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Figure 1: a) A challenging scene for most real-time shadow algorithms, rendered in 4.2ms with our cluster hierarchy, 7.46ms with the original
PTSV, and 12.16ms with ZPASS. b) The final four levels of our view-sample acceleration structure visualized. c) Top: Level 3 without explicit
bounds. Bottom: The corresponding level when using the original PTSV algorithm.

Abstract

Rendering pixel-accurate shadows in scenes lit by a point light-
source in real time is still a challenging problem. For scenes of
moderate complexity, algorithms based on Shadow Volumes are by
far the most efficient in most cases, but traditionally, these algorithms
struggle with views where the volumes generate a very high depth
complexity. Recently, a method was suggested that alleviates this
problem by testing each individual triangle shadow volume against
a hierarchical depth map, allowing volumes that are in front of,
or behind, the rendered view samples to be efficiently culled. In
this paper, we show that this algorithm can be greatly improved by
building a full 3D acceleration structure over the view samples and
testing per-triangle shadow volumes against that. We show that our
algorithm can elegantly maintain high frame-rates even for views
with very high-frequency depth-buffers where previous algorithms
perform poorly. Our algorithm also performs better than previous
work in general, making it, to the best of our knowledge, the fastest
pixel-accurate shadow algorithm to date. It can be used with any
arbitrary polygon soup as input, with no restrictions on geometry
or required pre-processing, and trivially supports transparent and
textured shadow-casters.
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1 Introduction and Previous Work

In this paper, we suggest a novel method for rendering pixel-accurate
shadows from point-light sources in real time. While an abundance
of very fast shadow algorithms are available (see, e.g., Real Time
Shadows [Eisemann et al. 2011] for a recent overview of shadow
algorithms in general), the vast majority are image-based approx-
imative approaches, based on Shadow Mapping [Williams 1978].
In these algorithms, a discrete image (a shadow map) that contains
point samples of the closest distance to the shadow casters from the
light is generated. This shadow map is then queried while shading
to determine whether an arbitrary point is in shadow or not. As
the shadow map is generated without taking the actual points to be
shaded into account, the result of the query can only be approxi-
mate and has to be filtered to reduce aliasing artifacts. To avoid
having to use too large shadow maps and too large filter kernels, it
is common practice to partition the view frustrum and use different
shadow-maps for each partition (e.g. [Zhang et al. 2006]). With
proper filtering and a good partitioning scheme, it is possible to
obtain very high quality shadows that may be sufficient for many
real-time applications, such as video games, but pixel-perfect shad-
ows cannot be guaranteed. With virtual texturing, extremely high
resolutions are possible, however [Lefohn et al. 2007], at the cost of
view-dependent performance and memory requirements.

A second class of algorithms are those where the actual view samples
to be considered are first collected and organized in some form of
acceleration structure [Aila and Laine 2004; Johnson et al. 2005].
The shadow-casting polygons are then rendered over these irregular
samples to determine light visibility for each view sample. While
GPU-based implementations of these algorithms exist (e.g. [Sintorn
et al. 2008]), the irregular rasterization process often leads to very
unbalanced workloads, which results in uneven and potentially very
poor performance.

A third class of algorithms are those based on Shadow Vol-
umes [Crow 1977]. Here, for each shadow-casting object, a polygo-
nal mesh (the shadow volume) that encloses the space that is blocked
from the light by that object is generated. The shadow volumes are



then tested against all view samples, and a view sample is con-
sidered in shadow if it lies within any of the volumes. Shadow
volumes were for a while frequently used in practice after a version
of the original shadow-volume algorithm was introduced in which
these inclusion tests could be performed efficiently on graphics hard-
ware [Heidmann 1991]. We will refer to this algorithm as ZPASS in
the remainder of this text. The basic idea is to extract all sillhouette
edges from the mesh, each frame, and extrude these infinitely far
away from the light source to form a shadow quad. The scene is first
rendered from the camera’s point of view into a depth buffer. Then,
the shadow quads are rasterized as polygons onto a cleared stencil
buffer while testing against this depth buffer. The stencil buffer is in-
cremented for every front-facing polygon and decremented for every
back-facing polygon. The resulting stencil value will be zero only
when the view sample does not lie within any shadow volume. This
algorithm only works well as long as the camera itself is not inside
a shadow volume. To avoid that problem, the ZFAIL algorithm was
introduced [Carmack 2000; Bilodeau and Songy 1999]. The only
difference here is that the standard depth test is reversed so that all
shadow quads that lie behind the z-buffer are rendered instead. This
algorithm is more robust, but typically slower due to a higher fill
rate.

