
To appear in ACM TOG 33(4).

Compact Precomputed Voxelized Shadows

Erik Sintorn∗ Viktor Kämpe∗ Ola Olsson∗ Ulf Assarsson∗

Chalmers University of Technology

Figure 1: An example of using our algorithm to evaluate precomputed shadows from the sun when viewing the scene at varying scales. Our
compact data structure occupies 100MB of graphics memory and is equivalent to a 256k×256k (i.e. 2621442) shadow map. With a filter size
of 9×9 taps, shadow evaluation is done in < 1ms at 1080p resolution.

Abstract

Producing high-quality shadows in large environments is an im-
portant and challenging problem for real-time applications such as
games. We propose a novel data structure for precomputed shadows,
which enables high-quality filtered shadows to be reconstructed for
any point in the scene. We convert a high-resolution shadow map
to a sparse voxel octree, where each node encodes light visibility
for the corresponding voxel, and compress this tree by merging
common subtrees. The resulting data structure can be many orders
of magnitude smaller than the corresponding shadow map. We also
show that it can be efficiently evaluated in real time with large filter
kernels.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing and texture;

Keywords: shadows, real-time, precomputed

1 Introduction

With state of the art real-time shadowing algorithms, it is still difficult
to generate high-quality shadows in large open scenes. When a user
needs to simultaneously see detailed shadows of nearby objects
and alias-free shadows in the far distance, the traditional shadow
mapping algorithm [Williams 1978] algorithm breaks down. A
common remedy is to use Cascaded Shadow Maps (CSMs), where
the view frustum is partitioned and one shadow map is rendered for
each partition [Engel 2006; Zhang et al. 2006; Lloyd et al. 2006].
This provides a roughly uniform shadow-map resolution for all view
samples. However, even with aggressive culling techniques, this can
require re-rendering parts of the scene several times, which affects
performance. Additionally, the resolution in distant regions can,
even if it matches the screen sample frequency well, be insufficient
to capture complex shadow casters without aliasing.

∗{erik.sintorn|kampe|olaolss|uffe}@chalmers.se

Most virtual scenes in real-time applications contain a large portion
of static geometry, and it is not uncommon to have one or more
static key lights (e.g. the sun). Under these circumstances, it can be
desirable to use precomputed shadows, which can be both faster to
evaluate and can provide higher quality shadows than what is possi-
ble with fully dynamic techniques. A dynamic technique, e.g. CSMs,
can then be used for the dynamic geometry, which represents just
a fraction of the triangles and fill-rate requirements. This generally
results in both higher, and more stable, performance and improved
quality.

Consequently, this is very common in practice and is supported in
some form by all major game engines. One common approach is
to store pre-calculated visibility information in texture maps (often
called light maps), which can be immediately queried during shad-
ing. Light maps provide light-source visibility information during
shading at almost no cost but are quite limited in some respects.
First, they can only be used to evaluate shadows on the surface of
static geometry, which is problematic as dynamic and volumetric
receivers must use some other technique to be shadowed by the
static environment. Secondly, for the static geometry, a unique UV
parametrisation must be created, which can be difficult and cum-
bersome. Thirdly, even with lossy image-compression techniques,
these maps can require a considerable amount of memory if high
resolutions are required.

The goal of this paper is to design a data structure that provides
precomputed shadow information from static geometry and a static
light, and which enables high-quality filtered shadows to be recon-
structed for any point in the scene. Thus, both static and dynamic
geometry can receive shadows from the static environment, and a
separate real-time technique only needs to support shadows from
dynamic geometry. We achieve this by voxelizing shadow infor-
mation for the entire space to an octree and then compressing this
tree by merging common subtrees. Our suggested data structure is
extremely compact but can still be used to obtain high-quality results
very quickly while shading. Our data structure provides equivalent
information to that of an extremely high-resolution shadow map at a
fraction of the memory cost. We go on to show that for closed geom-
etry, or when the scene is not to be used with dynamic objects (e.g.

1

To appear in ACM TOG 33(4).

for an architectural walk-through), we can reduce the size further, to
the point of requiring three orders of magnitude less memory than a
16-bit shadow map for the scene and resolution shown in Figure 1.

By storing light visibility, as opposed to depth values, high-quality
filters using large filter kernels can be be evaluated very efficiently,
enabling shadows for a full HD resolution with a speed and quality
that is much higher than what is obtainable with CSM. In addition,
we demonstrate two practical methods for filtering shadows in the
distance, which both removes aliasing and improves performance.

2 Previous Work

Real-time shadows. There exists a very large body of work con-
cerning the generation of shadows in real time. For a detailed
survey, we refer the reader to either of two excellent recent books:
Eisemann et al. [2011] and Woo and Poulin [2012]. Most current
real-time applications that require shadows cast from point lights
onto a large virtual world use a variant of the Cascaded Shadow
Maps (CSM) technique [Engel 2006; Lloyd et al. 2006; Zhang et al.
2006]. The idea is to partition the view frustum and render a shadow
map [Williams 1978] per partition. This reduces the under- and
over-sampling problems that would be caused by using a single
shadow map. However, to completely hide artifacts caused by alias-
ing and visible transitions between partitions, a large number of
high-resolution shadow maps are still required. A more general ap-
proach to achieving sufficient shadow-map resolution is to estimate
the required resolution for tiles of the shadow map in a first camera
pass and then render the shadow map at varying resolutions for
different tiles [Lefohn et al. 2007; Giegl and Wimmer 2007]. These
techniques are still too expensive for most real-time applications,
and none of the techniques mentioned so far alleviate the aliasing
problems that occur when distant shadow casters are too complex to
be accurately represented by a low-resolution shadow map.

