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Figure 1: The EPICCITADEL scene voxelized to a 128K3 (131 0723) resolution and stored as a Sparse Voxel DAG. Total voxel count is 19
billion, which requires 945MB of GPU memory. A sparse voxel octree would require 5.1GB without counting pointers. Primary shading is
from triangle rasterization, while ambient occlusion and shadows are raytraced in the sparse voxel DAG at 170 MRays/sec and 240 MRays/sec
respectively, on an NVIDIA GTX680.

Abstract

We show that a binary voxel grid can be represented orders of mag-
nitude more efficiently than using a sparse voxel octree (SVO) by
generalising the tree to a directed acyclic graph (DAG). While the
SVO allows for efficient encoding of empty regions of space, the
DAG additionally allows for efficient encoding of identical regions
of space, as nodes are allowed to share pointers to identical subtrees.
We present an efficient bottom-up algorithm that reduces an SVO
to a minimal DAG, which can be applied even in cases where the
complete SVO would not fit in memory. In all tested scenes, even
the highly irregular ones, the number of nodes is reduced by one to
three orders of magnitude. While the DAG requires more pointers
per node, the memory cost for these is quickly amortized and the
memory consumption of the DAG is considerably smaller, even
when compared to an ideal SVO without pointers. Meanwhile, our
sparse voxel DAG requires no decompression and can be traversed
very efficiently. We demonstrate this by ray tracing hard and soft
shadows, ambient occlusion, and primary rays in extremely high
resolution DAGs at speeds that are on par with, or even faster than,
state-of-the-art voxel and triangle GPU ray tracing.
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1 Introduction

The standard approach to rendering in real-time computer graphics is
to rasterize a stream of triangles and evaluate primary visibility using
a depth-buffer. This technique requires no acceleration structure for
the geometry and has proved well suited for hardware acceleration.
There is currently an increased interest in the video-game industry
in evaluating secondary rays for effects such as reflections, shadows,
and indirect illumination. Due to the incoherence of these secondary
rays, most such algorithms require a secondary scene representation
in which ray tracing can be accelerated. Since GPU memory is
limited, it is important that these data structures can be kept within a
strict memory budget.

Recent work has shown extremly fast ray tracing of triangle-meshes,
with pre-built acceleration structures, on modern GPUs [Aila et al.
2012]. However, the acceleration structure has to be resident in
GPU RAM for efficient access. This is particularly problematic
when triangle meshes are augmented with displacement maps as
they might become infeasibly large when fully tessellated to mil-
lions of polygons. This has triggered a search for simpler scene
representations that can provide a sufficient approximation with a
reasonable memory footprint.

Recently, sparse voxel octrees (SVO) have started to show promise as
a secondary scene representation, since they provide an implicit LOD
mechanism and can be efficiently ray traced. Both construction and
traversal speed has reached impressive heights, which has enabled
ray traced effects on top of a rasterized image in real time [Crassin
et al. 2011]. At high resolutions, SVOs are still much too memory
expensive, however, and therefore their applicability has been limited
to effects such as rough reflections and ambient occlusion where
a low resolution is less noticeable, except at contact. Equally, or
even more importantly, scene sizes are also significantly restricted,
often prohibiting practical usage. The data structure described in this
paper allows for extremely high resolutions enabling us to improve
image quality, decrease discretization artifacts, and explore high-
frequency effects like sharp shadows, all in very large scenes (see
e.g. Figure 1).

In this paper, we present an efficient technique for reducing the size
of a sparse voxel octree. We search the tree for common subtrees and
only reference unique instances. This transforms the tree structure
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into a directed acyclic graph (DAG), resulting in a reduction of nodes
without loss of information. We show that this simple modification
of the data structure can dramatically reduce memory demands
in real-world scenes and that it scales even better with increasing
resolutions while remaining competitive with state of the art ray
tracing methods.

Our reduction technique is based on the assumption that the original
SVO contains a large amount of redundant subtrees, and we show
that this is the case for all scenes that we have tried, when considering
only geometry information at moderate to high resolutions. We do
not attempt to compress material or reflectance properties of voxels
in this paper, and thus, we focus mainly on using the structure for
visibility queries. We have implemented and evaluated algorithms
for calculating hard shadows, soft shadows, and ambient occlusion
by ray tracing in our DAGs and show that it is by no means more
difficult or expensive than to ray trace in a straight SVO.