The main problem with the traditional shadow volume algorithms lie
in that they cull view samples only on their two-dimensional position
in view space. Thus, a shadow quad must be tested against the
potentially very large number of samples that lie within the volume
formed by the quad and the camera position. Sintorn et al. [2011]
alleviate this significantly by building a min-max hierarchy over the
depth buffer and testing individual triangle shadow volumes against
this hierarchy. A shadow volume can then be culled as long as it
does not intersect the frustum formed by a node (or if the entire node
is within the shadow volume). The authors show that the number of
actual test-and-set operations required are dramatically reduced and
that performance of their implementation is on par with, or better
than, previous algorithms. Additionally, since each view sample
can be tested against each triangle shadow volume, this algorithm
trivially supports textured and semi-transparent shadow casters, and
it can robustly handle any arbitrary set of shadow-casting polygons,
without connectivity information. We will refer to this algorithm
as Per Triangle Shadow Volumes (PTSV) in the remainder of this
paper.

There are several other papers that attempt to reduce the fill-rate
problems inherent in the traditional shadow-volume algorithm. In
the work by LLoyd et al. [2004], the shadow volumes are culled
and clamped per object in the scene graph, to reduce unnecessary
overdraw. These methods are orthogonal to our algorithm. Aila and
Akenine Möller [2004] identify tiles that lie on the shadow boundary
and need to perform full per pixel tests only for these tiles. Chan and
Durand [2004] attempt to find umbra regions and identify shadow
boundaries using a shadow map before reverting to standard shadow
volumes for only the pixels that lie on these boundaries. Finally, in
Split Plane Shadow Volumes [Laine 2005], the number of stencil
updates are reduced by locally (per tile) choosing whether to use the
ZPASS or ZFAIL algorithm.

In this paper, we improve on PTSV by building a complete three-
dimensional acceleration structure over the view samples, allowing
clusters of samples that have the same two-dimensional bounds to
be considered separately when they lie at different depths. Figure 1
illustrates a case where all previous work will perform very badly.
A house in the far distance is viewed through a nearby gate, and
a number of trees cast complex shadows that intersect the volume
in between. The ZPASS algorithm [Heidmann 1991] will need to
consider all view samples that have a depth which is further away
than the shadow quad, i.e., essentially all view samples that do not
lie on the gate. The ZFAIL algorithm [Bilodeau and Songy 1999;

Carmack 2000], in contrast, must consider all samples that lie in
front of the shadow quad. Unfortunately, the PTSV algorithm cannot
do much better in this case, since most 8× 4 tiles in the image will
contain view samples from both the foreground and the background
(see Figure 1c).

A very similar problem exists in the realm of real-time shading with
many lights, where tiled shading algorithms have recently become
popular [Olsson and Assarsson 2011; Harada 2012]. Similarly to
PTSV, tiled-shading algorithms are sensitive to depth discontinuities.
Our proposed algorithm is inspired by a recent solution to that prob-
lem, called Clustered Shading [Olsson et al. 2012]. The problem in
tiled shading is analogous to that of PTSV, with the difference that
the volumes considered are not shadow volumes but the bounding
volumes of lights with a finite range (as is common in real-time
applications). Olsson et al. observe that depth discontinuities can
lead to many false positives where light volumes intersect tile vol-
umes but none of the samples within, and that this problem is highly
view dependent, leading to high variability in rendering times. They
show that by clustering samples into three-dimensional subdivisions,
as opposed to two dimensions for tiled, light-culling efficiency be-
comes much higher and view dependence lower, especially when
considering many small light sources.