Whichever discrete shadow-map method is used, the signal must
be reconstructed at the sample point using some form of filtering.
Since the depth values stored in a shadow map cannot be directly
pre-filtered, this can become very expensive. In order to afford large
filter kernels, several alternative methods have been suggested, such
as Variance Shadow Maps (VSMs) [Donnelly and Lauritzen 2006],
convolution shadow maps [Annen et al. 2007], and Exponential
Shadow Maps (ESMs) [Annen et al. 2008]. These methods store an
approximation of the visibility function rather than a single depth,
and can be pre-filtered. Due to their approximate nature, these
algorithms all have problematic failure cases.

There are also several real-time alias-free algorithms based either on
shadow volumes [Crow 1977; Heidmann 1991; Sintorn et al. 2011],
or on irregular rasterization [Johnson et al. 2005; Aila and Laine
2004; Sintorn et al. 2008], but these methods are currently not fast
enough to be used for complex scenes in real time.

Precomputed shadows. To improve rendering quality and per-
formance, many real-time applications employ some form of pre-
computed radiance transfer technique. We refer the reader to the
survey by Ramamoorthi [2009] for an overview of such methods.
Precomputed point light visibility can be stored in a light map,
for fast, pre-filtered lookups. Rasmusson et al. [2010] present a
hardware-accelerated compression scheme that specifically targets
light maps and provide an overview of standard techniques. Lefeb-
vre and Hoppe [2007] suggest using a hierarchical representation of
spatially coherent data (such as light maps) to improve compression
rates at the cost of more expensive lookups. However, even when
employing lossy compression schemes, capturing high-frequency
changes in visibility can still require too much memory for light
maps to be feasible for large scenes. Binary visibility over a surface

Figure 2: Overview of our compression method. Left: Solid vox-
elization of shadowed space, identical (colored) nodes are merged.
Right: Voxelization in light-space provides much better compression.

can also be encoded using distance fields. Such data can often be
very well reconstructed, as suggested by Green [2007], from low-
resolution maps, but the method fails to capture thin or complex
shadows. In addition, these techniques all require an unambiguous
UV parametrization for all geometry, and can only store visibility
information exactly at the considered (static) surfaces.

Shadow map compression. A number of algorithms exist that
attempt to compress and decompress depth buffers in real time,
as discussed by Hasselgren and Akenine-Möller [2006]. These
methods reduce bandwidth requirements but do not achieve sufficient
compression ratios to be useful for storing extremely high-resolution
shadow maps. The method by Arvo and Hirvikorpi [2005], however,
reaches high compression ratios (e.g. 50:1 compared to a 16-bit
shadow map for a simple scene). In their method, each scan line is
compressed to a set of line segments that lie between the first two
closest surfaces as seen from the light. These line segments can be
stored in a hierarchical fashion, or the shader can perform a binary
search during lookup. However, their method does not directly allow
for dynamic shadow receivers, and should perform poorly for thin,
non-flat shadow casters. Their suggested method helps to increase
performance and quality of PCF lookups, as they can use analytic
filtering in the horizontal direction, but for an N×N filter, they will
need to perform N hierarchical searches in the map.

3 Overview

Our goal is to design a data structure that represents the same infor-
mation as an extremely high-resolution shadow map, but within a
reasonable memory footprint. If the data structure is to be attractive
for real-time applications, it is important that evaluating visibility
at any point is not much more expensive than when using a shadow
map. Inspired by the high compression rates obtained for voxelized
geometry in the work by Kämpe et al. [2013], we take a novel and
perhaps somewhat unintuitive approach to compressing the original
shadow map.

The basic idea behind our algorithm is to create a solid voxelization
of shadowed space, stored as an octree, and then compress this
by merging common subtrees to create a Directed Acyclic Graph
(DAG). Looking at Figure 2, it is clear that the octree will need to
store leaf nodes only along the surfaces that enclose the shadowed
space (we will call this the shadow boundary), and so its size will
be largely dependent on the area of that surface.

To improve the effectiveness of common-subtree merging, we per-
form the voxelization in projected light space (see Figure 2). With a
voxelization in this space, a node at level L with coordinates (x, y, z)
will be identical to the node at coordinates (x, y, z + 1) unless a

2

To appear in ACM TOG 33(4).

shadow-casting surface intersects that node. This property has no
impact on the size of the uncompressed octree, but it means that we
will suddenly have an abundance of identical nodes at all levels and
the common-subtree merging will be a lot more effective. In fact,
the size of the compressed octree will now, at worst, be proportional
to the area of the (closest) shadow-casting surfaces (see Figure 2).
Additionally, common subtrees of these surfaces will be merged,
which leads to an extremely high degree of compression compared to
storing the octree itself and, as will be shown in Section 7, compared
to the original shadow map.

4 Data Structure and Evaluation

As in the paper by Kämpe et al. [2013], the octree is represented via
a DAG and each node will consist of a childmask and a set of point-
ers. Identical subtrees are easily shared between parents by simply
pointing to the same node. Kämpe et al. [2013] voxelize surfaces,
and a node will either intersect the surface or not. The childmask
therefore needs a single bit per subnode. Our data structure, however,
represents a voxelized volume, and thus our childmasks must be able
to identify a node as 1) intersecting the shadow boundary, 2) lying
entirely outside shadowed space or 3) lying entirely inside shadowed
space. Therefore, our childmasks are stored as 16-bit words instead
of 8-bit (i.e. 2 bits per child).