2 Previous Work

Sparse Voxel Octrees Description of geometry is a broad field
and we will focus on recent advancements of using sparse voxel
trees, in particular octrees. There are methods to use the voxels as a
level of detail primitive to replace the base primitive when viewed
from far away, e.g with the base primitives in the leaf nodes being
triangles [Gobbetti and Marton 2005] or points [Elseberg et al.
2012]. The previous work most related to our geometric description
are those that also use voxels as the base primitive. We do not
consider methods that use octrees purely as an acceleration structure
to cull primitives.

Laine and Karras [2010a] present efficient sparse voxel octrees
(ESVO) for ray tracing primary visibility. They avoid building
the octree to its maximal depth by providing each cubical voxel with
a contour. If the contours are determined to be a good approximation
to the original geometry, the subdivision to deeper levels is stopped.
The pruning of children allows them to save memory in scenes with
many flat surfaces, but in certain tricky scenes, where the scene does
not resemble flat surfaces, the result is instead problematic stitching
of contours without memory savings. The highest octree resolutions,
possible to fit into 4GB memory, ranged from 1K3 to 32K3 for the
tested scenes. Approximatly 40% of the memory consumption was
due to geometry encoding and the rest due to material, i.e. color and
normal.

Crassin et al. [2011] compute ambient occlusion and indirect light-
ing by cone tracing in a sparse voxel octree. The cone tracing is
performed by taking steps along the cone axis, with a step length
corresponding to the cone radius, and accumulating quadrilinearly
filtered voxel data. The interpolation requires duplication of data
to neighbouring voxels, which result in a memory consumption of
nearly 1024 MB for a 5123 sparse voxel octree with materials.

Crassin et al. [2009] mention voxel octree instancing and use the
Sierpinski sponge fractal to illustrate the authoring possibilities of
octrees but do not consider an algorithmic conversion from a tree to
these graphs.

Schnabel and Klein [2006] focus on decreasing the memory con-
sumption of a point cloud of geometry discretized into an octree
with 4K3 resolution. By sorting the tree in an implicit order, e.g.
breadth-first order, they can store it without pointers between nodes.
The implicit order cannot be efficiently traversed but is suitable to
reduce the size in streaming or storage.

Common subtree merging Highly related to our algorithm is the
work by Webber and Dillencourt [1989], where quadtrees represent-
ing binary cartographic images are compressed by merging common

subtrees. The authors show a significant decrease (up to 10×) in the
number of nodes required to represent a 512 × 512 binary image.
Additionally, they derive an upper bound on the number of nodes of
a compressed tree for arbitrary images as well as images contain-
ing a single straight line, a half-space or a convex object. Parker
et al. [2003] extend this to three dimensions, in order to compress
voxel data instead. However, in their approach, the voxel content
(e.g. surface properties) is not decoupled from geometry, and thus
they report successful compression only of axis-aligned and highly
regular data sets (flat electrical circuits). Also related is the work by
Parsons [1986], who suggests a way of representing straight lines
(in 2D with a rational slope) as cyclic quadgraphs.

Alternative approaches to compressing or compactly representing
trees, and applications thereof, are presented and surveyed in a paper
by Katajainen et al. [1990].

Shadows GPU accelerated shadow rendering is a well researched
subject, and we refer the reader to the book by Eisemann et al. [2011]
for a complete survey. We will only attempt to briefly overview re-
cent and relevant work concerning real-time or interactive shadows.

There is a large class of image based methods originating from
the seminal work by Williams [1978]. The occluders are somehow
recorded as seen from the light source in an image (a shadow map)
in a first pass, and this image is later used to determine light visibility
for fragments when the scene is rendered from the camera’s view-
point. While these algorithms suffer from an inherent problem with
aliasing, several methods exist to alleviate artifacts by blurring the
shadow edges [Reeves et al. 1987; Annen et al. 2007; Donnelly and
Lauritzen 2006]. Additionally, several researchers have attempted to
mimic soft shadows from area light sources by adapting the filter ker-
nel size during lookup into the shadow map [Fernando 2005; Annen
et al. 2008; Dong and Yang 2010]. These techniques are extremely
fast but, generally, cannot capture the true visibility function from
an area light source.