The main contributions in this paper are:

• A better view-sample acceleration structure for PTSV, which
has a much smaller total volume and improves efficiency and
performance significantly, making our algorithm the fastest
real-time alias-free shadow method to date.

• A two-pass algorithm which removes performance spikes that
are due to poor load balancing, at no extra cost.

• An improved set of culling planes over PTSV, which signifi-
cantly reduces the number of false positives during traversal.

Meanwhile, our algorithm still maintains all the good properties of
the PTSV algorithm. Shadow casters can be any arbitrary triangle
soup with no additional connectivity information and we also inherit
the ability to trivially support textured or semi-transparent shadow
casters.

2 Algorithm

The goal of our algorithm is to establish, for every view sample in
the G-buffer, whether that view sample is directly visible by a point
light source or not. Samples that are blocked from the light source
will be in shadow and the rest will have direct lighting applied in a
final shading pass. We accomplish this by generating an acceleration
structure over the view samples and then testing the shadow volume
of each triangle against this structure. This approach has been
attempted several times before (e.g. [Aila and Laine 2004; Sintorn
et al. 2008; Sintorn et al. 2011]) but in this paper we will suggest
that the quality of the acceleration structure is critical to obtaining
good and reliable performance, and so we will generate a tightly
fitting, fully three-dimensional hierarchy.

To this end, the view frustum will be divided into a coarse three-
dimensional grid and each view sample will be processed to mark
those grid-cells that are occupied. From this grid we then build a
hierarchy against which we can traverse triangle shadow-volumes.
A shadow volume can be tested against any node in the hierarchy
as the bounds of the corresponding AABB are implicitly defined.
When a leaf node is found to be intersecting with a shadow volume,
all view samples that reside in the same two-dimensional tile as
that node are tested. We show that performance can be further
improved by calculating the explicit bounds of each node, and that
these can be efficiently calculated while building the hierarchy. The



main improvement over previous work comes from this much tighter
acceleration structure, with which a shadow volume will only need
to traverse down to the leaf nodes if it actually lies very close to the
samples contained therein.

We will begin by describing the basic steps of our algorithm, starting
with an overview and then discussing the different parts in detail. We
will then discuss some shortcomings of our initial implementation
and how they can be overcome. Our algorithm and implementation
closely follow the steps of the PTSV algorithm detailed by Sintorn
et al. [2011]. We have implemented the algorithm in CUDA, and it
runs entirely on the GPU, without reading any data back to the CPU.
The steps of the algorithm are:

• Building a Hierarchy Using the current G-Buffer, build an
acceleration structure that groups view samples that are close
to each other.

• Triangle Setup For each shadow casting triangle, create its
shadow volume, i.e., a set of planes that enclose the volume of
space that is in shadow due to that triangle.

• Traversal Traverse each triangle shadow volume through the
hierarchy, culling nodes that lie completely outside and mark-
ing those that are completely inside the volume as in shadow.
Only when a node might intersect the shadow-volume planes
do we traverse into its children.

Building the acceleration structure As in the PTSV algorithm,
we choose to build a tree that has a branching factor of 32. This
allows the SIMD lanes of one multiprocessor of the GPU to work
in parallel with the intersection tests that make up the bulk of our
traversal algorithm, and so we can utilize the hardware efficiently.
Using another fanout is a trivial change to the algorithm, however,
so it could easily be varied for different hardware.

We chose to group view samples into clusters that are 8× 8 pixels.
Thus, a single cluster can contain a maximum of 64 view samples.
Given a view sample whose pixel coordinates are (x, y) and which
has a view space depth z, we calculate the cluster coordinate, x′, as:

x′ =

x′

y′

z′

 =


bx/8c
by/8c⌊

log(−z/near)

log(1+ 2tanΘ
Sy

)

⌋
 , (1)

where near is the distance to the near plane, Θ is the field-of-view,
and Sy is the number of cluster divisions in height. The cluster
coordinate’s z′ component is chosen as in the work by Olsson et
al. [2012], i.e., we subdivide the frustum exponentially in depth to
obtain leaf nodes whose implicit bounds are frustums with a depth
that is roughly equal to their width and height in world space.

