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Figure 1: The EPICCITADEL scene, with precomputed illumination, voxelized at resolution 327683 a) Reference, 24-bit colors, 2.4GB . b)
Our BC7 compression, 800MB (30%), MS-SSIM: 0.99. c) Our variable bitrate block encoding, 371MB (15.3%), MS-SSIM: 0.98. d) [Dado

etal 2016]] 456MB (18.8%), MS-SSIM: 0.92.

Abstract

We explore the problem of decoupling color information from ge-
ometry in large scenes of voxelized surfaces and of compressing
the array of colors without introducing disturbing artifacts. First,
we present a novel method for connecting each node in a sparse
voxel DAG to its corresponding colors in a separate 1D array of
colors, with very little additional information stored to the DAG.
Then, we show that by mapping the 1D array of colors onto a 2D
image using a space-filling curve, we can achieve high compres-
sion rates and good quality using conventional, modern, hardware-
accelerated texture compression formats such as ASTC or BC7. We
additionally explore whether this method can be used to compress
voxel colors for off-line storage and network transmission using
conventional off-line compression formats such as JPG and JPG2K.
For real-time decompression, we suggest a novel variable bitrate
block encoding that consistently outperforms previous work, often
achieving two times the compression at equal quality.
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1 Introduction

Sparse Voxel Octrees (SVOs) have become increasingly popu-
lar, e.g., for raytracing indirect illumination and glossy reflec-
tions [Crassin et al. 2011]. In 2013, Sparse Voxel DAGs were
introduced, which heavily compress voxelized geometric informa-
tion [Kdmpe et al. 2013]. Only recently, it has been investigated
how to connect the DAG’s geometric data with material data, and
how to compress the material data separately [Dado et al. 2016;
Williams 2015].

Our first contribution in this paper is a novel method for connecting
material information to DAGs, which in practice does not increase
the size of the DAG by more than 1%. Next, we concentrate on the
compression of voxel color data. We focus on colors, although any
other similar data should be compressible with our methods, such
as surface roughness or normals.

While the voxel-color data certainly corresponds to colors in a 3D
spatial domain, algorithms intended for compressing traditional 3D
textures, or other volumetric data, will perform poorly since the
information is very sparse. The colors are actually distributed over
two-dimensional surfaces, but traditional 2D compression methods
do not directly apply. Instead, after decoupling the geometry and
color data, we are left with a compact one dimensional array which
(depending on how the decoupling is done) may still have ample
coherence.

Our second contribution enables efficient compression of voxelized
surface colors using conventional image compression methods. By
mapping the one-dimensional array to a two-dimensional image,
using a space-filling curve, much of the coherency can be retained
in the image and we can therefore apply standard 2D image com-
pression methods. We first demonstrate that modern, hardware ac-
celerated, texture compression formats (BC7 and ASTC) can com-
press the data to 33% with very little loss in quality. This data
can still be immediately accessed on the GPU with no extra perfor-
mance cost. Next we show that conventional off-line image com-
pression techniques can compress the data down to around 10%,
with reasonable quality, in cases where the data shall be stored to
disk or transmitted over a network.
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Our third contribution is a novel compression format where we in-
stead attempt to compress the array of colors immediately, without
transforming it to an image. In the spirit of many 2D-block based
algorithms, this algorithm divides the array of colors into blocks of
sizes such that each block can be represented by two endpoint col-
ors and one weight per original color which interpolates between
these, without introducing an error higher than a specified thresh-
old. This data can still be accessed in realtime, on the GPU, and,
in most experiments, compresses the data almost twice as well as
previous work, for similar quality.

2 Previous Work

Octrees have been used to represent 3D scenes for over three
decades [Rubin and Whitted 1980; Jackins and Tanimoto 1980;
Meagher 1982]. Despite octrees being a sparse format in itself, very
high resolutions are non-trivial to fit in memory and render [Museth
2013]. We will only cover the most related methods that use vox-
els as the representing primitive rather than points [Elseberg et al.
2013] or triangles [Gobbetti and Marton 2005].

Sparse Voxel Octrees store voxelized objects in an octree for-
mat, where each node represents a non-empty voxel at that hier-
archical level and, potentially, also stores its associated material
information [Gobbetti et al. 2008; Crassin et al. 2009]. Laine and
Karras [2011] introduce Efficient Sparse Voxel Octrees, which im-
prove on the geometric shapes by storing contour data in each voxel.
They also compress color and normal blocks of 2% voxels using
DXT-based compression. Crassin et al. [2011] use cone tracing in
an SVO to compute real-time ambient occlusion and indirect light-
ing.

Merging common subtrees Webber and Dillencourt [1989]
compress binary cartographic images by using quadtrees and
common-subtree merging, and Parsons [1986] use cyclic quad-
graphs to represent 2D straight lines. Parker et al. [2003] extend to
using common subtree merging for voxel octrees and achieve com-
pression for axis-aligned regular structures, such as flat electrical
circuits.

Sparse Voxel DAGs are based on the important observation that
by removing the material information from the voxel data, common
subtree merging often becomes up to three orders of magnitude
more efficient [Kdmpe et al. 2013]. Apart from direct visualiza-
tion of extremely high-resolution models (128 K®) lacking colors,
DAGs with only geometry can for instance be used for ambient oc-
clusion and shadows [Sintorn et al. 2014; Kdmpe et al. 2015]. Jaspe
Villanueva et al. [2016] significantly improve on the compression
by also searching for reflection symmetry of subDAGs in the z, y,
and z directions. Furthermore, they use a frequency-based pointer
compaction per hierarchy level and in total reduces the memory
consumption up to two times. These optimizations can be used or-
thogonally with our suggested technique.

