
Implementing Efficient Virtual Shadow Maps for Many Lights

Ola Olsson, Erik Sintorn, Viktor Kämpe, Markus Billeter and Ulf Assarsson
Chalmers University of Technology

__ffs__clz

0 1 0 1 1 0 0 0 0 0

0

0

0

0

1

1

1

0

0

0 Implicit

Explicit

Figure 1: View of the Crytek Sponza scene with 65 shadow-casting lights, rendered with the system in 16ms at a resolution of 1920×1080 on
a Geforce Titan. Left: explicit cluster bounds using bitwise operations. Right: AABB projected onto the virtual cube map.

1 Abstract

In the past few years, several techniques have been presented that
enable real-time shading using many hundreds or thousands of
lights [Harada et al. 2013]. However, only recently has a comprehen-
sive study including shadows been presented by Olsson et al. [2014],
where real-time performance is achieved for several hundred light
sources with high quality and controllable memory footprint. The
new algorithm uses many modern features of OpenGL and contains
many design choices only described very briefly in the paper. We
present additional details and focus on the practical implementation
aspects of the system, in order to facilitate the implementation of
the algorithm for the game development community.

Bounding Box Re-projection The quick re-projection of bound-
ing boxes onto the virtual cube map surrounding the light is one
of the corner stones of the algorithm. To compute the cube-face
mask, virtual-page mask, and the projection map, we designed a
coarse but very cheap method to project an AABB to a cube-map
face, as shown in Listing 1. Applications already using the clustered
shading algorithm, can potentially use this cheap re-projection for
many other applications.

Rect xPlus(Aabb aabb)
{
float2 one = { 1.0f, 1.0f };

float rdMin = 1.0f / max(Epsilon, aabb.min.x);
float rdMax = 1.0f / max(Epsilon, aabb.max.x);

float sMin = min(-aabb.max.z * rdMin,
-aabb.max.z * rdMax);

float sMax = max(-aabb.min.z * rdMin,
-aabb.min.z * rdMax);

float tMin = min(-aabb.max.y * rdMin,
-aabb.max.y * rdMax);

float tMax = max(-aabb.min.y * rdMin,
-aabb.min.y * rdMax);

Rect r;
r.min = clamp(float2(sMin, tMin), -one, one);
r.max = clamp(float2(sMax, tMax), -one, one);
return r;

}

Listing 1: Bounding box projection on the +X cube map face.

Virtual Shadow Map Management We also give a practical
overview of how we allocate and manage virtual shadow maps,
presenting the new OpenGL 4.3 extension ARB_sparse_texture.

Resolution Selection The calculation of the correct resolution
of each shadow map is illustrated with CUDA code samples to
show how the atomic operations are used to establish the maximum
needed resolution. Additionally, the implementation of the extension
enabling several shadow maps per light is detailed.

Explicit Cluster Bounds The explicit cluster bounds calculation
introduced in the paper is also presented with example code. This
novel optimization is a useful technique that uses bitwise logic to
pack several operations into one atomic instruction (Figure 1, left).

GPU-based Culling A crucial step in the algorithm is quickly
culling shadow casting geometry. We therefore explain implementa-
tion details of the culling process and acceleration structure used.

OpenGL Extensions Achieving high performance when ren-
dering to several hundred virtual cube maps requires careful at-
tention to details. The paper shows that the combination of
glMultiDrawElementsIndirect, layered rendering, and geometry
shader routing is a viable solution. We present additional details to
show how these steps are connected into a functioning system.

References

HARADA, T., MCKEE, J., AND YANG, J. C. 2013. Forward+:
A step toward film-style shading in real time. In GPU Pro 4:
Advanced Rendering Techniques, W. Engel, Ed. 115–134.

OLSSON, O., SINTORN, E., KÄMPE, V., BILLETER, M., AND
ASSARSSON, U. 2014. Efficient virtual shadow maps for many
lights. In Proc. I3D ’14, ACM, 87–96.