Another class of algorithms are the geometry based methods, based
on the idea of generating shadow volumes [Crow 1977] that enclose
shadowed space. For point-light sources, these algorithms can of-
ten produce correct light visibility per view sample with hardware
acceleration and at high frame rates [Heidmann 1991], and recent
work by Sintorn et al. [2011] present a very robust variation of the
idea that performs well for arbitrary input geometry. Area light
sources can be handled using Soft Shadow Volumes [Assarsson and
Akenine-Möller 2003], where the visibility of view samples that lie
in the penumbra is integrated in screen space. This algorithm has
been extended to produce correctly sampled light visibility with very
fast execution times [Laine et al. 2005].

A third approach that has been considered for hard shadows is the
idea of view-sample mapping. Here, the view samples are projected
into light space and are used as the sample positions in a subsequent
shadow map rendering pass [Aila and Laine 2004; Johnson et al.
2005]. The same idea has been applied to soft shadows, where
the shadow casting geometry is enlarged to cover all potentially
occluded samples [Sintorn et al. 2008; Johnson et al. 2009]. This ap-
proach can lower the fill-rate demands, compared to shadow-volume
based methods, but rendering speeds are still highly dependent on
the amount of shadow casting geometry that needs to be processed.

Finally, recent advances in real-time ray tracing performance has
opened up for alternative approaches. Given a scene with a precom-
puted acceleration structure, casting a few shadow rays per pixel is
now within reach for interactive applications. A number of recent
papers discuss the possibility of efficiently sharing samples between
pixels [Lehtinen et al. 2011; Egan et al. 2011; Hachisuka et al. 2008].
These methods significantly reduce noise in images with very low
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Figure 2: Reducing a sparse voxel tree, illustrated using a binary tree, instead of an octree, for clarity. a) The original tree. b) Non-unique
leaves are reduced. c) Now, there are non-unique nodes in the level above the leaves. These are reduced, creating non-unique nodes in the level
above this. d) The process proceeds until we obtain our final directed acyclic graph.

sampling rates, but the reconstruction algorithms still take too long
to be used in an interactive framework. Based on the same frequency
analysis reasoning, a much faster reconstruction algorithm is pre-
sented by Mehta et al. [2012]. These algorithms are orthogonal to
the work presented in our paper and could potentially be used to
extend our approach.

Ambient Occlusion Ambient occlusion (AO) is a well known and
frequently used approximation to global illumination for diffuse sur-
faces. A more comprehensive review of algorithms to compute AO
can be found in the survey by Méndez-Feliu and Mateu Sbert [2009].
The cheapest and perhaps most used approach to achieving AO in
real-time applications today is to perform all calculations in screen
space, based on recorded depth values (the original idea is described
by e.g. Akenine-Möller et al. [2008]). This is an extremely fast
method but the information available in the depth buffer can be
insufficient in difficult cases.

An alternative approach is to attach a volume of influence to the
object or primitives that occlude the scene. View samples within this
volume perform computations or look-ups to evaluate the occlusion
caused by the object. There are several variants on this idea where
occlusion is either pre-computed into a texture [Kontkanen and Laine
2005; Malmer et al. 2007], or a volume is generated per primitive
with occlusion being computed at runtime [McGuire 2010; Laine
and Karras 2010b]. In the first approach, the resolution of the pre-
computed map will limit the frequency of occlusion effects, and in
the second, rendering performance will drop severely if too many
or too large occlusion volumes have to be considered. Laine and
Karras [2010b] suggest an alternative method, where the hemisphere
(bounded by occlusion radius) of each receiver point is instead tested
against the scene BVH. For each potentially occluding triangle, all
AO rays are then simultaneously tested, which can dramatically
improve performance, especially when using many rays and a small
maximum occlusion radius.

Ambient occlusion computations, like shadow computations, can
benefit greatly from sharing rays between pixels, and there are sev-
eral papers suggesting reconstruction algorithms for sparsely sam-
pled ray traced images [Egan et al. 2011].