Decoupling geometry and material data A problem with
DAGs is that they can only efficiently represent the geometric in-
formation in the DAG. Material information for the models is often
desired, and an efficient connection between the DAG nodes and
per voxel colors can be non-trivial. The reason is that simply in-
serting color indices into the nodes will destroy the subtree-merging
opportunities.

An early work in this direction is the Perfect Spatial Hashing sug-
gested by Lefebre et al. [2006]. Their method allows a lookup from
any 3D point in space to a 2D image using hash tables. While that
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Figure 2: In the format of Dado et al., each block stores the starting
node, the index of a block palette, the first bit in a compact list of
offsets to the block palette, and the width of each entry in that offset
list.

method may well be applicable to decoupling voxel geometry and
colors, the new position for a voxel color in the lookup texture will
inherently be random. This is not good for large data-sets since it
means that caching will work poorly, but more importantly, for our
purposes, it means that any coherence existing in the original voxel
colors will be lost, which complicates subsequent compression of
the data.

Very recently, Williams and Dado et al. presented two separate ap-
proaches to connect voxels with colors [Dado et al. 2016; Williams
2015] by inserting index information that does not harm the merg-
ing possibilities. Each node’s color index is defined by the node’s
order according to a fixed-order full tree traversal of the corre-
sponding SVO. Both methods insert a pre-computed value per child
pointer in the DAG, while our approach allows using only a value
per node, which is an important difference, since the former roughly
doubles the amount of data in the DAG node, leading to nearly a
doubling of the DAG memory consumption [Dado et al. 2016].

In short, Williams stores, per pointer, the number of empty SVO
voxels in a corresponding full subtree. These values reach 10'°
for scenes of 128 K and heavily influence the node sizes. They
also need an indirection table that grows exponentially, requiring
hundreds of MB even for small resolutions of 1/K%. That solution
is therefore infeasible for large resolutions. The solution suggested
by Dado et al. will be explained and further discussed in the next
section.

Compressing voxel colors In addition, Dado et al. suggest a
method for compressing voxel attributes. They first quantize all
colors that exist in the scene to obtain a subset of colors which are
chosen as the global palette. Next, they divide the original array
of colors into blocks, where each block will be associated with a
smaller block palette, which in turn points into the global palette.
If possible, several blocks can share the same block palette. Each
block also points into a compact list of offsets to the block-palette
with one entry per original color. The complete data structure is
illustrated in Figure 2. Obtaining good compression rates with high
quality requires that the color space can be quantized to a suffi-
ciently small subset, and that there is a possibility for many blocks
to share block-palettes.

Volume visualization of semi-transparent data in grids is used in,
for instance, medical visualization [Guthe et al. 2002], and a com-
plete overview is outside our scope. However, Balsa Rodriguez



et al. [2014] provide a detailed state-of-the-art report on real-
time GPU-based compressed-volume rendering. What differs these
methods from our approach is that they compress three-dimensional
voxel structures (e.g., using cosine transforms and wavelets), while
we target compressing voxelized surface data. Also, these methods
typically target grid resolutions of up to about 1K, while we target
resolutions of, e.g., 32K 3 ie., 5 orders of magnitude higher.

3 Decoupling Voxel Geometry and Attributes

Whether the geometry information in the voxel data is compressed
using a DAG [Kémpe et al. 2013] or stored as an SVO, it can be
beneficial to decouple geometry information from voxel-attribute
(e.g. color) information. In many cases, only the geometry infor-
mation is required for querying (e.g. ray tracing) the data-structure,
and isolating the geometry information can lead to better cache co-
herency. Additionally, if geometry and color information is stored
at the same resolution, the geometry information will require much
less memory and might, for instance, fit in GPU memory while the
color data does not. By separating geometry and colors, raytracing
of the data structure can be performed on the GPU while the color
lookup can be done on the CPU.

When the geometry is stored as a traversable SVO, decoupling col-
ors is trivial. Since nodes are fixed size, the index pointing to where
the node’s children can be found can also be used as an index into
a separate array of node colors. When the geometry is stored as a
DAG, however, the index is used to point out a node that may be
shared by several different SVO subtrees with different color con-
tent and so a direct index can not be stored in the DAG.

Dado et al. [2016] achieve their voxel-to-color-index connection by
storing, for each child pointer, the difference in color index for the
child and parent. The actual voxel index can then simply be com-
puted during traversal by summing all the offsets along the current
path, from the root to the node (see Figure 3). Since the offsets
will be identical for identical subtrees, the DAG still compresses as
well as without this information. Unfortunately, the pointers make
up the vast bulk of the information required to store a DAG so, by
adding a 32-bit offset to each 32-bit pointer, the size of the DAG is
effectively doubled. Dado et al. alleviate this problem by noticing
that most offsets will be small, and only require a few bits of stor-
age, but this complicates the way the DAG is stored and can be very
detrimental to the performance of, e.g., ray tracing the DAG.