The final three levels of our DAG (representing subvolumes of
4×4×4 voxels) will not be able to benefit from common-subtree
merging. The smallest possible such subtree would consist of a
parent node with a 16-bit childmask and a 32-bit pointer, and a child
with an 8-bit childmask. Therefore, it is efficient to merge the three
lowest levels and let our leaves be stored as 4×4×4-bit grids (64-bit
leafmasks).

To evaluate whether a point, p, is in shadow or not, we fetch the
childmask of the root node and check the status in the childmask
for the subnode that contains p. If this node is marked as entirely
inside or outside the shadow region, we are done. If it intersects the
shadow boundary, the appropriate pointer is fetched and the process
is repeated for the subnode. If traversal reaches a leaf node, a direct
lookup is performed in the leafmask.

Thus, for a DAG with resolution 2n×2n×2n, we will need to per-
form 2(n − 2) + 1 fetches for any sample that needs to traverse
to a leaf node. However, many samples can terminate traversal
early, and for those remaining the cache-hit ratio is very high. Still,
a single lookup in our data structure is certainly more expensive
than a single shadow-map lookup. We will show, however, that
filtered lookups can be extremely efficient, even to the point of
outperforming traditional shadow maps.

Closed object optimization. If we know that some or all of the
shadow-casting objects are closed, and that the user will never view
the scene from inside of these objects we can optimize our data
structure to increase compression rates by yet an order of magnitude.
The region of space that lies inside of one or more such closed
objects is considered undefined (see Figure 3a), and nodes that lie
entirely in undefined space can be set to either visible or not visible,
depending on which choice gives a smaller DAG (see Figure 3b).
The effect of this optimization is quite dramatic as it means that
most shadow-casting surfaces, that previously had to be defined at
the finest level in our data structure, will now only need fine-level
detail around their silhouettes (see Figure 3c). In the paper by Arvo
and Hirvikorpi [2005], the region between the two closest shadow-
casting surfaces is considered undefined and our approach is similar,
but allows for even better compression and for shadows cast on
dynamic objects.

(a) (b) (c)

Figure 3: For closed objects, a) voxels inside objects are considered
undefined (green) b) tree is simplified and c) common subtrees are
merged (identical nodes are shown in color).

5 Filtering

A shadow map is a discrete image of depths, and so aliasing and
other errors are easily introduced in several different ways. In this
section, we will discuss how our algorithm handles such errors,
using the terminology suggested by Eisemann et al. [2011].

Initial sampling errors are introduced while creating the shadow
map. Undersampling occurs when the shadow map is being rendered
at a frequency lower than the final screen-sampling frequency, and
results in a visible magnification of the discrete shadow map. This
is the error that can be alleviated using techniques such as CSM [En-
gel 2006]. Initial sample aliasing is introduced when the shadow
map is rendered at an insufficient resolution, with respect to the
geometry. By super sampling the shadow map, and pre-filtering the
result, techniques such as ESM [Annen et al. 2008] can reduce these
problems. With our solution, initial sampling errors can be avoided
simply because our compressed data structure can accommodate
very high resolutions. If the resolution is sufficient for shadows at
close range, it will also be sufficient for distant objects.

Resampling errors occur when the shadow-map signal is incor-
rectly reconstructed during lookups. If a view sample is considered
a small surface patch, the visibility lookup should return a filtered
visibility, based on that patch’s projection on the shadow map. Since
shadow maps cannot be pre-filtered, the common solution is to
blur shadow edges using Percentage Closer Filtering (PCF) [Bun-
nel and Pellacini 2004], which can become very expensive with
many samples. Alternative methods that allow for pre-filtering (e.g.
VSMs [Donnelly and Lauritzen 2006]) can be much faster for large
filter kernels.

With our data structure, PCF is a very attractive option since we
store the binary visibility of all voxels with at most a single bit per
voxel. Therefore, when we have fetched the leafmask containing
the visibility of our voxel, we already have a large chunk of nearby
visibility samples at hand. Since the information stored is the actual
visibility (not a depth), determining the percentage of visible samples
becomes a simple bit-masking operation (see Section 6.2).

To further exploit this, we note that, if all PCF samples are taken
at the same depth, we can ensure that we fetch even more valid
visibility samples in a single leafmask, by rearranging the lowest
levels of our hierarchy so that the leafmasks encode 8×8×1 instead
of 4×4×4 voxels. The level above the leaf nodes will then encode
1×1×8 nodes, and higher levels will have the same node layout as
before. We will show in Section 6.2 that this alternative node layout
leads to extremely efficient PCF lookups.

To antialias shadow borders in the foreground, it is common practice

3

To appear in ACM TOG 33(4).

(and usually sufficient) to use a constant-size filter kernel for all
lookups. However, if a single shadow map is used for a large scene,
a view sample in the far distance can actually require an extremely
large filter-kernel to avoid aliasing. We suggest two different meth-
ods to deal with this situation. Both methods will transform the pixel
of the currently considered view sample to projected light space,
to determine the approximate area in voxels. If the area is larger
than the size of the PCF filter, that filter alone will not suffice, and
we calculate at which level, L, in the tree the resolution is more
appropriate.

