an outline of the main algorithm.
Initial requirements for rendering both targets and distractors are that (i) the

alpha buffer is initiated to 1 for each pixel at the start of each frame, (ii) rendering
is done back-to-front on object level, and (iii) the alpha buffer contains the
desired blending factor (transparency) at each pixel. Given these preconditions,
we render distractor objects in the following way:

1) Render object to the z-buffer only (using GL LESS), to mask out frontmost
surfaces.

2) Blend object to the color buffer (using GL EQUAL).

The first step selects the frontmost surfaces of the object. The second blends
these surfaces to the frame buffer, with blending using the alpha values stored
in the frame buffer. These alpha values are 1 by default and less in front of, and
in an n-pixel region region around, target objects.

In contrast, target objects are rendered in the following way:

1) Render step 1 and 2 as for distractor objects.
2) Render alpha mask, i.e. multiplicatively blend an alpha mask to the alpha

channel of the frame buffer.

The final step ensures that the rendered target is visible by creating a mask
that essentially protects the target from being fully overdrawn by subsequently
rendered objects.

Algorithm 2: RenderAlphaMask
Input: target object o, mask width n, two buffers B1 and B2.
Output: 128× 128 alpha mask blended to the frame buffer.
Enable buffer B1.1

Render the target object o to the alpha channel only, setting the alpha values to2

αT , the threshold transparency for objects in front of target objects.
Set buffer B1 as texture.3

Enable rendering to buffer B2.4

for each layer {1 . . . n} of mask do5

Render buffer-sized quad with the fragment shader specified in Algorithm 3.6

Set the rendered buffer as texture and enable rendering to the other buffer.7

Each iteration adds one pixel-wide layer of the transition.
Increase the border alpha value αB in the shader incrementally starting8

from α0 to 1.0.

Disable buffer and activate standard color buffer.9

Multiplicatively blend the screen-size buffer texture to the color buffer (alpha10

values). Note that resolutions may differ, but linear filtering quite efficiently
hides zooming artifacts.
Render the target region again to avoid jagginess at the border of the target11

object due to differences in resolution between the color and mask buffers.

Algorithm 3: FragmentShader
Input: border alpha αB , frame buffer F , screen position P .
Output: alpha value αP for pixel at position P .
bool IsBorderPixel ← false;1

for each neighbor N of position P do2

IsBorderPixel ← F (N).Alpha != 1.0 or IsBorderPixel;3

IsBorderPixel ← (F (P).Alpha == 1.0) and IsBorderPixel;4

output IsBorderPixel ? αB : 1.0;5

Multiplying a constant alpha value to the pixels covered by the target object
is easily done by simply rendering the object to the alpha-channel only and using
a color with the alpha value set appropriately. Creating the alpha mask is a little
trickier.

The alpha mask can be any type of shape exposing the underlying target,
such as an ellipse or circle. We choose the expanded outline of the object with
a transparency gradient as the alpha mask shape. To achieve this, we render to
two external off-screen buffers alternately to create a border around the target
object with a smooth transition to full opacity. The resolution can be allowed to
be quite low; we use a size of 128× 128. See Algorithm 2 for pseudo code for the
alpha mask algorithm and refer to Algorithm 3 for the fragment shader code.

4.1 Performance

Table 1 shows the performance of three example applications with and without
dynamic transparency active (an abstract environment, an architectural walk-
through, and the game-like example in Figure 1). The test was performed on
an Intel Pentium 4 desktop computer with 1 GB of memory running Microsoft
Windows XP and equipped with an NVidia Geforce 7800 GTX graphics adapter.
As can be seen from the measurements, only the Game application is fillrate-
limited (the bottleneck seems to be buffer switching). For the Walkthrough
application, we are performing dynamic transparency on 50 complex objects, so
11 FPS is acceptable, if not quite interactive.

Application Triangles Resolution Inactive (FPS) Active (FPS)

Abstract 13,000 800× 600 87 33
1280× 1024 87 33

Walkthrough 464,220 800× 600 40 11
1280× 1024 40 11

Game 114,629 800× 600 300 140
1280× 1024 188 90

Table 1. Performance for three example applications.