3 Reducing a Sparse Voxel Tree to a DAG

In this section, we will explain how a sparse voxel octree encodes
geometry and how we can transform it into a DAG using a bottom-up
algorithm. We begin with a quick recap to motivate our work and to
establish the terminology to be used throughout the paper.

Terminology Consider an N3 voxel grid as a scene representa-
tion, where each cell can be represented by a bit: 0 if empty and 1

if it contains geometry. This is a compact representation at low
resolutions, but representing a large and sparse grid is infeasible.
For instance, Figure 1 shows a scene voxelized at a resolution of
128K3 and would require 251 bits or 256 Terabytes.

The sparse voxel octree is a hierarchical representation of the grid
which efficiently encodes regions of empty space. An octree recur-
sively divided L times gives us a hierarchical representation of an
N3 voxel grid, where N = 2L and L is called the max level. The
levels will range from 0 to L, and the depth of the octree equals the
number of levels below the root.

The sparse representation is achieved by culling away nodes that
correspond to empty space. This can be implemented by having eight
pointers per node, each pointing to a child node, and interpreting an
invalid pointer (e.g. null) as empty space. More commonly, a node
is implemented with a childmask, a bitmask of eight bits where bit i
tells us if child i contains geometry, and a pointer to the first of the
non-empty children. These child nodes are then stored consecutively
in memory.

The unique traversal path, from the root to a specific node in the SVO,
defines the voxel without storing the spatial information explicitly
in the node. Thus, voxels are decoupled from particular nodes and
in the next paragraph, we will show how this fundamentally changes
how we can encode geometry.

The Sparse Voxel DAG Since it is not the nodes, but the paths,
that define the voxels, rearranging the nodes will result in the same
geometry if the childmasks encountered during traversal are the
same as if we traversed the original tree. Consider a node with a
childmask and eight pointers, one for each child. If two subtrees of
the SVO have an identical configuration of childmasks, then they
would offer the same continuation of paths, and the pointers to the
subtrees could point to one and the same instance instead. Since two
nodes then point to the same child, the structure is no longer a tree
but its generalization, a directed acyclic graph (DAG).

To transform an SVO to a DAG, we could simply start at the root
node and test whether its children correspond to identical subtrees,
and proceed down recursively. This would be very expensive, how-
ever, and instead we suggest a bottom up approach. The leaf nodes
are uniquely defined by their childmasks (which describe eight vox-
els), and so there can at most be 28 = 256 unique leaf nodes in an
SVO. The first step of transforming the SVO into a DAG is then to
merge the identical leaves. The child-pointers in the level above are
updated to reference these new and unique leafs (see Figure 2b).

Proceeding to the level above, we now find all nodes that have
identical childmasks and identical pointers. Such nodes are roots
of identical subtrees and can be merged (see Figure 2c). Note that
when compacting the subtrees at this level of the tree, we need



only consider their root-nodes. We iteratively perform this merging
operation, merging larger and larger subtrees by only considering
their root-nodes, until we find no more merging opportunities. We
have then found the smallest possible DAG, and we are guaranteed
to find it within L iterations. See Figure 2d for the final DAG of the
tree in Figure 2a.

The algorithm is applicable to sparse voxel trees of non-uniform
depths, as well as partially reduced DAGs. We can use this latter
property to avoid constructing the whole SVO at once, since the
whole SVO may be orders of magnitude larger than the final DAG.
We construct a few top levels of the tree, and for each leaf node (in
the top) we construct a subtree to the desired depth. Each subtree is
reduced to a DAG before we insert it into the top and continue with
the next subtree. This allows us to conveniently build DAGs from
SVOs too large to reside in RAM or on disk.

Implementation details In our implementation, when building a
DAG of max level L > 10, we choose to construct the top L− 10
levels by triangle/cube intersection tests in a top-down fashion. Then,
for each generated leaf node (in the top tree), we build a subtree to
the maximum depth, using a straightforward, CPU assisted algorithm
based on depth-peeling. There are several papers that describe more
efficient ways of generating SVOs that could be used instead (e.g.
the method by Crassin and Green [2012]). The subtree is then
reduced to a DAG before we proceed to the next leaf.

After all sub-DAGs have been constructed, we have a top-SVO with
many separate DAGs in its leaves (i.e., it is a partially reduced DAG).
The final DAG is generated by applying the reduction one last time.
In the end, the result is the same as if we had processed the whole
SVO at once, but the memory consumption during construction is
considerably lower.

