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Figure 1: Scenes rendered with many lights casting shadows at 1920×1080 resolution on an NVIDIA Geforce Titan. From the left: HOUSES
with 1.01M triangles and 256 lights (23ms), NECROPOLIS with 2.58M triangles and 356 lights (34ms), CRYSPONZA with 302K triangles
and 65 lights (16ms).

Abstract

Recently, several algorithms have been introduced that enable real-
time performance for many lights in applications such as games. In
this paper, we explore the use of hardware-supported virtual cube-
map shadows to efficiently implement high-quality shadows from
hundreds of light sources in real time and within a bounded memory
footprint. In addition, we explore the utility of ray tracing for shad-
ows from many lights and present a hybrid algorithm combining ray
tracing with cube maps to exploit their respective strengths. Our
solution supports real-time performance with hundreds of lights in
fully dynamic high-detail scenes.
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1 Introduction

In recent years, several techniques have been presented and refined
that enable real-time performance for applications such as games
using hundreds to many thousands of lights. These techniques
work by binning lights into tiles of various dimensionality [Olsson
and Assarsson 2011; Harada 2012; Olsson et al. 2012]. Many
simultaneous lights enable both a higher degree of visual quality and
greater artistic freedom, and these techniques are therefore directly
applicable in the games industry [Swoboda 2009; Ferrier and Coffin
2011; Persson and Olsson 2013].

However, this body of previous work on real-time many-light algo-
rithms has studied almost exclusively lights that do not cast shadows.
While such lights enable impressive dynamic effects and more de-
tailed lighting environments, they are not sufficient to capture the
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details in geometry, but tend to yield a flat look. Moreover, ne-
glecting shadowing makes them more difficult to use, as light may
leak through walls and similar occluding geometry, if care is not
taken when placing the lights. For dynamic effects in interactive
environments, controlling this behaviour is even more problematic.
Shadowing is also highly important if we wish to employ the lights
to visualize the result of some light-transport simulation, for example
as done in Instant Radiosity [Keller 1997].

This paper aims to compute shadows for use in real-time applications
supporting several tens to hundreds of shadow-casting lights. The
shadows are of high and uniform quality, while staying within a
bounded memory footprint.

As a starting point, we use Clustered Deferred Shading [Olsson et al.
2012], as this algorithm offers the highest light-culling efficiency
among current real-time many-light algorithms and the most robust
shading performance. This provides a good starting point when
adding shadows, as the number of lights that require shadow com-
putations is already close to the minimal set. Moreover, clustered
shading provides true 3D bounds around the samples in the frame
buffer and therefore can be viewed as a fast voxelization of the
visible geometry. Thus, as we will see, clusters provide opportuni-
ties for efficient culling of shadow casters and allocation of shadow
resolution.

1.1 Contributions

We contribute an efficient culling scheme, based on clusters, which is
used to render shadow-casting geometry to many cube shadow maps.
We demonstrate that this can enable real-time rendering performance
using shadow maps for hundreds of lights, in dynamic scenes of
high complexity.

We also contribute a method for quickly determining the required
resolution of the shadow maps. This is used to show how hardware-
supported virtual shadow maps may be efficiently implemented. To
this end, we also introduce a very efficient way to determine the
parts of the virtual shadow map that need physical backing. We
demonstrate that these methods enable the memory requirements to
stay within a limited range, while enabling uniform shadow quality.

Additionally, we explore the performance of ray tracing for many
lights. We demonstrate that a hybrid approach, combining ray trac-
ing and cube maps, offers high efficiency, in many cases better than



using either shadow maps or ray tracing individually.

We also contribute implementation details of the discussed methods,
showing that shadow maps indeed can be made to scale to many
lights. Thus, this paper provides an important benchmark for other
research into real-time shadow algorithms for many lights.