5 User Study

We hypothesize that users employing dynamic transparency for visual perception
tasks in 3D environments would be more efficient as well as more correct in
performing their tasks than when not having access to the technique. In order
to test these hypotheses, we designed a formal user study comparing the new
technique to standard 3D camera navigation techniques.

5.1 Subjects

We recruited 16 subjects for this study, three of which were female. The subjects
were drawn primarily from our university and were screened to have at least basic
computer knowledge. Subject ages ranged from 20 to 35 years of age. All subjects
had normal or corrected-to-normal vision, and no participants were color-blind.
12 out of 16 subjects had previous extensive 3D experience.

5.2 Equipment

The experiment was conducted on an Intel Centrino Duo laptop computer equipped
with 2048 MB of memory running the Microsoft Windows XP operating system.
The display was a 17-inch widescreen LCD display running at 1920× 1200 res-
olution and powered by an NVidia Geforce 7800 GO graphics card.

5.3 Tasks and Scenarios

We designed the study to include two widely different scenarios, including an
abstract 3D world and a virtual walkthrough in a 3D building, and four different
tasks (two per environment). In this way, we aim to be able to measure not only
basic target discovery, but also the more complex visual tasks of access and
spatial relation.

5.4 Scenario: Abstract 3D World

The first scenario (Abstract) is intended to portray an abstract 3D visualiza-
tion application and consists of a cubic 3D volume of size 100× 100× 100 filled
with n = 200 objects of randomized position and orientation (see Figure 2 for
a screenshot). The objects are simple unit 3D primitives: spheres, cones, boxes,
and torii. Objects are allowed to intersect but not full enclose each other. 10%
to 20% of the objects are flagged as targets and the remainder as distractors.
Distractor objects are randomly assigned green and blue color component values,
while targets were set to a pure red color and made visible using our dynamic
transparency technique (for Task 2, distractors could be red as well). The user
view is fixed at a specific distance from the center of the environment cube so
that no object can fall outside of the view frustum, and can be freely orbited
around the focus point to afford view from all directions.

Task 1: count the number of targets (red objects) in the environment. (Pur-
pose: discovery)

Task 2: identify the pattern formed by the targets (red cones) in the environ-
ment. (Purpose: relation)

The pattern is one of the five capital letters C, K, R, X, and Y, rasterized in
a 5 × 7 horizontal grid of the same scale as the environment and rotated in an
arbitrary fashion around the vertical axis. The subject is informed of the range
of possible letters prior to performing the task, but not the exact rasterizations.

5.5 Scenario: Virtual Walkthrough

The second scenario (Walkthrough) is a little more complex in nature and
designed to mimic a real 3D walkthrough visualization application more closely.
Here, a one-level floor plan is randomly generated from a simple 16 × 16 grid,
creating walls, floors and ceiling as well as ensuring that all rooms were connected
with all of its adjacent neighbors through doorways. A number of n = 50 objects
are generated and placed in the environment, and all objects are made visible
through the walls using dynamic transparency. The 3D objects chosen for this
scenario were more complex 3D models, including pets, vehicles, and furniture,
yet were easily distinguishable from each other. The user starts each instance in
the center of the environment and navigates through it looking for the target
using 3D game-like controls involving the mouse and keyboard (mouse to pan

Fig. 2. The Abstract and Walkthrough applications with active dynamic trans-
parency.

the camera around the vertical axis, arrow keys to move, no strafing allowed).
The view is constrained to floor level and there is no collision detection with
walls or objects.

Task 3: find the unique target in the environment. (Purpose: discovery)
Task 4: count the number of targets in the environment. (Purpose: discovery,

relation)

For the first task, one of the objects in the environment is unique and the
user is asked to find this target. The current target is shown in the upper left
corner of the screen. After finding the target, the user moves on to mark its
estimated location on a 2D floorplan of the environment on a separate screen.

For the counting task, a random number of the objects in the environment
are of the same type and the user is asked to count the occurrences. The current
object type is again shown in the upper left corner of the screen. After having
estimated that all occurrences are found, the subject enters the amount into the
application.

5.6 Design

The experiment was designed as a one-way ANOVA for each of the four tasks,
with the independent variable DynTrans (two levels, “true” or “false”, within-
subjects). The dependent variables included completion times for all tasks, and
the error for the counting tasks, error distance for the search task, and correctness
for the pattern task. Subjects received both the tasks and dynamic transparency
in counterbalanced order to manage systematic effects of practice.