Multi-Resolution Antialiasing (MRAA). The first solution is to
simply generate several data structures, one for each power-of-two
resolution, and store them side-by-side. For each lookup, we then
decide which resolution is most appropriate (based on L) and tra-
verse the corresponding data structure. This method allows for very
high-quality antialiasing for filter kernels of any size, but requires
roughly twice the amount of memory compared to storing only the
full resolution DAG.

Voxel Occupancy Antialiasing (VOAA). If the extra memory
cost is not acceptable, an alternative method is to store, for each
internal node, the proportion of contained voxels that lie in shadow
(its occupancy). This can be done after compression, and the infor-
mation is stored in the unused upper part of the word containing the
childmask, so that there is no extra memory cost associated with
this method. When traversing the data structure, we can now stop
traversal when we have reached a node at level L and return the
occupancy for that node as our visibility value. Note that this is
an approximation and not equivalent to a standard filtered lookup,
as the filter in this case is a volume, not an area. To avoid visible
level-of-detail transitions in animation, the occupancy value can be
a linear interpolation between the occupancy at level L and L− 1.

6 Implementation

In this section, we will discuss particulars about our implementation
for building, and rendering with, the suggested data structure. We
will then discuss a few optimizations to our traversal algorithm.

6.1 Building the Data Structure

We generate our data structure from a shadow map, as this leads
to a straightforward top-down algorithm, but any method that can
determine the visibility of leaf voxels could be used. We start from
a shadow map that matches the (x, y) resolution of the desired
voxelization. In our implementation, the z (depth) resolution of our
data structure is set to equal x and y, but the layout could be chosen
arbitrarily. We then build a min-max hierarchy of this shadow map,
halving the resolution at each step. To build the data structure, we
then start at the root node (which contains the entire light frustum),
and test all of its children against the second level (of resolution
2×2) of the min-max hierarchy. If the Axis Aligned Bounding Box
(AABB) of the subnode is found to lie entirely beyond the maximum
of the depths in the shadow map, the whole node is in shadow and
the childmask of the root node is updated to reflect this. Conversely,
if the entire AABB of the subnode lies closer to the light than the
min depth found in the hierarchy, the node is marked as visible. If
neither condition is true, the node is marked as intersected and the
process is repeated recursively for this subnode, until the maximum
level of the data structure is reached. At the final level, the voxels are
tested against the original shadow map and visibility is recorded in
the leafmask. We now have a Sparse Voxel Octree (SVO), which
we proceed to reduce to an optimal DAG excactly as described by
Kämpe et al. [2013]. At high resolutions we generate and compress

the shadow map in tiles, producing a set of sub-DAGs from each
tile. These are then combined and compressed into the final, optimal,
DAG.

Closed objects optimization. Closed objects are inserted into
the tree using a slightly modified algorithm. As explained in Sec-
tion 4, any node that lies entirely inside one or more closed objects
can be considered undefined. Any node that lies entirely outside all
closed objects must have correct visibility. Following a ray from the
light, any intersection with a polygon will mean that we either enter
or exit a closed object. In our implementation we identify all nodes
that lie between the first intersection, and the intersection where the
ray again enters empty space, as undefined. There is very little to be
gained from also identifying subsequent undefined regions (as such
regions are surrounded by shadowed space), and it would make the
algorithm much more complex.

To achieve this, we generate (in addition to the shadow map), a map
containing the depth at which the first undefined region ends. To
handle intersecting closed objects, we extract the layers of the scene
via depth peeling [Everitt 2001] and maintain a per-pixel counter
(increased for front-facing, decreased for back-facing polygons), to
find the first depth at which the counter returns to zero.

A min-max hierarchy is built for this map as well, and the generation
of the initial SVO is changed so that a node that intersects neither
map, but lies within the undefined region, is marked as undefined.
A node that intersects either of the two maps is traversed further.
Whenever all subnodes of a node have been evaluated, the parent
node will decide the final status of its undefined children. If a node
contains only shadowed and undefined subnodes, the entire node is
set to shadowed. If a node contains only visible and undefined sub-
nodes, it is set to visible. If the node contains subnodes of all three
types (shadowed, visible and undefined), the undefined nodes are set
to shadowed and the node is marked as intersected. This last rule is
required because the final data structure cannot contain undefined
nodes. There could be a potential gain in choosing undefined nodes
so that the whole node will match an already existing node, but we
have not found an efficient way of performing such a search. After
this step, we have an SVO which is compressed exactly as before.

If the data structure is not going to be used in combination with
dynamic geometry, the same optimization can be utilized for non-
closed objects. Arvo and Hirvikorpi [2005] noted that in such cases,
the space between the first and second shadow-casting layers can be
considered undefined (as it will not be queried).

6.2 Traversing the Data Structure

We have evaluated our data structure in a deferred-shading con-
text. In a first pass from the camera, position, normal and material
properties are stored in a G-Buffer. Our shadow-evaluation code is
implemented as a separate pass in CUDA, where a thread is started
per view sample. The kernel evaluates light visibility for that view
sample and stores the result in an auxiliary buffer to be used for
shading in a final pass. Note that there is nothing in the traversal
code that could not just as well have been implemented in a fragment
shader, and so our data structure works in a forward shading context
as well.

To evaluate the visibility of a view sample, we first calculate the
discrete coordinate (0, 0, 0) ≤ P < (S, S, S) (where S is the
resolution of the data structure) of the voxel it resides in. We obtain
P by simply scaling the normalized device coordinates of the sample.
The components of P, then, will be (L− 1)-bit wide integers, where
L is the number of levels in the data structure. To find out which
subnode to traverse into at some level i, we extract the (L− 2− i)th

4

To appear in ACM TOG 33(4).