We interleave these integer coordinates to produce a key in mor-
ton order [Morton 1966], which we call the cluster key. This key
uniquely defines a leaf node in our hierarchy, and several view sam-
ples may have the same key. For now, we will consider a screen
resolution of 1024×1024, and so we only need seven bits for the x′

and y′ coordinates. The number of bits needed for the z′ component
depends on the ratio between the near and far distances used in the
projection. At this resolution, we found nine bits to be more than
sufficient for all of our scenes. We therefore rearrange the cluster
key somewhat, as shown in Figure 2, to allow for a more shallow
tree as discussed below.

We now need to build an acceleration structure over these keys. In
our initial attempts, we followed the approach of Olsson et al. [2012],
building a list of cluster keys and compacting this list so that we had a
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Figure 2: The cluster coordinate is packed into a 23-bit integer us-
ing a slightly rearranged morton order. This key can then efficiently
be used to populate a full tree hierarchy.

minimal set of clusters from which to build the tree. However, when
building a hierarchy on top of these clusters, we need to maintain a
pointer from each node to where its children are stored, along with a
bitmask that tells us which of the children exist. While we were able
to build this compact list and hierarchy very quickly (< 1ms for a
resolution of 1024× 1024), both building the tree and traversing it
is significantly faster if we choose to sacrifice some memory and
store a full tree instead.

The five levels of our hierarchy are represented by five arrays of
32-bit words. Each word is a child mask, where a set bit indicates
that the corresponding child exists in the tree. To build the final level
of the tree (where a set bit indicates the existence of a leaf node, or
cluster), we can simply process all view samples and calculate their
cluster keys. The 18 most significant bits of the key give us the index
to the node in the level-four array in which the view sample resides.
The five least significant bits tell us which of the bits of this node
shall be set to indicate that this cluster exists. Having populated the
lowest level of our tree, we shift the cluster key 5 bits to the right
and repeat the process to populate the next level above. This goes
on until we have a single root node at level 0 represented by a single
32 bit word (see Figure 2).

Our initial implementation of this step is to simply start a thread per
view sample and let that thread atomically update all the nodes in
which it resides (in Section 2.1, we will add optimizations).

Triangle Setup For each triangle, we calculate the four planes that
enclose a triangle shadow volume. Care must be taken to ensure that
two triangles that share an edge will calculate exactly the same plane
for that edge, and when not using light front-face culling, a small
bias must be added to the triangle plane to avoid self shadowing. We
transform these planes into clip space, using the camera’s model-
view-projection matrix, and store them in a list. This basic triangle
setup is exactly the same as is done in PTSV.

These four planes are sufficient to produce correct results, but will,
during traversal, produce a lot of false positives. In PTSV, tiles
are also culled against the two 2D silhouette edges of the shadow
volume, which alleviates the problem. We have found that this
method still produces a significant amount of false positives (see
Figure 6) and suggest another set of culling planes.

The problem with false positives occur when an Axis Aligned Bound-
ing Box (AABB) does not lie completely outside all shadow volume
planes. This can happen in the wedges formed by any two of the
planes (see Figure 4). For each vertex (and so, each wedge), we
add a plane that contains both the light source and the vertex. Any
rotation of that plane is legal as long as it does not intersect the
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Figure 3: Heat maps showing the number of times each pixel is tested against a shadow volume. The PTSV algorithm has a very unbalanced
workload around steep depth discontinuities, where the view-sample cluster hierarchy performs much better.

Figure 4: Left: False positives occur when a node that does not
intersect the triangle still does not lie completely outside any plane.
Right: We add new planes, attempting to cull nodes that fall within
the false-positive wedge.

shadow volume. We choose to create the half vector between the
two shadow-volume plane normals, make that orthonormal to the
vector pointing from the vertex to the light source, and use that as
the plane normal for our culling plane.