Each task set consisted of three trials per condition. Completion times and
user responses to the tasks were collected and silently recorded by the applica-
tion. Every task set was preceded by a training session lasting up to five minutes
where the subject was instructed in the current task and was allowed to explore
the scenario as well as ask questions. During the execution of the actual task

Standard DynTrans Significance

1 56.26 (38.72) 40.44 (20.99) F (1, 15) = 7.54, p = .015
2 22.30 (16.20) 15.80 (10.21) F (1, 15) = 5.28, p = .036
3 62.78 (35.63) 23.21 (12.01) F (1, 15) = 22.98, p < .01
4 140.0 (61.75) 40.80 (24.16) F (1, 15) = 48.61, p < .01

Table 2. Average completion times for all four tasks (standard deviation).

set, only general questions were allowed. A full session lasted approximately 45
to 60 minutes.

6 Results

Analysis of the collected measurements indicates that both our hypotheses are
correct; subjects are more efficient (i.e. use less time) and more correct when
performing visual search tasks using dynamic transparency than without.

6.1 Time

Overall, the average completion time with inactive dynamic transparency was
65.17 (s.d. 27.75) seconds, compared to 28.69 (s.d. 11.02) with active dynamic
transparency. This was also a significant difference (F (1, 15) = 49.54, p < .001).
Each of the individual tasks also showed significantly shorter average comple-
tion times for active dynamic transparency compared to inactive dynamic trans-
parency down to p < .05. See Table 2 for a summary.

6.2 Correctness

For the counting tasks (task 1 and 4), we define correctness in terms of average
relative error, i.e. the ratio between the absolute error and the total number of
targets for all trials. The absolute error is the absolute difference between the
sum of the targets and the sum of the subject answers for the trials. Overall,
for task 1 and 4 combined, the average relative error was .100 (s.d. .141) when
dynamic transparency was inactive compared to .027 (s.d. .045) when it was
active. This is also a significant difference (F (1, 15) = 6.28, p = .024).

Task 1 in particular showed average relative error of .042 (s.d. .046) for
inactive dynamic transparency and .017 (s.d. .018) for active. This too was
significant (F (1, 15) = 4.74, p = .046). Task 4 showed .123 (s.d. .184) and
.034 (s.d. .074) average relative error, respectively, not a significant difference
(F (1, 15) = 4.12, p = .061).

For task 2, we define correctness as whether or not the subject identified
the pattern as the correct one. This figure was .963 (s.d. .109) for no dynamic
transparency and .963 (s.d. .150) for active. This is obviously not a significant
difference.

Finally, for task 3, we define correctness as the average Euclidean distance
(in world units) from the real position of the target and the point marked on
the map by the subject for each trial. With dynamic transparency inactive, this
average distance was 16.99 (s.d. 14.44), as opposed to 16.21 (s.d. 8.88). This
difference is not significant (F (1, 15) = .068, p = .797), and indicates that the
spatial understanding of the subjects was not negatively affected by the use of
dynamic transparency.

7 Discussion

It is important to remember that occlusion is a vital depth cue that humans use
to determine the spatial relation of objects in our environment. The introduction
of dynamic transparency may then adversely affect this mechanism, and can
actually result in “reverse occlusion”, i.e. the phenomenon that distant objects
all of a sudden occlude nearby objects instead.

In our approach, we address this problem by ensuring that intervening objects
made transparent always retain at least some percentage of opacity in order to
shine through on uncovered objects. This means that the user receives a visual
indication of the existence of the transparent surfaces. Self-reported ratings from
the subjects themselves seem to indicate that depth perception is still acceptable
with dynamic transparency active.

Fortunately, human perception relies on many more factors besides occlu-
sion to disambiguate depth; examples include stereopsis, motion parallax, atmo-
spheric perspective, texture gradient, etc. Even if we weaken the occlusion cue,
other depth cues will help the viewer to perceive the 3D scene correctly.