In this paper, we note that by storing per DAG node a voxel count
(i.e. the number of voxels represented in the node’s subgraph), the
number of voxels preceding a specific node in a full-tree traversal
can be computed using a running sum of the voxel counts during
traversal. We start with a zero-initialized index and when traversing
from any node, p, to the next node, n, along a path from the root to
a leaf, the voxel counts of all n’s preceding siblings plus one (for
the color occupied by p) are added to the index. Consequently, the
index will continuously represent the voxel index for p. Figure 3
illustrates the index computation for a specific node.

Thus, with our method we only need to store an additional value per
node, which is much more memory efficient in a DAG. In our DAG
implementation, for alignment purposes, we use a 32-bit word to
store the 8-bit child mask and then up to eight 32-bit child pointers
(one for each non-empty child). For resolutions up to around 1K3,
the voxel-count value typically fits in the 24 unused bits, leading to
no increased storage requirements. For larger resolutions, at the up-
per levels, we store the voxel count in a separate 32-bit word. These
nodes are, however, so few that the memory overhead is typically
far less than 0.1%. Thus, we effectively need 24 bits on average
per node for the color connection, compared to 8-12 bytes on av-
erage using Dado et al.’s method. We do not use any pointer nor
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Figure 3: Transforming an SVO to a DAG with color index infor-
mation. a) A simple SVO with nodes labeled with their depth-first
order. b) The method of Dado et al. [2016]. To each pointer is ap-
pended the offset in index from the parent node to its subnodes. c)
Our method. With each node, we store the number of voxels (alter-
natively leaf-voxels) contained in the subtree.

value compression [Jaspe Villanueva et al. 2016; Dado et al. 2016],
although that could be added orthogonally.

The array of colors can be generated by traversing the original SVO
depth first such that the voxel colors will appear in the order of a
Morton curve. Then, much of the existing coherency between col-
ors will be retained. This is important for the compression algo-
rithms that will be discussed in the next section. In order to retain
even more of the coherency, the array can be reordered to follow
a Hilbert curve instead. Then, when traversing the DAG to find
the voxel index, we simply must make sure to consider the Hilbert
ordering of each node’s children when deciding which children pre-
cede the one we traverse to.

Regardless of which method is used to calculate the voxel index,
we have a choice of storing only leaf-voxel colors, or the color of
all nodes, in our array. In the former case, only the number of
leaf nodes contained in the subtrees of n’s siblings are added to the
index as we traverse the tree. Unfortunately, when all nodes’ col-
ors are stored, the colors of internal nodes will be interleaved with
nodes at lower levels, which leads to poor memory access patterns
and might negatively affect color compression. In the remainder of
this paper, we only consider leaf-node colors.

4 Attribute Compression

Having decoupled voxel colors from the geometry information, we
now search for a means of compressing the color information with-
out introducing too disturbing artifacts. Since the geometry infor-
mation can be very efficiently compressed using a DAG, the color
information will usually consume much more memory, even if the
geometry is stored at higher resolutions. In this section we will
discuss a number of novel approaches to compressing the color in-
formation, as suitable in different scenarios.

4.1 Compression using a 2D Mapping

There are an abundance of 2D image compression algorithms, and
modern GPUs even have specific hardware support for decompress-
ing 2D images, so naturally it would be desirable to be able to
use such algorithms on colors of voxelized surfaces. Therefore,
we first consider transforming our one-dimensional array of colors
into a two-dimensional image. Image-compression algorithms rely
on there being coherence in two dimensions so the chosen map-
ping must attempt to retain the coherence existing in the array when
transformed to an image. We chose to map our array onto an image
by following a 2D space-filling curve and then applying conven-
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Figure 4: a) The original block of colors. b) With BC1, sharp con-
trasts are blurred. Potentially bleeding across separate surfaces. c)
Formats with partitioning can have separate endpoints for separate
surfaces.

tional image-compression algorithms to it. Specifically, we either
generate the image using a Morton or a Hilbert mapping.

4.1.1 Hardware Texture Compression

Most modern GPUs contain fixed-function hardware designed to
decompress textures during lookup at virtually no performance
cost. Being able to utilize this hardware for looking up the color
of a voxel is highly desirable, and therefore, we have evaluated the
suitability of three significantly different such formats.

BC1. Perhaps the simplest, and certainly most supported form of
texture compression is the BC1 (also called DXT1 or S3TC) for-
mat. Here, the image is divided into blocks of 4x4 pixels and,
for each block, two 16-bit colors ¢y and co are stored, along with
a 2-bit weight, w;; per pixel. To decompress the color c;; of
the pixel (7, 7) in the block, the dedicated hardware will calculate
cij = (wij/3)c2 + (3 — wyj;/3)c1. Thus, an approximation of 16
24-bit colors can be achieved in 64 bits (compression ratio is 1:6).

BC7 is a more recent format, supported by most recent GPUs. For
us, the most important difference from BCI1 is that with BC7 each
block can be divided into two or more partitions, each with its own
color end points. To specify how the blocks will be partitioned, the
compressed block contains a few bits choosing a partitioning from
a fixed set. This allows for much better quality in the decompressed
image when the original image is not well described by an interpo-
lation between two colors. The block size for BC7 is 4x4 pixels and
the compression ratio is 1:3.

ASTC is similar to BC7 but much more flexible. It is only sup-
ported by some recent GPUs. With ASTC, the block size can be
chosen quite freely and the partitioning is done by a random number
generator, rather than a hardware table, allowing for very different
partitionings than BC7.