Thus, reducing an SVO to a DAG simply becomes a matter of
iteratively merging the nodes of one level at a time and updating
the pointers of the level above. The implementation of these two
steps can be done in several ways. We choose to find merging
opportunities by first sorting the nodes of a level (using the child-
pointers as a 256bit key and a pointer to the node as value). Identical
nodes become adjacent in the sorted list, and the list can then trivially
be compacted to contain only unique nodes. While compacting, we
maintain a table of indirections with an entry, for each original
node, containing that node’s position in the compacted list. To
improve the performance of sorting, we employ a simple but efficient
optimization to the encoding of the two lowest levels in the SVO
(where the majority of the nodes are). Here, we store subtrees of
resolution 43 without pointers, in a 64bit integer.

Our implementation of the tree reduction is run on a multi-core
CPU. Sorting a list is done with tbb::parallel sort [Intel 2013], and
the remaining operations are performed serially on a single core.
Our focus has not been on dynamic scenes which would require
real-time compression, but if performance is essential, all parts of
the compaction could be performed in parallel (e.g. on the GPU).
Sorting on the GPU is well researched and we would suggest using a
comparison based algorithm due to the large keys. The compaction
step could be parallelized by first filling an array where, for each
node in the sorted list, we store a 1 if it differs from its left neighbor
and 0 otherwise. A parallel prefix sum over this array will generate
the list of indirections from which the parent nodes can be updated
in parallel. Finally a stream compaction pass generates the new list
of unique nodes [Billeter et al. 2009].

We strip the final DAG of unused pointers by introducing an 8bit
childmask that encodes the existence of child pointers and store the
pointers consecutively in memory after it. The memory consumption
of a node becomes between 8 and 36 bytes (see Figure 3).

child pointer 0
child pointer 1
child pointer 2
child pointer 3

childmaskunused
child pointer 0
child pointer 1

8bit24bit

32bit

childmaskunused

Figure 3: In memory, both mask and pointers are 4 bytes, and only
the pointers to non-empty children are stored consecutively after
the childmask. The size of a node is dependent on the number of
children.

4 Ray tracing a sparse voxel DAG

We have implemented a GPU-based raytracer in CUDA that effi-
ciently traverses our scene representation. We use the raytracer pri-
marily for visibility queries to evaluate hard shadows, soft shadows
and ambient occlusion for the view samples of a deferred rendering
target. Additionally, we have implemented tracing of primary rays
(requiring the closest intersection), and to evaluate this implemen-
tation, we query a traditional SVO structure, containing material
information, with the hit points obtained from tracing in our struc-
ture.

The main traversal loop closely resembles that of Laine and Kar-
ras [2010a], with a few simplifications regarding intersection tests
and termination criteria. Notably, since we do not need to perform
any intersection tests with contours, and voxels can be traversed in
ray order, we do not need to maintain the distance travelled along the
ray. The most significant change, the DAG data structure, requires
only minor changes in code.

We use the beam optimization described by Laine and Kar-
ras [2010a], with a size corresponding to 8× 8 pixels, to improve
the performance of primary rays. We also extend the optimization to
soft shadows by shooting a beam (i.e. four rays) per pixel from the
view-sample position to the area light. We can then find the conser-
vative furthest distance along the rays where we can be certain that
no geometry is intersected, and shorten all shadow rays accordingly.
By simply tracing the same beam rays in the reverse direction (from
the light source), we can find a conservative interval of the beam
where geometry may be intersected. This improves traversal speed
of the shadow rays further. This optimization frequently allows us to
find pixels whose entire beams have no intersection with geometry,
and for these pixels, no additional shadow rays are required.

Ambient occlusion is usually approximated by casting a number
of rays over the hemisphere and averaging the occlusion of each
ray. This occlusion is evaluated by mapping the first-hit distance to
some falloff function. Laine and Karras [2010b] suggest a way to
approximate the same integral using only shadow rays, by incorpo-
rating the falloff function into the shadow-ray sampling scheme. We
found this method to be faster while providing similar quality. In our
implementation, we shoot 64 shadow rays per pixel. Additionally,
we demonstrate a useful property of the SVO and DAG scene repre-
sentation. We can choose to stop traversal when a node (projected
on the unit hemisphere) subtends a certain solid angle. This essen-
tially corresponds to using a lower level-of-detail representation the
further we are from the point to be shaded and results in images that
are darker than ground-truth but maintains high quality near-contact
occlusion (see Figure 8b).