2 Previous Work

Real Time Many Light Shading Tiled Shading is a recent tech-
nique that supports many thousands of lights in real-time applica-
tions [Swoboda 2009; Olsson and Assarsson 2011; Harada 2012].
In this technique, lights are binned into 2D screen-space tiles that
can then be queried for shading. This is a very efficient and sim-
ple process, but the 2D nature of the algorithm creates a strong
view dependence, resulting in poor worst case performance and
unpredictable frame times.

Clustered Shading extends the technique by considering 3D bins in-
stead, which improves efficiency and robustness [Olsson et al. 2012].
The clusters provide a three-dimensional subdivision of the view
frustum and, thus, sample groupings with predictable bounds. This
provides a basic building block for many of the new techniques de-
scribed in this paper. See Section 3.1, for a more detailed overview.

Shadow Algorithms Studies on shadowing techniques generally
present results using a single light source, usually with long or
infinite range. Consequently, it is unclear how these techniques scale
to many light sources, whereof a large proportion cover only a few
samples. For a general review of shadow algorithms, see Eisemann
et. al. [2011].

Virtual Shadow Maps Software-based virtual shadow maps have
been explored in several publications to achieve high quality shad-
ows in bounded memory [Fernando et al. 2001; Lefohn et al. 2007].
Recently, API and hardware extensions have been introduced that
makes it possible to support virtual textures much more conveniently
and with performance equalling that of traditional textures [Sellers
et al. 2013].

Many light shadows There does exist a corpus of work in the
field of real-time global illumination, which explores using many
light sources with shadow casting, for example Imperfect Shadow
Maps [Ritschel et al. 2008], and Many-LODs [Hollander et al. 2011].
However, these techniques generally assume that a large number of
lights affect each sample to conceal approximation artifacts. In other
words, these approaches are unable to produce accurate shadows for
samples lit by only a few lights.

Ray Traced Shadows Recently, Harada et. al. [2013] described
ray traced lights in conjunction with Tiled Forward Shading. They
demonstrate that it can be feasible to ray trace shadows for many
lights but do not report any analysis or comparison to other tech-
niques.

3 Basic Algorithm

Our basic algorithm is shown below. The algorithm is constructed
from clustered deferred shading, with shadow maps added. Steps
that are inherited from ordinary clustered deferred shading are shown
in gray.

1. Render scene to G-Buffers.

2. Cluster assignment – calculating the cluster keys of each view
sample.

3. Find unique clusters – finding the compact list of unique cluster
keys.

4. Assign lights to clusters. – creating a list of influencing lights
for each cluster.

5. Select shadow map resolution for each light.

6. Allocate shadow maps.

7. Cull shadow casting geometry for each light.

8. Rasterize shadow maps.

9. Shade samples.

3.1 Clustered Shading Overview

In clustered shading the view volume is subdivided into a grid of
self-similar sub-volumes (clusters), by starting from a regular 2D
grid in screen space, e.g. using tiles of 32× 32 pixels, and splitting
exponentially along the depth direction. Next, all visible geometry
samples are used to determine which of the clusters contain visible
geometry. Once the set of occupied clusters has been found, the algo-
rithm assigns lights to these, by intersecting the light volumes with
the bounding box of each cluster. This yields a list of cluster/light
pairs, associating each cluster with all lights that may affect a sam-
ple within (see Figure 2). Finally, each visible sample is shaded by
looking up the lights for the cluster it is within and summing their
contributions.
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Figure 2: Illustration of the depth subdivisions into clusters and
light assignment. Clusters containing some geometry are shown in
blue.

The key pieces of information this process yields are a set of occu-
pied clusters with associated bounding volumes (that approximate
the visible geometry), and the near-minimal set of lights for each
cluster. Intuitively, this information should be possible to exploit for
efficient shadow computations, and this is exactly what we aim to
do in the following sections.