The images we compress are very different from the natural im-
ages these formats were designed to handle, which is very evident
when using BC1 compression. Consider the example in Figure 4a.
The colors of the original voxel-color array describe two different
surfaces and are laid out in a Morton curve. There is a distinct
jump in the color space as we move from one of the surfaces to the
other. With BC1, the whole block will be approximated by linearly
interpolating between two colors and, while the result may work ac-
ceptably for a natural image, in our case it results in the red surface
being tainted with blue hues, and vice versa, resulting in objection-
able artifacts. This problem is greatly alleviated by the partitioning
mechanism available in the BC7 and ASTC formats. Two surfaces
that happen to occupy the same block in the 2D image will be com-
pressed using two separate partitions and the decompressed colors
will be much closer to the original.
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Figure 5: In our suggested format, the array of voxel colors are
divided into blocks of varying length that can be described with two
endpoint colors, co and c1 and a weight per color that interpolates
between these.

4.1.2 Conventional Off-line Image Compression

Contrary to hardware-accelerated texture-compression formats,
conventional off-line image-compression techniques do not have a
requirement of being randomly accessible. With these formats, the
entire image is usually decompressed into raw format for display
or modifications. Therefore, much higher compression ratios are
often achievable. We have explored whether compressing an array
of voxel data with off-line image compression, by mapping it to
an image using a space filling curve, is viable when the data shall
be, e.g., stored to disk or transferred over a network. In our ex-
periments, as detailed in section 5.3, we have evaluated three well
known, and distinctly different, formats. We will briefly overview
their characteristics in the remainder of this section.

JPEG is a common format for heavily compressing photographs
and natural images. It works by first transforming the RGB data
to Y'C,C, data and then transforming blocks of 8x8 pixels into
the frequency domain using the discrete cosine transform. In this
domain, the data is quantized which will cause the image to be
compressed in the final entropy-coding stage. Thus, a lot of the
high-frequency information in the image is discarded, potentially
causing the same kind of artifacts as we expect from BC1.

JPEG2000 is a more recent format where the image is instead
wavelet transformed hierarchically as a first step. The resulting co-
efficients are then quantized to reduce the number of bits required
to store them and facilitate entropy coding. While this approach
would seem better suited to avoid the problem described in Fig-
ure 4b, quantizing a single coefficient can affect a large region of
the image, which in turn can affect large volumes containing sepa-
rate surfaces in the voxel data.

PNG itself is a lossless format, but encoders often provide the op-
tion of preprocessing the image before compression so as to achieve
a smaller file size. In our experiments we have used an encoder that
first reduces the number of colors in the image by clustering in color
space.

All of these formats naturally run the risk, at high compression ra-
tios, of blurring together surfaces that are actually separate and the
pros and cons of each format will be discussed in Section 5.

We would like to mention that while it is tempting to simply pad the
voxel-color array so that two surfaces of different colors do not oc-
cupy the same block, we have not yet found a way of achieving this
without destroying either the decoupling information in the DAG or
the potential for merging common subtrees.



Table 1: The scenes used in the evaluation of our algorithm. The SVO size reported is what would be obtained with a traversable SVO where
each internal node is two 32-bit words (mask and pointer), and leaf nodes are 4x4x4 blocks described by a 64 bit word.

Scene SPONZA EpIC

Bobpy CAMPUS
Resolution 4096° 32768 16384° 32768°
Leaf Voxels 147M 848M 167TM 97M
Color Data Size 420MB 2.4GB 477MB 277MB
SVO Size 100MB 719MB 168MB 139MB
DAG Size 9MB 189MB 96MB 118MB

4.2 Variable Bitrate Block Encoding

When the compressed voxel data is to be queried in realtime, the
off-line image compression algorithms just described are not an
option. Instead, for traditional texturing, the fixed bitrate block en-
codings described in Section 4.1.1 are used. However, as will be
revealed in Section 5.1, for high-quality decompressed images, the
compression ratio is fairly low for these formats. As reviewed in
Section 2, Dado et al. [Dado et al. 2016] suggest a compression
format that lies somewhere in the middle ground between off-line
image compression formats and fixed bitrate block encodings, re-
quiring a binary search to locate the containing block but still being
accessible in realtime environments. The novel format that will be
described in this section similarly lies in this middle ground.

4.2.1 Data Structure and Decompression

In our data structure, the array of colors is divided into blocks that
can have any length. Just like the BC1 format, a block carries two
endpoint colors, co and ¢, and each color in the block is described
as an interpolation between these two colors. Thus, our entire data
structure consists of an array of B block headers, b;, and an array of
N weights, w;, where NN is the total number of voxel colors. The
block headers contain one index specifying the voxel that begins
this block and the endpoint colors. The weights are all of constant
bitwidth, W, (usually 2-4 bits) and so are directly indexable. Our
data structure is illustrated in Figure 5

When the voxel index, 7, has been found, e.g. by raytracing a DAG,
the decompressed color is calculated by first performing a binary
search through the block headers to find the block that contains this
voxel color. Then, the voxel color is decompressed as:

¢j = (wj/W)er + (W —w; /W)eo. 1)

Thus, decompressing the datastructure is very simple and intu-
itively it should be able to fit our specific data quite well. In the
next section we will discuss the method with which we choose the
block division such that the decompressed colors will be sufficiently
close to the original.