A node that lies completely outside any of these new planes is
guaranteed to lie outside the shadow volume, and testing against all
three planes improves culling (and performance) significantly. Note
that for degenerated triangles or triangles whose normals are close to
orthogonal to the light direction, these calculations can be unstable,
and so we simply skip these culling planes in such cases.

Traversal The traversal kernel is written in a persistent-threads
fashion, where we start enough warps to keep the machine fully
utilized and let each warp pick jobs from a list by atomically updating
a counter to get an index. Each job, in this case, is one triangle
shadow volume, which all threads in the warp will cooperatively
traverse against the hierarchy, starting with the root node. Each
thread will consider one child of the current node and test that child
against the four planes that make up the shadow volume. The thread
will first consult the child mask for the current node to make sure
that the child exists in the tree. If it does, but the child is completely
outside any of the shadow volume planes, it is rejected. If the child
lies completely inside all four planes, it can be trivially accepted,
which is noted by simply clearing the corresponding bit in the current
nodes child mask. If neither is true, the child is tested against the
extra culling planes described above and if it does not lie completely
outside any of those, it is considered intersecting.

After the intersection test, the results are broadcast (using CUDAs
ballot instruction) so that all threads know which children are inter-
sected. These will now be tested in turn in the same way. In order to
know where in the tree we are, we maintain a current key throughout
the process (as detailed in Algorithm 1).

When the leaf-node level is reached, the threads will instead coop-
erate in testing the individual view samples within the tile. At this
level, we have no information about which view samples actually
lie in the cluster and which lie in another cluster with the same 2D
bounds, so we simply test all samples and update the shadow buffer
if the sample lies within the shadow volume. We could of course
store this extra information while building the hierarchy, but as 32
intersection tests will always be done in parallel, it seems unlikely
that this would improve overall performance.

So far, our traversal algorithm does not differ much from that of Sin-
torn et al. [2011]. One difference is that their acceleration structure
is a full tree with samples in every node, whereas, while we store our
structure as a full tree, it is actually very sparse, and so we need to
fetch the child mask for each node in order to know which children
to test. Another difference lies in how the clip-space coordinates
for the AABBs of the nodes are calculated. Unlike their algorithm,
in which the z-components are fetched from a texture, we get all
coordinates implicitly from the cluster keys. The traversal algorithm
is outlined in Algorithm 1. We have implemented this algorithm
in CUDA, both in an iterative fashion, using a small stack, and as
written in Algorithm 1, using template metaprogramming for the
recursion. The latter performs slightly better, probably due to better
optimization opportunities.

After traversal, we will know for each pixel whether it is in shadow
or not, except for pixels that have only been trivially accepted as
part of some node. We must therefore run one final pass where we
start one thread per view sample. Each thread will perform almost
exactly the same job as when building the hierarchy (as explained
above), except that this time, instead of updating the hierarchy, it
will just make sure that all the nodes it resides in are still marked
as existing. Otherwise, the node has been trivially accepted and the
view sample is set as shadowed.

Remaining problems The algorithm, as described so far, works
well and we can see from our measurements that we have mostly
eliminated the problem where the amount of work increases signifi-
cantly at steep depth discontinuities (see Figure 6). Unfortunately,
we can also see that the total number of test and set operations that
we need to do each frame is overall significantly higher than in PTSV.
This is partly due to us having a deeper tree but also because the size
of our nodes is completely unaffected by the actual view samples
within. In PTSV, tiles that do not contain depth-discontinuities will
have a fairly well fitting bounding box, while ours will be fixed size
and potentially very conservative.

Another problem, which we share with PTSV but which will be
more exaggerated in our case, is the possibility of poor load bal-
ancing. Even with our persistent threads model, we see that some
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multiprocessors have to wait for a long time, while a few finish
processing triangles that generate much more work than the average.
This problem is illustrated in Figure 7.

Finally, where PTSV only has to build a small mip-map hierarchy
over the depth buffer, we have to build a much larger hierarchy.
Initially, we did this as explained above, with one thread per view
sample, which proved to be a less than optimal solution. We will
discuss these three problems in the upcoming sections.