3.2 Shadow Map Resolution Selection

One way to calculate the required resolution for each shadow map
is to use the screen-space coverage of the light-bounding sphere.
However, this produces vast overestimates whenever the camera
is near, or within, the light volume. To calculate a more precisely
matching resolution, one might follow the approach in Resolution
Matched Shadow Maps (RMSM) [Lefohn et al. 2007], using shadow-
map space derivatives for each view sample. However, applying this
naı̈vely would be expensive, as the calculations must be repeated for
each sample/light pair, and would require derivatives to be stored
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Figure 3: Left, the solid angle of cluster, with respect to the light
source, α, subtended by the cluster, illustrated in 2D. Right, example
of undersampling due to an oblique surface violating assumptions
in Equation 1, shown with and without textures and PCF.

in the G-Buffer. Our goal is not to attempt alias-free shadows,
but to quickly estimate a reasonable match. Therefore, we base
our calculations on the bounding boxes of the clusters, which are
typically several orders of magnitude fewer than the samples.

R =

√
S/(α/4π)

6
(1)

The required resolution (R) for each cluster is estimated as the
number of pixels covered by the cluster in screen space (S), divided
by the proportion of the unit sphere subtended by the solid angle of
the cluster bounding sphere (α), and distributed over the six cube
faces (see Figure 3 and Equation 1).

This calculation is making several simplifying assumptions. The
most significant is that we assume that the distribution of the samples
is the same in shadow-map space as in screen space. This leads
to an underestimate of the required resolution when the light is
at an oblique angle to the surface (see Figure 3). A more detailed
calculation might reduce these errors, but we opted to use this simple
metric, which works well for the majority of cases.

For each cluster/light pair, we evaluate Equation 1 and retain the
maximum R for each light as the shadow map resolution, i.e. a cube
map with faces of resolution R×R.

Figure 4: The projected footprint (purple) of an AABB of either a
batch or a cluster (orange), projected onto the cube map (green).
The tiles on the cube map represent either virtual texture pages or
projection map bits, depending on application.

3.3 Shadow Map Allocation

Using the resolutions computed in the previous step, we can allocate
one virtual cube shadow map for each light requiring a non-zero res-
olution. This does not allocate any actual physical memory backing
the texture, just the virtual range.

In virtual textures, the pages are laid out as tiles of a certain size (e.g.
256× 128 texels), covering the texture. Before we can render into

the shadow map we must commit physical memory for those pages
that will be sampled during shading. This can be established by
projecting each sample onto the cube map, and record the requested
page. To implement this efficiently, we again use the cluster bounds
as proxy for the view samples, and project these onto the cube maps,
(see Figure 4). The affected tiles are recorded in the virtual-page
mask.

3.4 Culling Shadow-Casting Geometry

When managing many lights, culling efficiency is an important
problem. The basic operation we wish to perform is to gather the
minimal set of triangles that need to be rendered into each cube
shadow map. This can be achieved by querying an acceleration
structure with the bounding sphere defined by the light position and
range. Real-time applications typically support this kind of query
against a scene graph, or similar, for view frustum and shadow-map
culling.
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Figure 5: Illustration of batch hierarchy traversal. The AABBs of
batches 1 and 2 intersect the light sphere, and are tested against the
culling planes, which determine the cube faces the batch must be
rendered to.

We make use of a bounding volume hierarchy (BVH), storing groups
of triangles called Batches at the leaves. Each batch is represented
by an axis aligned bounding box (AABB), which is updated at run
time, and has a fixed maximum size. This allows us to explore
which granularity offers the best performance for our use case. The
hierarchy is queried for each light, producing a list of batch and light
index pairs, identifying the batches to be drawn into each shadow
map. For each pair, we record the result of culling for each cube
face, as this information is needed later when rendering. The result
is a bit mask with six bits that we call the cube-face mask (CFM),
see Figure 5.

4 Algorithm Extensions

4.1 Projection Maps

Efficient culling also ought to avoid drawing geometry into un-
sampled regions of the shadow map. In other words, we require
something that identifies where shadow receivers are located. This is
similar in spirit to projection maps, which are used to guide photon
distribution in photon maps, and we adopt this name.

Fortunately, this is almost exactly the same problem as establishing
the needed pages for virtual textures (Section 3.3), and we reuse
the method of projecting AABBs onto the cube faces. To represent
the shadow receivers, each cube face stores a 32× 32 bit mask (in
contrast to page masks, which vary with resolution), and we rasterize
the cluster bounds into this mask as before.