4.2.2 Compression

We initialize our compression algorithm with the maximum ac-
cepted error allowed for a decompressed color. This error mea-
sure can be chosen arbitrarily, but we simply look at the distance,
e, (in sSRGB or CIELAB space) between the original and the de-
compressed color and supply a specific error threshold, e;. The

objective now is to find the smallest set of blocks for which this
error is sufficiently low. This is obviously a very difficult problem
and we make no attempt at finding the optimal solution. Instead,
we present in this section a heuristic that works well.

First, each color is assigned its own block, and the blocks are stored
as a doubly linked list. We then greedily merge blocks in several it-
erations, until no more blocks can be merged. In each iteration, we
start at the second block in the list and calculate a score for merg-
ing with either the left or the right block. We simply use the mean
square error of all compressed colors in the potential new block
as our score, or a negative number if any color was below the error
threshold. The block is then merged with the highest scoring neigh-
bor. If neither neighbor could be merged within the error threshold,
the block is left as is. We then move fwo blocks to the right and
repeat the merging procedure until we reach the end of the list. As
long as any block was merged with another, we then start a new
iteration at the second block in the list.

The algorithm is detailed in Algorithm 1. We additionally main-
tain which blocks were modified in the last pass, so that we can
skip redundant calculations when neither it nor its neighbors have
changed.

4.2.3 Variable Bitwidth For Weights

In our implementation, the number of bits used to store the inter-
polation weight per color is fixed. It may be that even better re-
sults could be obtained by carefully choosing the number of bits per
block so that, for instance, a large block that only contains two col-
ors could be encoded with a single bit per weight. This comes at the
cost of a more expensive block header, however. Since the weight
array would no longer be directly indexable, the block header would
have to carry an index to the first element and the bitwidth for this
block. The compression algorithm would also have to be more com-
plex in order to decide which bitwidth is most suitable for a block.
A thorough evaluation of using variable bitwidths for weights is left
as future work.

We have implemented a small subset of this idea, however. In one
version of our algorithm, we first locate blocks that can be described
by a single color without surpassing the error threshold. This is
done with a single greedy sweep over the voxel color data, and
then, the compression algorithm continues as before.



Algorithm 1: Find the set of compressable blocks

input : e;- the error threshold
blocks- a linked list of blocks, initially one per color

Procedure Eval (block.start, block.end)
(co, c1, w) < LeastSquaresFit (block.start, block.end) ;
if all color errors < e; then

| return mean square error;
else

| return-1;

Procedure Compress (e, blocks)
do
block < second element in blocks;
while (not at end of list) do
leftmse < Eval (block.left.start, block.end) ;
rightmse <— Eval (block.start, block.right.end) ;
if (leftmse > 0) OR (rightmse > 0) then
if leftmse < rightmse then
| Merge (blockblock.left)
else
| Merge (block,block.right)

| block < block.right.right;

| while (any block was merged);

5 Results

To evaluate the compression algorithms, we have chosen a set of
four very different types of scenes, shown in Table 1. SPONZA
and EPIC, are voxelized video-game scenes with path-traced colors.
BODY is a high-resolution mesh with high-resolution color textures
obtained by 3D scanning. CAMPUS is a university campus captured
by a laser scanner, where the original point cloud is approximately
8GB of data (500M points) and has been voxelized without any
surface reconstruction.

All scenes have been converted to a geometry DAG as described
in [Kémpe et al. 2013] with voxel-color connections inserted as de-
scribed in Section 3. Once the one-dimensional array of colors has
been obtained, we compress that using a number of different algo-
rithms listed below. We evaluate the quality of the compressed data
first globally by calculating the Global Mean Square Error (GMSE)
of all compressed colors compared to the ground truth. The error is
the distance, e, (in SRGB space) between the original and decom-
pressed color. The GMSE provides some notion of the quality of
the compressed data as a whole, but if the scene contains, for in-
stance, large areas that compress very well, the GMSE may not be
a very good measurement.

Therefore, we also chose a number of viewpoints in each scene and
render an image for each. For these images, we calculate the Mean
Squared Error (MSE) and Multi Scale Structural Similarity Index
(MS-SSIM). These numbers correspond reasonably to how the dif-
ference in quality of the rendered images are perceived. However,
especially at lower quality settings, which compression method to
prefer can be highly subjective. Our complete results occupy too
much space to fit in the paper and are instead supplied as supple-
mentary material.

To inspect the scene, we have implemented a real-time raytracer in
CUDA, which calculates the primary hit point per pixel by inter-
secting a ray with the DAG. The raytracer outputs a voxel coordi-
nate per pixel, and in a second pass the color is obtained from the
voxel color data. In the two Variable Bitrate Block-Encoding al-
gorithms, the compressed data is stored and evaluated on the GPU,

Table 2: Comparison of hardware texture formats.

SPONZA EpiC Boby CAMPUS
BC1 Compression 16% 16% 16% 16%
Global MSE 39 2.4 33 18.4
MSE 10.7 224 1.8 4.1
MS-SSIM 0.953 0.974 | 0.996 0.942
BC7 Compression 33% 33% 33% 33%
Global MSE 0.42 0.3 0.3 33
MSE 1.1 1.8 0.2 0.6
MS-SSIM 0.992 0.997 | 0.9995 0.983
ASTC Compression 33% 33% 33% 33%
Global MSE 0.5 0.3 0.3 4.0
MSE 1.2 1.7 0.2 0.7
MS-SSIM 0.992 0.997 | 0.9996 | 0.983
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but for the other formats we decompress the data on the CPU be-
fore storing it on the GPU. While we could have read the hardware
texture formats in an OpenGL compute, or fragment, shader, our
CUDA implementation does not support that. In the cases where
the uncompressed data is too large to reside on the GPU, our imple-
mentation falls back to an identical CPU path for the color lookup.