2.1 Explicit bounds

In our hierarchy, the existence of a node is indicated by a single
bit in its parent’s child mask. The size of each node is implicitly
defined by its position in the tree. This makes for a very memory-
efficient representation, but, as explained above, does not give us
much opportunity to cull shadow volumes. We will now explore the
possibility of storing a complete AABB with each node to improve
culling performance. Building the hierarchy with AABB information
is not much more complicated than without (although doing so
efficiently takes some extra thought, as detailed below). We can
simply let each view sample atomically update all of its parents
bounding boxes. As we currently store a full tree, the memory
requirements are however significantly increased (see Section 3 for
details).

With explicit bounds, the performance of the traversal is dramatically
improved (see Figure 8). This is partly due to the traversal kernel
becoming much simpler, as we no longer have to calculate the im-
plicit trivial-reject and trivial-accept points for each node, but much
more due to the significant decrease in volume of our acceleration
structure (see Figure 1c). Previously, a node which only contained
a few samples could still be very large, and a shadow-volume that
touched that node would have to traverse all of its children. Now,
each node will have a bounding box which tightly fits the contained
view samples. The number of test-and-set operations required are
now almost always fewer than in PTSV, despite our deeper tree. In
frames with steep depth discontinuities, we often perform better than
a factor of 2× fewer operations (see Figure 6).

2.2 Load Balancing

As illustrated in Figure 7, a small fraction of the triangles may
require much more work than the average, which leads to very poor
load balancing with our method. To combat this, we simply split the
traversal step into two parts. In a first pass, each warp will pick one
triangle as before and will then traverse down to a predefined level,
L. Every time the traversal reaches that level, it will atomically
push a new job onto a list and then return to traverse the rest of the
upper part of the tree. This job is simply a tuple (t, k) where t is
the triangle ID and k is the key of the node in which traversal was
aborted.

In a second pass, each warp will instead pick a job from the newly
created list and start traversal where the previous pass left off. Note
that we do not have to retrace the path taken to reach the node, but
can immediately continue traversal. Therefore, the only additional
work that is required by this two-pass method is writing and reading
the intermediate job list which fortunately turns out to be quite
modest in size even if we let the first pass go all the way down
to the leaf-node level. The performance gain from improved load
balancing is sometimes very large (as can be seen in Figure 8), and
the two-pass method has a much more stable performance.

2.3 Efficiently building the hierarchy

Building the hierarchy in the way described so far (by launching
one thread per view sample) leads to very high contention, as many
threads will attempt to update the same node. We also perform a lot
of redundant work, as several threads will consider view samples
that lie in the same cluster and will all mark that cluster as existing.
In fact, after having implemented the optimizations described above,
building the hierarchy is actually often the most time-consuming
part of the algorithm. We reduce the amount of redundant work by
launching one warp per 8 × 8 pixel tile. While all view samples
in this tile could lie in different clusters, they will usually occupy
only a few. The threads within the warp will cooperate in finding
the bounding box of each occupied cluster, and then, a single thread
can atomically update the nodes in global memory. To reduce the
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the average.

amount of contention in the top of the tree, we perform the hierarchy
construction in two passes. A first pass will build the tree up to
an intermediate level (as described above), and in a second pass,
we launch a warp per node at this intermediate level to perform
the atomic insertion of bits, and updating of AABBs, upwards to
the root. As can be seen in Figure 5, building the hierarchy is now
extremely fast. In fact, it takes about the same time as building the
hierarchical depth buffer in PTSV.

3 Discussion and Results

We have measured the performance of our algorithm using animated
fly-throughs of three different scenes. CITADEL is the scene used
to measure performance in the PTSV paper, with 60k triangles.
VILLA is a scene designed to stress shadow volume algorithms,
with 88k triangles. Finally, FUZZY is a more complex scene with
400k very dense shadow-casting triangles. All experiments were
done on an NVIDIA Titan GPU with a screen resolution of 1024×
1024 unless otherwise stated. In Figure 5, we show the total time
taken by each part of our algorithm, and we can see that we pay
a fairly low and constant price for building the hierarchy (Build
Hierarchy), calculating the shadow volume planes (Triangle Setup)
and finding view samples that have been trivially accepted as part of
some node (Merge TA). The cost for traversing the shadow volumes
against the hierarchy is naturally view dependent, but the worst-case
performance seems to be much more stable than in previous work.
In the same plot, we see the performance of the PTSV algorithm
and our carefully tuned ZPASS implementation. We can see that our
algorithm outperforms both, except in views where there are very