We then perform the same projection for each batch AABB that was
found during the culling, to produce a mask for each shadow caster.
If the logical intersection between these two masks is zero for any
cube face, we do not need to draw the batch into this cube face. In
addition to testing the mask, we also compute the maximum depth
for each cube face and compare these to the minimum depth of each
batch. This enables discarding shadow casters that lie behind any
visible shadow receiver. For each batch, we update the cube-face
mask to prune non-shadowing batches.

4.2 Non-uniform Light Sizes

The resolution selection presented in Section 3.2 uses the maximum
sample density required by a cluster affected by a light. If the
light is large and the view contains samples requiring very different
densities, this can be a large over-estimate. This happens when a
large light affects both some, relatively few, samples nearby the
viewer but also a large portion of the visible scene further away (see
Figure 6). The nearby samples dictate the resolution of the shadow
map, which then must be used by all samples.

Figure 6: Illustration of light requiring different sample densities
within the view frustum. The nearby, high density, clusters dictate
the resolution for the entire light.

If there are only uniformly sized lights and we are comfortable
with clamping the maximum allowed resolution, then this is not a
significant problem. However, as our results show, if we have a scene
with both large and small lights, then this can come to dominate the
memory allocation requirements (e.g.NECROPOLIS, see Figure 12).

To eliminate this issue, we allow each light to allocate a number of
shadow maps. We use a fixed number, as this allows fast and simple
implementation, in our tests ranging from 1 to 16 shadow maps per
light. To allocate the shadow maps, we add a step where we build
a histogram over the resolutions requested by the clusters affecting
each light. The maximum value within each histogram bucket is
then used to allocate a distinct shadow map. When the shadow-map
index is established, we replace the light index in the cluster light
list with this index. Then, culling and drawing can remain the same,
except that we sometimes must take care to separate the light index
from the shadow-map index.

4.3 Level of Detail

For high-resolution shadow maps that are used for many view sam-
ples, we expect that rasterizing triangles is efficient, producing many
samples for each triangle. However, low-resolution shadow maps
sample the shadow-casting geometry sparsely, generating few sam-
ples per triangle. To maintain efficiency in these cases, some form
of Level of Detail (LOD) is required.

In the limit, a light might only affect a single visible sample. Thus, it
is clear that no amount of polygon-based LOD will suffice by itself.

Consequently, we explore the use of ray tracing, which can random
access geometry efficiently. To decide when ray tracing should be
used, we simply use a threshold (in our tests we used 96 texels as the
limit) on the resolution of the shadow map, which is tested after the
resolution has been calculated. Those shadow maps that are below
the threshold are not further processed and are replaced by directly
ray tracing the shadows in a separate shading pass. We refer to this
as the hybrid algorithm. Additionally, we evaluate using ray tracing
for all shadows to determine the cross-over point in efficiency versus
shadow maps.

Since we aim to use the ray tracing for LOD purposes, we chose to
use a voxel representation, which has an inherent polygon-agnostic
LOD and enables a much smaller memory footprint than would
be possible using triangles. We use the technique described by
Kämpe et. al. [2013], which offers performance comparable to state
of the art polygon ray tracers and a very compact representation.

One difficulty with ray tracing is that building efficient acceleration
structures is still a relatively slow process, at best offering interactive
performance, and dynamically updating the structure is both costly
and complex to implement [Karras and Aila 2013]. We therefore use
a static acceleration structure, enabling correct occlusion from the
static scene geometry, which often has the highest visual importance.
As we aim to use the ray tracing for lights far away (and therefore
low resolution), we consider this a practical use case to evaluate.
For highly dynamic scenes, our results that use ray tracing are not
directly applicable. Nevertheless, by using a high-performance ac-
celerations structure, we aim to explore the upper bound for potential
ray tracing performance.