For the hardware texture formats and the conventional image com-
pression algorithms, the voxel-color array is first transformed into
an image, as described in Section 3, and then compressed using off-
the-shelf software. Since our voxel data is often very large, we have
split it into partitions that each make up one 2048x2048 image, and
compress these separately. If the compressed textures were to be
accessed on the GPU, each compressed image could be read into
a slice of an array texture. This also lets us control the maximum
amount of padding required to fit our data into a square texture.

e BC1, BC7 AMD Compressonator.

o ASTC ARM-software ASTC-encoder.

e QOurs Our implementation of the algorithm described in Sec-
tion 4.2.

e Dado Our implementation of the algorithm described in the
paper by Dado et al. [2016].

o JPG, JPG2000 Image Magick.

e PNG pngout and pngquant [Silverman 2016; Lesinski 2016].

The error, e, has been calculated in SRGB space. We have also run



Table 3: Comparison of variable bitrate block-encoding formats. Our and Dado et al.’s formats compared at varying quality settings. The

images show results at the highlighted settings.

SPONZA EpIC Bobpy CAMPUS
Comp. GMSE  MSE MSSSIM | Comp. GMSE  MSE MSSSIM | Comp. GMSE  MSE MSSSIM | Comp. GMSE  MSE MSSSIM

e::0.025 | 188% 1.0 2.0 0.976 202% 0.4 1.8 0.994 172% 14 1.3 0.995 442% 2.1 1.7 0.952

g e::0.038 | 155% 2.1 4.5 0.951 153% 0.8 3.8 0.988 133% 3.7 33 0.990 29.0% 42 3.6 0.914

=} €1 0.050 | 142% 3.5 8.4 0.914 139% 1.3 6.5 0.981 127% 52 5.5 0.985 232% 7.2 7.0 0.823

e;:0.100 | 13.1% 9.1 29.8  0.820 127% 3.9 274 0.943 125%  17.1 167 0.951 15.0%  20.9 254 0.633

lossless | 37.2% 0.0 0.0 1.000 89.9% 0.0 0.0 1.000 652% 0.0 0.0 1.000 103% 0.0 0.0 1.000

o colors: 16K | 21.2% 0.6 1.2 0.980 319% 0.2 1.4 0.994 35.0% 0.3 0.3 0.998 393% 1.9 2.0 0.939

E colors: 4K | 17.1% 2.4 33 0.959 279% 0.7 3.8 0.986 31.7% 0.6 0.6 0.997 31.7% 6.7 5.5 0.859

colors: 2K | 152% 3.3 54 0.939 25.6% 0.9 6.0 0.980 30.6% 1.0 0.9 0.995 29.1% 9.0 9.5 0.819

colors: 256 | 112%  19.5 31.6  0.800 188% 6.7 300 0.923 24.0% 4.7 4.9 0.977 21.4% 589 642 0.606
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our experiments using the distance in CIELAB space, but found the
results to be slightly worse in all cases, both for our algorithms and
that by Dado et al.

All experiments have been performed for both the Hilbert and Mor-
ton order of both the depth-first traversal and the 2D space-filling
curves. However, using a Hilbert-order was found to consistently
provide very minor improvements. Since the Morton order is very
common due to its simplicity, we therefore choose to only present
results using the Morton order.

5.1 Hardware Texture Formats

Table 2 shows the results obtained when transforming the voxel
color data to a 2D image, using a space-filling curve as suggested
in Section 4.1, and compressing these images using hardware ac-
celerated texture compression formats. With the simpler BC1 for-
mat, we obtain a compression of 16%, but compression artifacts
are clearly visible. One source of artifacts are the discretization and
color shifts that are inherent in the format, but we also see, espe-
cially in the SPONZA scene, that unexpected voxel colors turn up
on otherwise smooth surfaces as explained in Section 4.1.1. A no-
table exception is the BODY scene, where the BC1 algorithm per-
forms very well. This is most likely due to the scene having few
thin or overlapping features, so that the vast majority of 2D blocks
will contain only colors from one surface.

The BC7 and ASTC formats both generate high quality images and
very low global errors and the obtained compression is identical
at 33%. In Table 6, we show how different formats degrade with
lower quality settings. The BC1 and BC7 formats do not allow
for different settings, but with the ASTC format, we are able to
choose to use even fewer bits per texel. While the quality of results
quickly degenerates, the data can become very small and there may
be scenarios, such as when the voxel data is used for glossy indirect
reflections, where these settings are viable.

5.2

Variable Bitrate Block-Encoding Formats

In Table 3, we compare our novel compression scheme, described
in Section 4.2, with our own implementation of the algorithm sug-
gested by Dado et al. [2016]. For our format, the results are similar
between the first three scenes. The compressed data is 17-20% of
the original with virtually no perceptible error, 13-15% with very
high quality, and we can push it down towards 12% (optimal with
the chosen bitwidth for weights) with quality that can still be ac-
ceptable in some cases.