(a) CLOSEDCITY (b) NECROPOLIS (c) FRACTALLANDSCAPE (d) EPICCITADEL

Figure 4: The scenes used to test compression and performance of our data structure.

bit of each component and concatenate them to a 3-bit child index
that identifies the subnode (see Figure 5).

Next, we read the childmask of the root node (at level i = 0) and
look at the bits corresponding to this child index. If the node is
marked as completely shadowed or visible, we return visibility 0
or 1 respectively. If the node is marked as intersected, we proceed
recursively until we have reached level L− 3, the level above the
leaf nodes. Here, we use the three last bits of z as our child index
(due to the flat leaf-node layout explained above). At the leaf node
level, the last three bits of x and y are concatenated to form the index
of the correct bit of the leafmask.

� =
�
�
�
=

000110100110
010100111010
100101101011

� − 1

Level 0 1 2 3 4 5 6 7 8

child index at level 7
child index at level 9
leaf index

Figure 5: The discrete position defines the traversal. Each bit
defines a half space for the corresponding axis and level. The
integer formed by concatenating bit k of each component is the child
index to traverse at the corresponding level. The last three levels
are encoded differently for fast PCF lookups.

Filtered lookups. As described in Section 5, the final three levels
are stored as 8×8-bit grids containing the visibility of voxels at the
same depth. Thus, with filter sizes of 9×9 or less, we will at most
need to visit 4 such leaf nodes, and we know beforehand which these
nodes are. To obtain a filtered shadow value, we need to calculate,
for each of these nodes, what proportion of the contained voxels
lies inside of the filter and are in shadow. For each leaf node, we
generate a bitmask that clears all bits that lie outside the filter (see
Figure 6). After ANDing the childmask with this bitmask, we count
the remaining set bits, and the sum of set bits for all four nodes are
divided by the total number of voxels within the filter (9×9, in this
case), to obtain the filtered visibility.

Traversal order. With filtered lookups, we will visit several leaf
nodes, and we know the path to each before we start traversal. Usu-
ally, the beginning of these paths will be identical, and we can easily
establish at which levels they diverge. Therefore, we can signifi-
cantly reduce the time taken in traversal by comparing the paths
of two consecutive leaf nodes and backtracking only to the level at
which the paths diverge.

If we do this, the order in which we visit the leaf nodes is also
important. We can reduce the number of iterations in the traversal
loop by choosing to always proceed to the leaf node that requires

Figure 6: To obtain a filtered shadow value, we calculate a bitmask
that corresponds to the voxels covered by the filter, for each node.
This mask is ANDed with the leafmask. We then count the number of
set bits in the result.

backtracking the smallest number of levels. Looking at Figure 7, we
can see that moving from one leaf-node to another will entail back-
tracking to one of two different levels, L1 or L2 (with a 9×9 filter
or smaller). Whichever order we choose, we will backtrack to one
of these levels once, and twice to the other. Therefore, with a fixed
starting point, we will simply choose the one of two predetermined
traversal orders that lets us backtrack to the higher level only once.
Which traversal order to choose depends only on which of L1 and
L2 are highest.

For larger filter kernels, there are more permutations of possible
orders. Our optimized traversal implementation currently supports
filter sizes up to 17×17, which will have to visit at most 9 leaf
nodes. Of these nodes, some will have the same parent and should
be evaluated consecutively (the order is unimportant). Figure 7c
shows the four different ways that we can encounter these nodes
and eight different traversal orders, one of which will be optimal.
For filters of this size, we use a small precomputed lookup table to
choose the right traversal order. The optimized CUDA kernel we
use for traversal of our data structure is available as supplementary
material.

Optimizations. We do not need a full stack in order to perform
this backtracking. Since we know that we will only need to return
to one of two possible levels, these are the only levels for which the
state is stored.

The final optimization to our traversal code is to simply store the top
part of our DAG in a grid structure, so that we can immediately fetch
the offset to the sub-DAG we need to traverse. In our implementation,
we have used a grid of size 128×128×128 throughout, effectively

5

To appear in ACM TOG 33(4).

48cascadesOur8method:8 1x18filter 9x98filter 17x178filter 9x98filter,8VOAA 9x98filter,8MRAA Cascaded8Shadow8Maps:8 88cascades

Frame
0

1

2

3

4

5
Ti

m
e

(m
s)

Frame

(a) CLOSEDCITY. Left: Closed, Right: Not Closed

0

2

4

6

8

Frame
0

2

4

6

8

10

12

14

16

Ti
m

e
(m

s)

Frame

(b) Left: NECROPOLIS Right: FRACTALLANDSCAPE

Figure 8: Performance for our method with different sizes of filters and different antialiasing techniques for distant shadows, and CSM, with
different numbers of cascades. Lookup cost for CSMs is in the range of 0.2ms-0.4ms and viewport culling cost is in the range of 0.1ms-0.35ms).

(a) (b) (c)

Figure 7: a) Two possible traversal orders for up to 9×9 filters,
one of which will be optimal. b) Examples of how these could access
a hierarchy. In this case, the green traversal order is more efficient.
c) The eight traversal orders we choose from for a 17×17 filter.

replacing the top 8 levels of our DAG with an 8MB grid.

7 Results

In this section, we will report the results of using our data structure
to compress shadow maps and to use them for evaluating shadows in
real time. All performance results presented were measured on a PC
equipped with an Intel Core i7-3930K CPU and an Nvidia TITAN
GPU. The original size of all rendered images is 1920×1080.