few shadow volumes on screen, where ZPASS performs better. It
is interesting to note that, unlike the measurements provided in the
PTSV paper (which were done on a GTX480 GPU), PTSV seems
to perform as well as ZPASS throughout the CITADEL sequence.
This is probably due to ZPASS being entirely limited by the pixel
throughput of the GPU, which has not changed much between the
GTX480 and the Titan GPUs. We measured the performance of
our ZPASS implementation on a GTX480 as well and found that
performance was indeed very similar.

As in PTSV, we can use Front Face Culling (FFC) of shadow-casting
triangles when objects are closed, which improves performance
significantly. In Figure 5, we also present the total time taken by our
algorithm when this optimization is turned off. All timings reported
for PTSV are as obtained with the optimization applied.
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Figure 8: Time taken by the traversal part of our algorithm when ap-
plying different optimizations (left is VILLA and right is CITADEL).

In Figure 8, we show the time taken by the traversal stage of our algo-
rithm with different optimizations applied. The Baseline is where we
only test implicit bounding boxes against the basic shadow-volume
planes. We then add the additional culling planes, as described in
Section 2. We improve performance significantly again by calculat-
ing the explicit bounding boxes for each node, and finally remove
spikes that are due to poor load balancing by performing the traversal
in two passes.

The problem with load balancing is illustrated in Figure 7. The
lines here show the number of iterations performed in the traversal
algorithm for the 1024 most demanding jobs when rendering the
view shown in Figure 1. For the original algorithm (Complete), we
can see that there are a few triangles that have much more work to
do (∼ 10× average), and therefore, most multiprocessors will have
to idle until one multiprocessor has finished the last of these. When
we instead divide the work into two passes (Expand and Finish),
the number of iterations are more evenly distributed and we avoid
sudden unexpected spikes in rendering time.



We have measured the number of test-and-set operations required by
our algorithm, as it provides an implementation-independent metric
of the efficiency of the algorithm. In Figure 6, we have plotted this
metric for our algorithm (with different optimizations applied) and
for the PTSV algorithm. As expected, we see that our algorithm
is much less sensitive to high-frequency depth buffers and that it
performs an equal amount of work as, or less work than, the PTSV
algorithm throughout the animations. While the improvement from
our additional culling planes is modest in the CITADEL scene, it
helps significantly in the VILLA scene, which contains many more
small shadow casting triangles.

0

1

2

3

4

m
s

Frame

Build Hierarchy Triangle Setup Merge TA Traversal
1080p 1024x1024 720p

Figure 9: Time taken by various parts of our algorithm when
rendering the CITADEL animation to resolution 1080p and the total
time when rendering to resolutions 720p and 1024×1024.

When rendering to higher resolutions, we must make a few small
changes to the algorithm. First, our implementation as described so
far has fairly high memory requirements due to storing bounding
boxes for the hierarchy as a full tree. With a maximum resolution of
1024×1024, a cluster size of 8×8, and with the maximum number
of z′ bits in the cluster key set to 9, the total number of nodes in a
full tree is 8.65 million. The hierarchy information, with a single
bit per node, costs only about 1 MB of memory. But if we store
six floats per bounding-box, the cost is 198MB, which might be too
much in some cases. We have implemented an alternative version,
where we only store a pointer per node (33MB) and a compact list
of only the existing bounding boxes. The compact list never exceeds
52000 elements in our tests (but the worst case size is 1 million
elements), and this version runs almost as fast as the original (at
most 5% slower). With this alternative version, then, the expected
working memory requirements are around (33 + 1)MB and worst
case is (33 + 25)MB. We can now support a full HD resolution with
expected (66 + 2)MB and worst case (66 + 50)MB.