All results presented for our format use the 16-bit RGB565 format
to store the color endpoints in the blocks. This gives slightly better
compression results while achieving the same quality as if we use
24-bit color endpoints. We use three bits per weight; This gives
the best result in almost all cases (the exception being a few of the
highest quality experiments, where the size of the block headers
strongly outweigh the size of the weights array).

The last scene, CAMPUS, is very challenging for both our and Dado
et al.’s algorithms. There are two main reasons for this; First, the
color information in the scanned data is merged from different cam-
eras at different viewpoints and the real-world materials are often
highly view-dependent. Thus, points on the same surface often have
highly irregular colors even though they appear smooth in reality.
Also, the resolution of the data is relatively low, so thin features
(e.g., the many trees that are part of the scan) will cause very noisy
colors to begin with. Thus, at the current resolution, our format
with lower quality settings can be used if some error is acceptable,
but otherwise, it is preferable to use our BC7 or ASTC formats de-
scribed above.

On the EPIC and BODY scenes, our format is clearly the better
choice, offering very high quality at compression ratios that can-
not be reached with the other algorithm. In the SPONZA scene,
however, Dado et al.’s format performs almost as well as ours, and
much better than in any of the other scenes. We have investigated
this further to demonstrate some important differences between the
two formats.



Table 4: Comparing the quality of voxel data compressed using conventional off-line image-compression formats.

SPONZA EpiC Bobpy CAMPUS
quality setting | Comp. GMSE  MSE MSSSIM | Comp. GMSE  MSE MSSSIM | Comp. GMSE  MSE MSSSIM | Comp. GMSE  MSE MSSSIM
JPG 95 11.7% 2.3 38 0.956 14.8% 1.0 3.6 0.987 149% 2.3 1.8 0.996 21.0% 5.8 3.0 0.924
85 6.4% 8.3 21.1 0.869 7.3% 4.5 24.6 0.945 7.5% 10.4 7.4 0.988 104%  23.7 114 0.847
75 4.7% 154 42.6 0.809 5.0% 8.3 55.4 0.909 5.1% 17.5 11.1 0.983 7.1% 41.7 19.4  0.801
50 | 3.1% 35.2 89.8 0.727 3.0% 16.3 137.6  0.853 3.1% 25.5 155 0975 4.1% 80.0 325  0.718
JPG2K x5 20.0% 0.7 1.3 0.980 20.0% 0.9 5.8 0.982 20.1% 1.1 0.5 0.997 204% 5.8 3.8 0.893
x10 10.1% 3.2 6.0 0.920 10.0% 3.6 29.3 0.938 10.0% 4.5 2.1 0.991 10.3% 18.0 11.8  0.750
x20 | 5.0% 14.3 322 0.777 5.0% 11.1 1304  0.823 5.0% 15.7 7.3 0.976 52% 47.1 273 0.607
x40 | 2.6% 58.2 1240  0.593 2.5% 255 3263  0.692 2.5% 33.0 16.1 0.956 2.6% 96.4 57.1 0.491
PNG lossless 29.8% 0.0 0.0 1.000 527% 0.0 0.0 1.000 50.2% 0.0 0.0 1.000 67.9% 0.0 0.0 1.000
100 124% 0.8 4.6 0.967 21.5% 1.0 5.6 0.985 25.6% 0.6 0.5 0.998 21.7% 1.2 3.1 0.925
70 | 4.9% 6.6 324 0.788 104% 3.8 11.2 0.970 7.6% 9.5 55 0.978 18.6% 94 4.4 0.892
30 | 3.1% 18.8 71.7 0.641 6.4% 10.2 32.7 0.930 4.8% 232 165 0932 11.6% 259 13.8  0.736
10 | 2.3% 27.8 127.4  0.515 4.9% 17.0 49.7 0.897 3.6% 36.0 274 0.889 8.8% 425 21.1 0.639

Table S: A detailed evaluation of the SPONZA scene. ORIGINAL is
the original scene and in MODIFIED we have removed the redun-
dant geometry.

ORIGINAL MODIFIED
Comp. GMSE Comp. GMSE
Ours es: 0.025 18,8% 1.0 20.3% 1.9
es: 0.038 15.5% 2.1 16.0% 3.8
e¢: 0.050 14.2% 35 14.7% 6.6
e¢: 0.100 131% 9.1 13.1% 15.7
SCB e¢: 0.025 16.3% 12 22.6% 2.0
es: 0.038 12.2% 2.5 16.5% 4.0
e¢: 0.050 9.8% 33 13.6% 52
e 0.100 | 7.7% 7.1 9.7% 12.0
Dado lossless 37.2% 0.0 65.3% 0.0
colors: 4K 17.1% 24 26.2% 3.7
colors: 2K 15.2% 33 23.7% 5.3
colors: 256 11.2% 19.5 17.0% 29.5

The main reason for these results, it turns out, is that the SPONZA
scene contains one large box that lies inside the walls of the model
and is invisible from any reasonable viewpoint. This box comprises
almost 50% of all the voxels in the scene but, as it receives no light,
all of them are completely black. When a large block can be de-
scribed by a single color, our algorithm will find the block but will
still require a fixed number of bits per color in the block to store the
weight. With Dado et al.’s format, such blocks will find that they
can use a block palette with one entry, and so they do not have to
store any per-voxel information. We demonstrate that this is indeed
the cause of the anomalies in Table 5, where we have removed the
hidden box from the scene and re-run the experiments.