To explore the use of polygon-based LOD, we evaluate a low-
polygon version of the HOUSES scene (see Section 6). This is
done in lieu of a full blown LOD system to attempt to establish an
upper bound for shadow-mapping performance when LOD is used.

4.4 Explicit Cluster Bounds

As clusters are defined by a location in a regular grid within the
view frustum, there is an associated bounding volume that is implied
by this location. Computing explicit bounds, i.e. tightly fitting
the samples within the cluster, was found by Olsson et al. [2012]
to improve light-culling efficiency, but it also incurred too much
overhead to be worthwhile. When introducing shadows and virtual
shadow map allocation, there is more to gain from tighter bounds.
We therefore present a novel design that computes approximate
explicit bounds with very little overhead on modern GPUs.

We store one additional 32-bit integer for each cluster, which is
logically divided into three 10-bit fields. Each of these represent
the range of possible positions within the implicit AABB. With this
scheme, the explicit bounding box can be established with just a
single 32-bit atomicOr reduction for each sample. By using the bits
to represent a number line, we can only represent as many discrete
positions as there are bits. Thus, 10 bits for each axis enables down
to a 1000-fold reduction in volume.

To reconstruct the bounding box, we make use of intrinsic bit-wise
functions to count zeros from both directions in each 10-bit field.
These bit positions are then used to scale and bias the implicit AABB
in each axis direction.

5 Implementation

We implemented the algorithm and variants above using OpenGL
and CUDA. All computationally intense stages are implemented on
the GPU, and in general, we attempt to minimize stalls and GPU
to CPU memory transfers. However, draw calls and rendering state
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Figure 7: Stages (rounded) and data (square) in the algorithm implementation. Stage colors correspond to those used in Figure 8. All
computationally demanding stages are executed on the GPU, with sequencing and command issue performed by the CPU.

changes are still necessary to invoke from the CPU, and thus, we
must transfer some key information from the GPU. The system is
illustrated in Figure 7.

5.1 Shadow Map Resolution Selection

The implementation of shadow-map resolution selection is a set
of CUDA kernels, launched with one thread per cluster/light pair.
These kernels compute the resolution, cube-face mask, virtual-page
mask, and also the projection map, for each shadow map. To reduce
the final histograms and bit masks, we use atomic operations, which
provide adequate performance for current GPUs. The resulting
array of shadow-map resolutions and the array of virtual-page masks
are transferred to the CPU using an asynchronous copy.

5.2 Culling Shadow-Casting Geometry

In the implementation, we perform culling before allocating shadow
maps, as this allows better asynchronous overlap, reducing stalls, and
also minimizes transitions between CUDA and OpenGL operation.

5.2.1 Batch Hierarchy Construction

Each batch is a range of triangle indices and an AABB. A batch
is constructed such that all the vertices share the transformation
matrix1 and are located close together, to ensure coherency under
animation. At run time, we re-calculate each batch AABB from the
vertices every frame to support animation. The resulting list is sorted
along the Morton curve, and we then build an implicit left balanced
32-way BVH by recursively grouping 32 consecutive AABBs into
a parent node. This is the same type of hierarchy that was used
for hierarchical light assignment in clustered shading, and has been
shown to perform well for many light sources [Olsson et al. 2012].

The batches are created off-line, using a bottom-up agglomerative
tree-construction algorithm over the scene triangles, similar to that
described by Walter et. al. [2008]. Unlike them, who use the surface
area as the dissimilarity function, we use the length of the diagonal
of the new cluster, as this produces more localized clusters (by
considering all three dimensions). After tree construction, we create
the batches by gathering leaves in sub-trees below some predefined
size, e.g. 128 triangles (we tested several sizes, as reported below).
The batches are stored in a flat array and loaded at run time.