Secondly, to support resolutions larger than 1024 pixels wide or
high, we must store a longer morton key than the one described in
Figure 2. When rendering to 1080p, we simply add one bit each for
the x, y and z components, which increases the largest supported
resolution to 2048×2048, with the same depth range. With a 32-bit
morton code we could support resolutions up to 8192× 8192.

In Figure 9 we show the same timings as in Figure 5, but when
rendering to a resolution of 1920×1080. For reference, we have also
plotted the total time taken when rendering to resolutions 1280×720
and 1024 × 1024. All timings use the more compact memory
layout for bounding boxes described above. As expected, building
the hierarchy takes approximately twice as long as for the lower
resolutions, since it will contain roughly twice the number of nodes.
Traversal scales much better however, since many more nodes can
be trivially accepted. The slight differences in running time when
comparing the two lower resolutions are mostly due to the images
having different horizontal field-of-views.

Acknowledgements

This work was supported by the Swedish Foundation for Strategic
Research under Grant RIT10-0033. The TITAN GPU used for this
research was donated by the NVIDIA Corporation. The CITADEL
scene is a part of the Epic Citadel level distributed with the Unreal
Development Kit by Epic Games.

References
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A Appendix

Here, we provide pseudocode that describes the traversal algorithm
suggested in this paper. This code is run cooperatively by all threads
in a warp. The TRAVERSENODE procedure is started for each trian-
gle shadow volume (SV), with level and key initially set to 0, and
childMask set to the root node childMask. MAXLEVELS is the total
number of levels of the tree (6 with our layout for 1024× 1024).

Algorithm 1 Pseudocode describing how the view-sample cluster
hierarchy is traversed for a triangle’s shadow volume. The symbols
� and � denote right and left shift. & denotes bitwise AND. !
denotes bitwise invert.

1: procedure TRAVERSENODE(SV , level , key, childMask )
2: if level = MAXLEVELS-1 then
3: TESTVIEWSAMPLES(SV , key)
4: return
5: nodeBitPos ← (MAXLEVELS − level + 1) ∗ 5
6: childBitPos ← (MAXLEVELS − level) ∗ 5
7: childKey ← key|(laneId � childBitPos)
8: intersect ← true
9: trivialAccept ← true

10: if TESTBIT(laneId, childMask ) then
11: for each plane in SV do
12: p ← CLIPSPACETRPOINT(childKey, plane)
13: if p dot plane > 0 then
14: intersect ← false
15: trivialAccept ← false
16: break
17: p ← CLIPSPACETAPOINT(childKey, plane)
18: if p dot plane < 0 then
19: trivialAccept ← false
20: intersectionResult ← BALLOT(intersect)
21: TAResult ← BALLOT(trivialAccept)
22: if laneID = 0 and TAResult 6= 0 then
23: nodeIdx ← key � nodeBitPos
24: ATOMICAND(hierarchy [level ] [offset ] , !TAResult)
25: childMask ← intersectionResult&!TAResult&childMask
26: while childMask 6= 0 do
27: nextChild ←31-CLZ(childMask)
28: nextKey ← key|(nextChild � childBitPos)
29: nextNodeIdx ← nextKey � childBitPos
30: nextChildMask ← hierarchy [level+1 ] [nextNodeIdx]
31: TRAVERSENODE(SV , level+1 , nextKey, nextChildMask)
32: UNSETBIT(nextChild , childMask)

TESTVIEWSAMPLES is run when the final level is reached and
simply tests the individual view samples of a tile in parallel.
CLIPSPACETRPOINT and CLIPSPACETAPOINT find the trivial-
reject and trivial-accept points respectively of a node’s AABB. When
using implicit bounds, this is done by calculating the AABB from
the provided key, and with explicit bounds, the key is used to look
up a bounding box in memory. TESTBIT(a, b) returns true if bit a is
set in word b. UNSETBIT(a, b) clears bit a in word b. CLZ(a) is the

CUDA intrinsic that counts leading zeroes in word a. BALLOT(a) is
the CUDA warp vote function, which returns a word with bit b is set
if a is true for thread b.