(a) CRYSPONZA. Standard game scene.
(279k triangles)

(b) HAIRBALL. Highly irregular scene.
(2.8M triangles)

(c) LUCY. Laser-scanned model.
(28M triangles)

(d) SANMIGUEL. Common GI-benchmark.
(10.5M triangles)

Figure 4: The scenes used in our experiments. All images are rendered using our algorithms, with soft shadows and ambient occlusion.

5 Evaluation

We will evaluate the DAG representation with respect to reduction
speed, memory consumption and traversal speed and compare to
relevant previous work. We use five test scenes with different char-
acteristics (see Figure 4 and 1).

5.1 Reduction Speed

The time taken to reduce an SVO to a DAG using our algorithm
(on an Intel Core i7 3930K) is presented in Table 1. As detailed
in Section 3, for resolutions over 1K3 we generate sub-DAGs of
that size first, connect these with a top tree and finally reduce the
entire DAG. As a comparison, Crassin et al. [2012] report a building
time of 7.34ms for the CRYSPONZA SVO at resolution 5123 on an
NVIDIA GTX680 GPU. Laine and Karras [2010a] build the ESVO
(with contours) for HAIRBALL at resolution 1K3 in 628 seconds (on
an Intel Q9300).

Table 1: Time taken to reduce the SVOs to DAGs. The first row is
the total time and the second row is the part of that spent on sorting.
There is a computational overhead when merging sub-DAGs (see
jump between 1K3 and 2K3), but scaling to higher resolutions is
unaffected.

scene 5123 1K3 2K3 4K3 8K3

Crysponza 8.4ms 33ms 0.30s 1.0s 4.5s
1.9ms 5.5ms 0.05s 0.14s 0.6s

EpicCitadel 1.5ms 5.0ms 0.05s 0.20s 0.80s
0.7ms 1.2ms 0.006s 0.024s 0.10s

SanMiguel 2.6ms 8.3ms 0.06s 0.23s 0.95s
1.3ms 1.7ms 0.008s 0.03s 0.14s

Hairball 43ms 202ms 2.19s 9.7s 40.6s
5.1ms 29ms 0.23s 1.0s 4.5s

Lucy 2.6ms 8.4ms 0.08s 0.31s 1.3s
0.7ms 1.6ms 0.009s 0.04s 0.14s

5.2 Memory Consumption

Comparing the number of nodes of our sparse voxel DAG with
the SVO (see Table 2) clearly shows that all tested scenes have
a lot of merging opportunities. The CRYSPONZA scene has the
largest reduction of nodes with a decrease of 576× (at highest
built resolution), which means that each DAG node on average
represents 576 SVO nodes. This is probably due to the many planar

and axis aligned walls that generate a lot of identical nodes. The
HAIRBALL scene, however, contains no obvious regularities, and
still the reduction algorithm manages to decrease the node count by
28×, which indicates that scenes can have large amounts of identical
subvolumes without appearing regular.

The efficient sparse voxel octree proposed by Laine and Karras
[2010a] has voxels with contours designed to approximate planar
surfaces especially well. We measured their node count by building
ESVOs with their own open source implementation with its provided
default settings. The ESVO managed to describe three out of five
scenes with significantly fewer nodes than a plain SVO. Still, our
DAG required less nodes in all scenes and at all resolutions compared
to the ESVO, and by a great margin in HAIRBALL and SANMIGUEL.
This further strengthens our claim that our algorithm can efficiently
find identical subvolumes in difficult scenes.

The propagation of merging opportunities from leaf nodes and up-
wards, described in Section 3, can be quantified by the distribution
of nodes per level in the resulting DAG (see Figure 5). The figure
also shows that the number of merging opportunities increases faster
than the total number of nodes as we increase the resolution.
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Figure 5: Distibution of nodes over levels built to different depths.
Level zero corresponds to the root, and level 16 corresponds to
resolution 64K3. CRYSPONZA (left). SANMIGUEL (right).