Some subjects in our study had the interesting behavior of “respecting” the
world more when dynamic transparency was inactive, using the doors in the
virtual walkthrough rather than going through walls, whereas they would not
hesitate to pass through walls when it was active. While this is an informal
observation, this behavior might indicate that the impact that dynamic trans-
parency has on visual realism causes the world to become more ethereal and
less believable to the users, thus making them ignore the implicit rules of the
environment.

8 Conclusions

We have presented an evaluation of the use of dynamic transparency for man-
aging occlusion of important target objects in 3D visualization applications.
In the absence of real-time algorithms for dynamic transparency that are suit-
able for interactive visualization, we have further devised an image-space algo-
rithm and implementation realizing the model. The algorithm uses the standard
framebuffer as a cumulative alpha buffer, rendering the scene back-to-front and
blending in alpha masks of target objects to allow for see-through surfaces. Our
evaluation consisted of a comparative user study evaluating efficiency and cor-
rectness gains from using the technique as opposed to standard 3D navigation

controls. Our results clearly show that dynamic transparency not only results
in more efficient object discovery, but also that users are more correct with the
technique than without.

References

1. Bowman, D.A., North, C., Chen, J., Polys, N.F., Pyla, P.S., Yilmaz, U.:
Information-rich virtual environments: theory, tools, and research agenda. In: Pro-
ceedings of the ACM Symposium on Virtual Reality Software and Technology 2003.
(2003) 81–90

2. Elmqvist, N., Tsigas, P.: A taxonomy of 3D occlusion management techniques. In:
Proceedings of the IEEE Conference on Virtual Reality 2007. (to appear)

3. Everitt, C.: Interactive order-independent transparency. NVIDIA Corporation
(2001) See http://developer.nvidia.com.

4. Mammen, A.: Transparency and antialiasing algorithms implemented with the
virtual pixel maps technique. IEEE Computer Graphics and Applications 9(4)
(July 1989) 43–55

5. Diefenbach, P.J.: Pipeline Rendering: Interaction and Realism through Hardware-
Based Multi-Pass Rendering. Ph.D. thesis, Computer Graphics, University of
Pennsylvania (1996)

6. Nienhaus, M., Döllner, J.: Blueprints: Illustrating architecture and technical parts
using hardware-accelerated non-photorealistic rendering. In: Proceedings of Graph-
ics Interface 2004. (2004) 49–56

7. Chittaro, L., Scagnetto, I.: Is semitransparency useful for navigating virtual envi-
ronments? In: Proceedings of the ACM Symposium on Virtual Reality Software
and Technology 2001. (2001) 159–166

8. Diepstraten, J., Weiskopf, D., Ertl, T.: Transparency in interactive technical illus-
trations. Computer Graphics Forum 21(3) (2002) 317–325

9. Diepstraten, J., Weiskopf, D., Ertl, T.: Interactive cutaway rendering. In: Pro-
ceedings of Eurographics 2003. (2003) 523–532

10. Looser, J., Billinghurst, M., Cockburn, A.: Through the looking glass: the use
of lenses as an interface tool for augmented reality interfaces. In: Proceedings of
GRAPHITE 2004. (2004) 204–211

11. Coffin, C., Höllerer, T.: Interactive perspective cut-away views for general 3D
scenes. In: Proceedings of the IEEE Symposium on 3D User Interfaces 2006.
(2006) 25–28

12. Viola, I., Kanitsar, A., Gröller, E.: Importance-driven volume rendering. In: Pro-
ceedings of the IEEE Conference on Visualization 2004. (2004) 139–145

13. Gutwin, C., Dyck, J., Fedak, C.: The effects of dynamic transparency on targeting
performance. In: Proceedings of Graphics Interface 2003. (2003) 105–112

14. Baudisch, P., Gutwin, C.: Multiblending: displaying overlapping windows simul-
taneously without the drawbacks of alpha blending. In: Proceedings of the ACM
CHI 2004 Conference on Human Factors in Computing Systems. (2004) 367–374

15. Ishak, E.W., Feiner, S.K.: Interacting with hidden content using content-aware
free-space transparency. In: Proceedings of the ACM Symposium on User Interface
Software and Technology 2004. (2004) 189–192

16. Carpenter, L.: The A-buffer, an antialiased hidden surface method. Computer
Graphics 18(3) (July 1984) 103–108