Scenes. We have used four different scenes for our comparisons
in this section (see Figure 4). The NECROPOLIS (2.1M triangles) and
EPICCITADEL (373k triangles) scenes are from the Epic UDK. The
CLOSEDCITY scene (613k triangles) is a mock-up game scene made
by us, where all objects are closed. The FRACTALLANDSCAPE
scene (2.1M triangles) is a randomly generated fractal landscape and
consists entirely of closed geometry. We have created fly-throughs
for three of these scenes, which are used to measure performance
for varying views. For the FRACTALLANDSCAPE scene, we have
added a dynamic object that receives shadows from the static ge-
ometry. The scenes and fly-through paths are demonstrated in the
accompanying video.

Compression. The final sizes of the compressed data for the vari-
ous scenes are presented in Figure 9. The CLOSEDCITY and FRAC-
TALLANDSCAPE scenes both contain only closed geometry, and
we have built them both with the closed-geometry optimization and
without. Using the optimization, the compression factor is more
than three orders of magnitude, for both scenes, when compared
to a 16-bit shadow map at 256k×256k. Without the optimization,
compression ratios are still very good.

The NECROPOLIS and EPICCITADEL scenes are not closed, and
so we could not use our closed-object optimization for these builds.

Nevertheless, both scenes compress to approximately 2% of a 16-bit
shadow map of the same resolution (128k×128k), making such
extreme resolutions a possibility at a reasonable memory budget.
NECROPOLIS is also built using the static-geometry optimization
described in Section 6.1, and then compresses to approximately
0.5%.

Build Times. Building the data structure is currently a fairly time-
consuming process. Our implementation runs on the CPU and only
performs very simple parallelization of the workload, so running
times could certainly be improved. As can be seen from the table
below, the time taken to build our data structure scales approximately
with the resolution of the shadow map from which it is built.

FRACTALLANDSCAPE, closed.
1K3 4K3 16K3 32K3 64K3 128K3 256K3

0.5s 2s 18s 1m8s 4m16s 17m35s 1h32m

Resolution:m 10243 40963 16K3 32K3 128K3 256K3

16-bitmSM 2 MB 34 MB 537 MB 2 GB 34 GB 137 GB

Closed 202 KB 1 MB 6 MB 13 MB 50 MB 100 MB

Compression 9.61% 3.53% 1.16% 0.60% 0.14% 0.07%

NotmClosed 489 KB 4 MB 36 MB 96 MB 639 MB 1638 MB

Compression 23.32% 12.41% 6.69% 4.48% 1.86% 1.19%

16-bitmSM 2 MB 34 MB 537 MB 2 GB 34 GB 137 GB

Closed 164 KB 759 KB 3 MB 7 MB 29 MB 61 MB

Compression 7.81% 2.26% 0.62% 0.33% 0.09% 0.04%

NotmClosed 490 KB 5 MB 50 MB 146 MB 1155 MB -

Compression 23.37% 14.34% 9.29% 6.81% 3.36% -

16-bitmSM 2 MB 34 MB 537 MB 2 GB 34 GB -

Notmclosed 539 KB 5 MB 37 MB 100 MB 657 MB -

Compression 25.72% 13.66% 6.94% 4.66% 1.91% -

Staticmgeometry 444 KB 3 MB 14 MB 31 MB 144 MB -

Compression 21.19% 8.43% 2.69% 1.46% 0.42% -

16-bitmSM 2 MB 34 MB 537 MB 2 GB 34 GB -

Notmclosed 585 KB 6 MB 44 MB 115 MB 727 MB -

Compression 27.90% 16.76% 8.19% 5.37% 2.11% -C
it

ad
el

C
lo

se
d

C
it

y
Fr

ac
ta

lL
.

N
ec

ro
p

o
lis

Figure 9: Compression results.

Cascaded shadow maps. For comparison we implemented the
CSM algorithm, based on the description by Zhang et al. [2005].
View frustum split distances are a mix between linear and logarith-
mic positioning and are tweaked for each scene. A bounding-volume
hierarchy is created for the scene, and the geometry is culled for
each partition. The culling is implemented on the GPU using CUDA
and directly produces drawing commands in an OpenGL buffer. To
draw the batches into the cascades, we use layered rendering and a
single draw call (glMultiDrawElementsIndirect), utilizing a geome-

6

To appear in ACM TOG 33(4).

try shader to route each batch to the appropriate cascade layer. To
improve performance, we detect empty cascades, i.e. those that do
not contain any shadow receivers, by performing an extra culling
pass before culling shadow casters. Only hardware-supported 2×2
taps PCF is used to filter the shadows. Each cascade layer has a reso-
lution of 2048×2048 and uses 16 bits of depth precision. As seen in
Figure 8, the time taken to execute culling and shading is small, and
the majority of the time using CSMs is spent rasterizing triangles.
This demonstrates that using CSMs for dynamic geometry while us-
ing our solution for static geometry can provide a high-performance
solution, by reducing the number of triangles rasterized.

Evaluation performance. The time taken to evaluate shadows
for each frame of the fly-throughs is presented in Figure 8a and
Figure 8b, along with the time taken for our implementation of
CSMs using four and eight cascades. The time measured for CSM
is the sum of the time taken to render the shadow maps and the
time taken to perform lookups, since each shadow map has to be
re-rendered with every new viewpoint.