In Section 4.2.3, we suggest a modification to our algorithm that
should handle cases such as this and these results are also given in
Table 5. While the modified algorithm produces better results on
the original SPONZA scene, it can only be considered a modest suc-
cess, as the overhead introduced in the block headers mean that the
modified scene (which has very few blocks that can be described
by a single color) actually cause slightly worse compression at high
quality settings. It does however provide a way of pushing com-
pressed sizes even lower if quality is not the main concern.

5.3 Off-line Image Compression Formats

We have also compressed our voxel data using off-line image com-
pression formats as described in Section 4.1.2 and the results are
available in Table 4. Table 6 shows what type of artifacts are in-
troduced and many more examples are available in the supplemen-
tary material. JPG and JPG2K can both produce fairly high quality

results at compressed sizes from 15%-20%. Which of these two
formats is preferable at lower quality settings is highly subjective,
but we note that, as expected, JPEG2K introduces noise and color
shifts on large continuous surfaces, while JPG introduces disturb-
ing artifacts where surfaces are nearby and the voxels fall in the
same 8x8 block. PNG compression of color-quantized data appears
surprisingly efficient when only considering the GMSE numbers in
Table 4, but in the second row of PNG images in Table 6, we can
see that the compression comes at the cost of some areas having
completely incorrect hues.

The compressed data is not directly accessible from, e.g., a shader
or raytracer, but due to the simplicity of implementation and ready
availability of software for 2D image compression, we believe these
formats could be a good choice for compressing voxel data that is to
be transferred over a network or stored to disk. It should be noted,
however, that while we have not done a full analysis, voxel data
compressed with either of the algorithms discussed in Section 4.2
can be further compressed by approximately 50% using off-the-
shelf compression software (e.g., zip).

5.4 Performance.

Compression The BC1, BC7, ASTC, JPG, JP2K and PNG for-
mats have all been compressed using external software. For the
BC7 and ASTC formats, we have compressed using exhaustive
search to find the optimal block configurations, and this is very
time consuming (approximately 20h for the EPIC scene). We have
also tried using faster settings where heuristics are used to improve
speed and the results have been almost as good at a fraction of the
time. For the rest of the image compression formats, compression
time has at worst been a few minutes. For our implementation of
Dado et al.’s algorithm, no effort has been put into optimization of
the code, and on a single core of an Intel Core 17 3930K, compres-
sion took approximately 2h. The version of our own implementa-
tion that was used for all measurements has about the same perfor-
mance as that of Dado et al., but we have subsequently optimized
this algorithm by moving parts to the GPU. With that version, the
EPIC scene took only 7 minutes to compress.

Lookup. In the table below, we present the time taken to render
the images shown in Table 3 at 1024x1024 resolution using Our
method and that of Dado et al., both when using per-pointer and
per-node offsets to calculate the voxel-color index.



Table 6: For each compression method, show how image quality changes with compression rate.

Compression / Image MSE

20.2%/1.8 15.3%/3.8 13.9%/6.5 12.7%/27.4

31.9%/1.4 27.9%/3.8 25.6%16.0 18.8%/30.0
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JPG2K

52.7%/0.0 21.5%/5.6 17.0%/5.9 12.9%I1.5

PNG (2)

SpONzA | EpiCc | Bopy | CAMPUS

Raytracing 2.5ms | 3.8ms | 4.1ms 3ms

Lookup, Ours per-pointer | 0.6ms | 0.6ms | 0.6ms | 0.6ms
per-node| 1.0ms | 1.0ms | 1.0ms | I.lms

Lookup, Dado per-pointer | 0.6ms | 0.6ms | 0.8ms | 0.6ms
per-node| 1.0ms | 1.0ms | 1.0ms | 1.lms

DAG size per-pointer | 15MB |336MB | 168MB | 184MB

per-node| 9MB |189MB | 96MB | 118MB

As expected, the lookup performance is somewhat faster when us-
ing per-pointer offsets, but the resulting DAG-sizes are also signifi-
cantly larger (1.5x - 1.8x).

6 Conclusion and Future Work

We have described a method for decoupling DAG geometry and
attribute data that has a very small impact on the final size of the
DAG. We have also described a number of methods for lossy com-
pression of the voxel attribute data. With our method for decoupling
colors from geometry, the voxel-color data is ordered according to a
3D space-filling curve and contains much color coherency. We have
shown that by transforming the color data to an image using a 2D
space-filling curve, much of that coherency is retained, and conven-
tional image compression formats, both off-line formats and hard-
ware accelerated texture formats, can be used to achieve high qual-
ity results for compressed voxel data. In particular we have shown
that, with the BC7 and ASTC formats, we can effortlessly provide
3x compression with very little loss in quality, enabling extremely
fast color lookups from GPU shaders. Finally, we have suggested
a novel real-time format, and compression algorithm, that consis-
tently outperforms previous work and often achieves around twice
the compression for equal quality.

We believe much higher compression ratios should be obtainable
for an off-line format, and will, in the future, explore whether oft-

T Cra )
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PNG (1)

line image compression algorithms can be modified to better suit
voxel-color data. We would also like to further explore the idea
of compressing different blocks with different bitwidths for color
endpoints and weights.
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