5.2.2 Hierarchy Traversal

To gather the batches for each shadow map, we launch a kernel with
a CUDA block for each shadow map. The reason for using blocks is

1We only implement support for a single transform per vertex, but this is
trivially extended to more general transformations, e.g. skinning.

that a modern GPU is not fully utilized when launching just a warp
per light (as would be natural with our 32-way trees). The block
uses a cooperative depth-first stack to utilize all warps within the
block. We run this kernel in two passes to first count the number
of batches for each shadow map and allocate storage, and then to
output the array of batch indices. In between, we also perform a
prefix sum to calculate the offsets of the batches belonging to each
shadow map in the result array. We also output the cube-face mask
for each batch. This mask is the bitwise and between the cube-face
mask of the shadow map and the batch. The counts and offsets are
copied back to the CPU asynchronously at this stage, as they are
needed to issue drawing commands.

To further prune the list of batches, we launch another kernel that
calculates the projection-map overlap for each batch in the output
array and updates the cube-face mask.

The final step in the culling process is to generate a list of draw com-
mands for OpenGL to render. We use the OpenGL 4.3 multi-draw
indirect feature (glMultiDrawElementsIndirect), which allows the
construction of draw commands on the GPU. We map a buffer from
OpenGL to CUDA and launch a kernel where each thread trans-
forms a batch index and cube-face mask output by the culling into a
drawing command. The vertex count and offset is provided by the
batch definition, and the instance count is the number of set bits in
the cube-face mask.

5.3 Shadow Map Allocation

To implement the virtual shadow maps, we make use of the OpenGL
4.4 ARB extension for sparse textures (ARB_sparse_texture). The
extension enables vendor-specific page sizes which can be queried.
Textures with sparse storage must be aligned to page boundaries.
On our target hardware, the page size is 256× 128 texels for 16-bit
depth textures (64kb), which means that our square cube-map faces
must be aligned to the larger value. For our implementation, the
practical page granularity is therefore 256 × 256 texels, and this
also limits the maximum resolution of our shadow maps to 8K×8K
texels, as we use up to 32× 32 bits in the virtual-page masks.

Thus, for each non-zero value in the array of shadow map resolutions,
we round the requested resolution up to the next page boundary
and then use this value to allocate a texture with virtual storage
specified. Next, we iterate the virtual-page mask for each face and
commit physical pages. If the requested resolution is small, in our
implementation below 64× 64 texels, we use an ordinary physical
cube map instead.

In practice, allocating textures is a slow operation in OpenGL, and
we instead pre-allocate a pool of cube textures. We create enough
textures of each resolution to match the peak demands of our applica-
tion. Since the textures are virtual (or small), the memory demands
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Figure 8: Timings from the NECROPOLIS scene animation. The performance is broken down into the principal stages of the algorithms. Note
that for (b) and (c), the ray tracing time forms part of the shading.

of this pool is small. At run time, we pick a cube map of the correct
resolution from this pool and proceed as before.

5.3.1 Workarounds

Unfortunately, committing physical storage is very slow on current
drivers2. As a fall back, we therefore implemented an additional
pool of physical textures, and pick the next free one of the closest
matching resolution. For the physical pool, we cannot allocate all
the needed resolutions up-front, as the memory requirements are
prohibitive, e.g. a single 8K cube map requires 750Mb of memory
(this, in fact, being the raison d’être for the virtual shadow maps).
Consequently, this method will suffer from very poor and varying
shadow quality but enables us to measure the performance of all the
other parts of the algorithm.

On game consoles, where the developers are able to directly manage
resources, the straightforward implementation might be expected
to work well. Also, extensions such as the explicit page-pool man-
agement proposed by AMD (AMD_texture_tile_pool) [Sellers et al.
2013] indicate that the page-allocation performance problem is pos-
sible to address. For our purposes, going yet further and allowing
pages to be managed fully on the GPU, for example using some
manner of indirect call, similar to that used for draw commands,
would seem ideal.

5.4 Rasterizing Shadow Caster Geometry

With the set up work done previously, the actual draw-
ing is straightforward. For each shadow map, we invoke
glMultiDrawElementsIndirect once, using the count and offset
shipped back to the CPU during the culling. To route the batches to
the needed cube map faces, we use layered rendering and a geom-
etry shader. The geometry shader uses the instance index and the
cube-face mask (which we supply as a per-instance vertex attribute)
to compute the correct layer.