In most scenes, we outperform CSMs by a substantial margin for
all variations of the algorithm, and also provide much higher visual
quality. The closed version of CLOSEDCITY conforms to this, but
in the non-closed version, performance is much closer. The rea-
son is that the viewpoint is quite far from the scene, which means
that memory access patterns are incoherent near the leaves. The
antialiasing schemes presented in Section 5 improve this situation by
terminating higher in the tree. This behaviour is mostly absent from
the scene built with the closed geometry optimization, as traversal
of unshadowed surfaces generally can terminate quite high in the
tree, which shows that this is not only a storage optimization but
also improves run-time performance considerably.

The results confirm that our algorithm handles large filter sizes very
well, showing at worst a factor 2.5 increase in shading time when
going from a single sample to 9×9 taps. 17×17 taps costs at worst
4.5 times a single tap.

We have meassured the performance improvement obtained using
our traversal order optimization by comparing to the time taken
to traverse in a fixed order (still only backtracking to the closest
common level between leaf nodes). The optimization reduces the
worst case running time by 7.5% and 10.8% for 9×9 and 17×17
filters respectively, in the CLOSEDCITY scene (built with the closed
objects optimization). In NECROPOLIS the corresponding numbers
are 14.2% and 26.6%.

Filtering performance. We have compared the time taken to per-
form shadow lookups with large filter sizes between our algorithm,
standard shadow maps, and VSMs. The resolution of the shadow
data structures is 2048×2048 in all cases. The results are shown
together with the scene and view in Figure 10.

Filter Size 9x9 Blur Evaluate Sum

Shadow3Maps - 0.52ms 0.52ms

VSM 0.62ms 0.19ms 0.81ms

Ours - 0.43ms 0.43ms

Filter Size 17x17 Blur Evaluate Sum

Shadow3Maps - 1.9ms 1.9ms

VSM 0.82ms 0.19ms 1.01ms

Ours - 0.76ms 0.76ms

Figure 10: Lookup performance with large filter sizes.

For the shadow-map algorithm, we utilized hardware-accelerated
PCF filtering to take 2×2 samples in each texture lookup. We used
a 16-bit shadow map, so the memory cost is 8MB. For VSMs, we

rendered a standard shadow map which was then blurred in two
passes with a separable box filter. The VSM is stored in a two-
channel 32-bit buffer, so the memory cost is 32MB, making our
method interesting even for small static maps (at 981Kb, for this
scene, when using neither of the space-saving optimizations). While
the lookup in a VSM is very fast, the map must also be blurred each
frame if used in a CSM setting, and the blurring stage is quite costly
and scales poorly with higher resolutions.

Figure 11: Top: Filtering quality. Left to right are CSM (4 layers,
2×2, 1.8ms), CSM (8 layers, 2×2, 2.4ms) and OURS (9×9 filter,
0.47ms). Bottom: Distant shadow antialiasing. Looking at a small
region of an image of NECROPOLIS (see also the supplementary
video). Left to right: 9×9 filter, VOAA, MRAA.

Image quality. The top row of Figure 11 shows our basic 9×9
filter compared to the fast 2×2 shadow-map filtering supported by
hardware. The much higher shadow resolution and larger filter sizes
achievable with our method lead to much higher quality shadow
borders. The bottom row shows the shadow cast from a complex
structure in the NECROPOLIS scene. The camera is very far away,
and the figure shows only a small region of the image. Here, a
9×9 filter is clearly insufficient. The VOAA method manages to
antialias the cast shadows quite well but transitions are noticeable
under animation. The MRAA method works extremely well, with
barely noticeable transitions in level.

8 Limitations and Future Work

Our technique stores visibility information at a quality equivalent
to a shadow map, given that the resolution in z (depth) is sufficient.
Therefore, self-shadowing artifacts for hard shadows can be avoided
using similar biasing techniques as are used for shadow mapping.
For efficient lookups with larger filter sizes, however, our method
tests all samples against the same depth, which is more restricting
than using individual shadow-map taps. Our solution is to always
bias the shadow-lookup position one half filter size in the direction
of the surface normal, which, with very large filter sizes, can lead to
a visible offset of the shadow. More sophisticated biasing methods,
as well as developing a blocker-search method to estimate penumbra
widths, are interesting areas of future research.

As our data structure has uniform resolution in light space, a perspec-
tive light will have non-uniform resolution in world space. Thus,
visibility close to the light might be stored at unnecessarily high res-
olutions. A future improvement would be to allow for an increasing
(x, y) resolution at increasing distance from the light.

Our antialiasing methods for distant shadows require a large bias
(in world space) for very distant shadows and could potentially

7

To appear in ACM TOG 33(4).

lead to light leakage for very thin shadow casters, although we
have not observed any. This problem is very similar to what would
occur with CSMs. With the VOAA approach it is also possible to
see the transitions from one level-of-detail to another, as we move
away from the shadow, which can probably be avoided by linearly
interpolating between levels.

We would like to explore using our data structure for ray tracing
of volumetric shadows for single scattering and for compressing
shadows from transparent shadow casters. We would also like to
optimize our construction methods.

Acknowledgements

The EPICCITADEL and NECROPOLIS scenes are both distributed
with the Unreal Development Kit by Epic Games. The FRACTAL-
LANDSCAPE scene is generated using the software World Machine.
This work was supported by the Swedish Foundation for Strategic
Research under Grant RIT10-0033. The TITAN GPU used for this
research was donated by the NVIDIA Corporation.