The memory consumption depends on the node size (see Table 2).
Our DAG consumes 8 to 36 bytes per node (see Figure 3). The
ESVO consumes 8 bytes per node if we disregard memory devoted
to material properties and only count the childmask, contour and
pointer, which describe the geometry. We also compare against the
pointer-less SVO described by Schnabel and Klein [2006], where
each node consumes one byte. That structure cannot, however,



Table 2: Comparison of the sparse voxel DAG, ESVO and SVO. The resolutions are stated in the top row. On the left, we show the total node
count to allow comparison of merging or pruning opportunities. On the right, we show the total memory consumption of the nodes when the
node size has been taken into account. Cases where the DAG has the smallest memory consumption are highlighted in green. The last column
states memory consumption per described cubical voxel in the highest built resolutions. ESVO was left out of the comparisons of bits/voxel
since it does not encode the same voxels. The HAIRBALL was not built in the two highest resolutions due to limited hard drive capacity.

Total number of nodes in millions Memory consumption in MB bit/vox

scene 2K3 4K3 8K3 16K3 32K3 64K3 2K3 4K3 8K3 16K3 32K3 64K3

Crysponza DAG 1 1 2 4 9 23 4 11 27 71 184 476 0.08
ESVO 5 12 32 94 226 521 38 88 243 715 1 721 3 970 -

SVO 12 51 205 822 3 290 13 169 12 48 195 784 3 138 12 559 2.07
EpicCitadel DAG 1 1 1 3 7 18 3 7 19 53 142 371 0.65

ESVO 1 3 7 17 38 81 7 20 53 124 287 613 -
SVO 2 6 21 85 340 1 364 2 5 20 81 324 1 301 2.29

SanMiguel DAG 1 1 2 5 13 34 3 10 31 93 270 742 0.45
ESVO 4 14 57 229 922 3 698 26 107 433 1 747 7 030 28 212 -

SVO 4 14 56 224 903 3 628 4 13 53 214 861 3 460 2.08
Hairball DAG 5 15 44 115 - - 117 339 996 2 629 - - 2.24

ESVO 53 224 924 3 649 - - 401 1 709 7 049 27 837 - - -
SVO 45 188 781 3 191 - - 43 180 745 3 044 - - 2.59

Lucy DAG 1 1 2 6 16 46 3 10 32 110 348 983 1.54
ESVO 2 8 26 76 160 255 15 56 198 576 1 219 1 941 -

SVO 2 7 27 108 430 1 720 2 7 26 103 410 1 640 2.57

be traversed without being unpacked by adding pointers. But it
is useful in for instance off-line disk storage. Note that for the
largest resolutions used in our tests, four-byte pointers would not be
sufficient for an SVO.

A pointer-less SVO structure and the ESVO with only geometry
information are two extremely memory-efficient SVO representa-
tions. Even so, the sparse voxel DAG requires less memory than the
ESVO at all scenes and resolutions. The DAG also outperforms the
pointer-less SVO consistently at all but the lower resolutions.

5.3 Traversal Speed

In this section, we will show that the reduction in memory con-
sumption does not come at the cost of increased render times. We
have implemented a raytracer that can handle primary rays, ambient
occlusion, and hard and soft shadows, by tracing through the DAG
structures. The performance of each type of ray is presented, as they
result in different memory access patterns. We compare execution
times (in MRays/second) against relevant previous work. To be able
to discuss the relative performance of the different algorithms more
confidently, we have recorded execution times for each frame in a
fly-through animation of each scene (shown in the supplementary
video).
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Figure 6: Traversal speeds in MRays/second for primary rays in
a fly-through of SANMIGUEL. a) Our DAG and the ESVO on the
GTX480. Both use the beam optimization. b) Our DAG vs. triangle
ray tracing on the GTX680.

Primary rays Primary rays are cast from the camera and through
each pixel of the image plane. These rays are extremely coherent
and differ from the other types of rays in that we must search for the
closest intersection instead of aborting as soon as some intersection
is found. We have compared our implementation against that pre-
sented by Laine and Karras [2010a], on the SANMIGUEL scene on
an NVIDIA GTX480 GPU (as their code currently does not perform
well on the Kepler series of cards) at a voxel resolution of 40963 (as
this is the largest tree their method can fit in memory).