The sparse textures, when used as a frame buffer target, quietly
drop any fragments that end up in uncommitted areas. This matches
our expectations well, as such areas will not be used for shadow
look ups. Compared to previous work on software virtual shadow
maps, this is an enormous advantage, as we sidestep the issues of
fine-grained binning, clipping and copying and also do not have to
allocate temporary rendering buffers.

We did not implement support for different materials (e.g. to support
alpha masking). To do so, one draw call per shadow material type
would be needed instead.

2The NVIDIA beta driver version 327.24 was used in our measurements.

6 Results and Discussion

All experiments were conducted on an NVIDIA GTX Titan GPU
and an Intel Core i7-3930K CPU. We used three scenes (see Fig-
ure 1). HOUSES is designed to be used to illustrate the scaling in a
scene where all lights have a similar size and uniform distribution.
NECROPOLIS is derived from the Unreal SDK, with some lights
moved slightly and all ranges doubled. We added several animated
cannons shooting lights across the main central area, and a number
of moving objects. The scene contains 275 static lights and peaks at
376 lights. CRYSPONZA is derived from the Crytek version of the
Sponza atrium scene, with 65 light sources added. Each scene has
a camera animation, which is used in performance graphs (see the
supplementary video).

We evaluate several algorithm variants with different modifications:
Shadow maps with projection map culling (PMC), and with added
depth culling (PMCD); with or without explicit bounds (EB); only
using cluster face mask culling (CFM); Ray Tracing; and Hy-
brid, which uses PMCD-EB. Unless otherwise indicated, four cube
shadow maps per light is used.
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Figure 9: Timing breakdown of the steps involved in culling batches.
The displayed percentage represents the maximum time for each of
the steps over the entire animation.

As noted in Section 5.3.1, current API and driver performance for
committing physical memory is very poor. All performance mea-
surements are therefore reported using the fall-back implementation,
which uses a pool of physical pre-allocated shadow maps. We per-
formed the same measurements on the full implementation to ensure
that they produce representative figures. The pool will run out of
high-resolution shadow maps at times, which results in too low
sample density and affects the shadow map rendering times. These
variations are within 100% of the reported figures and do not affect
the peak times reported. It was found that other factors such as
re-binding render targets had greater performance impact.
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Figure 10: Wall-to-wall frame times from the scene animations, for different algorithm variations.

All reported figures are using a batch size of up to 128 triangles.
We evaluated several other batch sizes and found that performance
was similar in the range 32 to 512 triangles per batch, but was
significantly worse for larger batches. This is expected, as larger
batches lead to more triangles being drawn, and rasterization is
already a larger cost than culling in the algorithm (see Figure 8(a)).

Performance We report the wall-to-wall frame times for our main
algorithm variants in Figure 10. These are the times between con-
secutive frames and thus include all rendering activity needed to
produce each frame. From these results, it is clear that virtual shadow
maps with projection-map culling offer robust and scalable perfor-
mance and that real-time performance with many lights and dynamic
scenes is achievable.

As expected, ray tracing offers better scaling when the shadows
require fewer samples, with consistently better performance in the
first part of the zooming animations in NECROPOLIS and HOUSES
(Figure 10). When the lights require more samples, shadow maps
generally win, and also provide better quality (as we are ray tracing
a fairly coarse voxel representation).
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Figure 11: Triangles drawn each frame in the NECROPOLIS ani-
mation with different culling methods. The naı̈ve method, that is,
not using the information about clusters to improve culling, is not
included in the graph to improve presentation. It renders between
40 and 126 million triangles per frame and never less than six times
the number of PMCD.