References

AILA, T., AND LAINE, S. 2004. Alias-free shadow maps. In Proc.
EG Symposium on Rendering 2004, EGSR’04, 161–166.

ANNEN, T., MERTENS, T., BEKAERT, P., SEIDEL, H.-P., AND
KAUTZ, J. 2007. Convolution shadow maps. In Proc. EG
Symposium on Rendering 2007, EGSR’07, 51–60.

ANNEN, T., MERTENS, T., SEIDEL, H.-P., FLERACKERS, E.,
AND KAUTZ, J. 2008. Exponential shadow maps. In Proc. of
Graph. Interface 2008, Canadian Information Proc. Soc., GI ’08,
155–161.

ARVO, J., AND HIRVIKORPI, M. 2005. Compressed shadow maps.
Vis. Comput. 21, 3 (Apr.), 125–138.

BUNNEL, M., AND PELLACINI, F. 2004. Shadow map antialiasing.
In GPU Gems: Programming Techniques, Tips and Tricks for
Real-Time Graphics, R. Fernando, Ed. Pearson Higher Education.

CROW, F. C. 1977. Shadow algorithms for computer graphics.
SIGGRAPH Comput. Graph. 11 (July), 242–248.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. In Proceedings of the 2006 Symposium on Interactive 3D
Graphics and Games, ACM, I3D ’06, 161–165.

EISEMANN, E., SCHWARZ, M., ASSARSSON, U., AND WIMMER,
M. 2011. Real-Time Shadows. A.K. Peters.

ENGEL, W. 2006. Cascaded shadow maps. In ShaderX5: Advanced
Rendering Techniques, T. Forsyth, Ed., Shaderx series. Charles
River Media, Inc.

EVERITT, C., 2001. Interactive order-independent transparency.
Published online at http://www.nvidia.com/object/
Interactive_Order_Transparency.html.

GIEGL, M., AND WIMMER, M. 2007. Fitted virtual shadow maps.
In Proceedings of Graphics Interface 2007, ACM, GI ’07, 159–
168.

GREEN, C. 2007. Improved alpha-tested magnification for vector
textures and special effects. In ACM SIGGRAPH 2007 Courses,
ACM, SIGGRAPH ’07, 9–18.

HASSELGREN, J., AND AKENINE-MÖLLER, T. 2006. Efficient
depth buffer compression. In Proc. 21st ACM SIGGRAPH/EG
Symp. on Graphics Hardware, ACM, GH ’06, 103–110.

HEIDMANN, T. 1991. Real shadows, real time. Iris Universe 18,
28–31. Silicon Graphics, Inc.

JOHNSON, G. S., LEE, J., BURNS, C. A., AND MARK, W. R.
2005. The irregular z-buffer: Hardware acceleration for irregular
data structures. ACM Trans. Graph. 24, 4 (Oct.), 1462–1482.

KÄMPE, V., SINTORN, E., AND ASSARSSON, U. 2013. High
resolution sparse voxel dags. ACM Trans. Graph. 32, 4 (July),
101:1–101:13.

LEFEBVRE, S., AND HOPPE, H. 2007. Compressed random-access
trees for spatially coherent data. In Proceedings of the 18th
Eurographics Conference on Rendering Techniques, Eurographics
Association, EGSR’07, 339–349.

LEFOHN, A. E., SENGUPTA, S., AND OWENS, J. D. 2007.
Resolution-matched shadow maps. ACM Trans. Graph. 26, 4
(Oct.).

LLOYD, D. B., TUFT, D., YOON, S.-E., AND MANOCHA, D.
2006. Warping and partitioning for low error shadow maps. In
Proceedings of the 17th Eurographics Conference on Rendering
Techniques, Eurographics Association, EGSR’06, 215–226.

RAMAMOORTHI, R. 2009. Precomputation-based rendering. Found.
Trends. Comput. Graph. Vis. 3, 4 (Apr.), 281–369.

RASMUSSON, J., STRÖM, J., WENNERSTEN, P., DOGGETT, M.,
AND AKENINE-MÖLLER, T. 2010. Texture compression of
light maps using smooth profile functions. In Proceedings of the
Conference on High Performance Graphics, HPG ’10, 143–152.

SINTORN, E., EISEMANN, E., AND ASSARSSON, U. 2008. Sample
based visibility for soft shadows using alias-free shadow maps. In
Proc. of 19th EG Conf. on Rendering, Eurographics Association,
EGSR’08, 1285–1292.

SINTORN, E., OLSSON, O., AND ASSARSSON, U. 2011. An
efficient alias-free shadow algorithm for opaque and transparent
objects using per-triangle shadow volumes. ACM Trans. Graph.
30, 6 (Dec.), 153:1–153:10.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph. 12 (August), 270–274.

WOO, A., AND POULIN, P. 2012. Shadow Algorithms Data Miner.
Taylor & Francis.

ZHANG, F., SUN, H., AND NYMAN, O. 2005. Parallel-split shadow
maps on programmable GPUs. In GPU Gems 3, Addison-Wesley,
H. Nguyen, Ed.

ZHANG, F., SUN, H., XU, L., AND LUN, L. K. 2006. Parallel-
split shadow maps for large-scale virtual environments. In Proc.
Virtual Reality Continuum and Its Applications, ACM, VRCIA
’06, 311–318.

8

http://www.nvidia.com/ object/Interactive_Order_Transparency.html
http://www.nvidia.com/ object/Interactive_Order_Transparency.html