The same scene was also used to compare our implementation
against the triangle raytracer by Aila et al. [2012]. This test was
performed on a GTX680 GPU, and then, the voxel resolution for
our method was set to 32K3. As shown in Figure 6, our method
performs slightly better than the other voxel method and similarly to
the triangle raytracer even at extremely high resolutions.

0

3

6

9

12 Sintorn et al.[2011]
Our method 32K3

(a)

0

500

1000

1500 Hard shadows
Small Area Light
Large Area Light

(b)

Figure 7: Comparison of traversal speed for shadow rays in a fly-
through of the CITADEL scene. a) Comparing frame times (in ms) b)
Performace in MRays/sec for our method with varying light source
sizes.

Shadow rays In Figure 7a, we compare the performance of our
implementation against the recent, robust shadow algorithm pre-
sented by Sintorn et al. [2011]. The time taken to evaluate shadows
is measured in milliseconds for a fly-through of the CITADEL scene
(a small subset of EPICCITADEL) on a GTX480 GPU. The exact



resolutions differ, but both correspond to approximately one million
pixels. The performance of our algorithm is on par with that of
Sintorn et al. [2011] for this scene. Their algorithm will perform
proportionally to the number of shadow volumes on screen, while
ours is largely independent of polygonal complexity and can easily
handle scenes with very dense polygons (e.g. SANMIGUEL and
LUCY). Figure 7b shows how performance is affected by our beam
optimization for varying light source sizes.

Ambient occlusion Finally, we ray trace our DAG to generate
images with ambient occlusion. The ray tracing performance is
compared to that of Aila et al. [2012] in the same fly through of the
SANMIGUEL scene as for primary rays, and at the same resolution
(32K3). Additionally, timings are presented of an experiment where
rays are terminated as soon as they intersect a node that subtends a
specific solid angle (as explained in Section 4). We shoot 64 rays per
pixel, and the maximum ray length is the same in all experiments.
The results are outlined in Figure 8a.
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Figure 8: a) Comparison of traversal speed for AO rays
(MRays/sec), in a fly through of SANMIGUEL. b) Comparing image
quality for 64 AO rays with and without early termination of rays.
Rays are terminated at a cone-angle of 9 degrees (0.07sr)

6 Conclusions

We have shown that sparse voxel DAGs, an evolution of sparse
voxel octrees, allow for an efficient encoding of identical regions of
space. An algorithm has been presented that finds such regions and
encodes them in the smallest possible DAG. We have shown that our
algorithm reduces the node count significantly even in seemingly
irregular scenes. The decrease in nodes needed to represent the
octree ranged from 28× for the highly irregular HAIRBALL to 576×
for CRYSPONZA, compared to a tree.

The increased node size is quickly amortized by the reduction in
node count, and the DAG representation decreases the total memory
consumption by up to 38× compared to the ESVO and up to 26×
compared to a minimal pointer-less SVO.

Our algorithm can be used to construct extremely high resolution
DAGs without ever having to store the complete SVO in memory.

Despite the greatly reduced memory footprint, our data structure
can be efficiently ray traced, allowing, for the first time, high-quality
secondary-ray effects to be evaluated in a voxelized scene at very
high resolutions.

7 Future Work

The memory layout of the DAG used in this paper could potentially
be improved. A more sophisticated layout could for instance enable
mixing of tree nodes (with one pointer) and DAG nodes (with up to
eight pointers). There are also many identical pointers in the DAG,
since nodes can have multiple parents, and by rearranging nodes,

they could potentially share pointers and amortize their cost. Finding
an algorithm for efficient rearrangement, optimal or heuristic, would
be an interesting direction of future work.

Furthermore, we would like to add a material representation. This
could reside in a separate tree or DAG with a completely different
connectivity, which is traversed upon finding an intersection between
a ray and the geometry.

Even though we have shown extremely high resolution in this paper,
the voxels will still look like blocks when viewed closed up. Future
work could introduce cycles in the graph to fake unlimited resolution,
and it would be particularly interesting to see cyclic endings of a
graph that mimic micro geometry of materials, e.g. rocks, plants or
trees.
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