The hybrid method is able to make use of this advantage and pro-
vides substantially better performance early in the NECROPOLIS
animation (Figure 8(c)). However, it fails to improve worst-case per-
formance because there are always a few small lights visible, and our
implementation runs a separate full-screen pass in CUDA to shade
these. Thus, efficiency in these cases is low, and we would likely see
better results if the ray tracing better integrated with the other shad-
ing. An improved selection criterion, based on the estimated cost of
the methods rather than just shadow-map resolution, could also im-
prove performance. For example, the LOD version of the HOUSES
scene (Figure 10(b)) highlights that the cost of shadow mapping is

correlated to the number of polygons rendered. The LOD version
also demonstrates that there exists a potential for performance im-
provements using traditional polygon LOD, as an alternative or in
addition to ray tracing.

Shadow filtering, in our implementation a simple nine-tap
Percentage-Closer filter (PCF), has a quite high proportion of the to-
tal cost, especially in the scenes with relatively many lights affecting
each sample (Figure 10). Thus, techniques to reduce this cost, by
restricting filtering or using pre-filtering, could be a useful addition.

Culling Efficiency Culling efficiency is greatly improved by our
new methods exploiting information about shadow receivers inherent
in the cluster, as shown in Figure 11. Compared to naı̈vely culling
using the light sphere and drawing to all six cube faces, our method
is at least six times more efficient.

When adding the max depth culling for each cube face, the addi-
tional improvement is not as significant. This is not unexpected
as the single depth is a very coarse representation, most lights are
relatively short range, and the scene is mostly open with little oc-
clusion. Towards the end of the animation, where the camera is
inside a building, the proportion that is culled by the depth increases
somewhat. The cost of adding this test is very small (see Figure 9:
’ProjectionMapCull’).

Memory Usage As expected, using only a single shadow map per
light has very high worst case for NECROPOLIS (Figure 12:’PMCD-
EB-1SM’). With four shadow maps per light, we get a better cor-
respondence between lighting computations (i.e., the number of
light/sample pairs shaded) and number of shadow maps texels allo-
cated. This indicates that peak shadow map usage is correlated to the
density of lights in the scene, which is a very useful property when
budgeting rendering resources. The largest number of shadow-map
texels per lighting computation occurs when shadow maps are low
resolution, early in the animation, and does not coincide with peak
memory usage. We tested up to 16 shadow maps per light, and above
eight, the number of texels rises again.

Explicit bounds The explicit bounds provide improved efficiency
for both the number of shadow-map texels allocated and number of
triangles drawn by 8− 35% over the NECROPOLIS animation. The
greatest improvement is seen near the start of the animation, where
many clusters are far away and thus have large implicit bounds in
view space (Figure 11).

Quality As seen in Figure 3, there exist sampling artifacts due to
our choice of resolution calculations. However, as we recalculate the
required resolutions continuously and select the maximum for each
shadow map, we expect these errors to be stable and consistent. In
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Figure 12: Allocated shadow-map texels for various scenarios over
the NECROPOLIS animation. Shows the performance with a varying
number of shadow maps per light, the effect of the global undersam-
pling parameter (u2|u4 suffix), and also plots the number of Lighting
Computations for each frame (secondary axis).

the supplementary video, it is difficult to notice any artifacts caused
by switching between shadow-map resolutions.

We also added a global parameter controlling undersampling to
enable trading visual quality for lower memory usage (see Figure 12).
This enables a lower peak memory demand with uniform reduction
in quality. For a visual comparison, see the supplementary video.

7 Conclusion

We presented several new ways of exploiting the information in-
herent in the clusters provided by clustered shading, which enable
very efficient and effective culling of shadow casting geometry.
With these extensions, we have demonstrated that using hardware-
supported virtual cube shadow maps is a viable method for achieving
high-quality real-time shadows, scaling to hundreds of lights.

In addition, we show that memory requirements when using virtual
cube shadow maps as described in this paper remains proportional
to the number of shaded samples. This is again enabled by utilizing
clusters to quickly determine both the resolution and coverage of the
shadow maps.

We also demonstrate that using ray tracing can be more efficient
than shadow maps for shadows with few samples and that a hybrid
method building on the strength of both is a promising possibility.

The implementation of ARB_sparse_texture used in our evaluation
does not offer real-time performance. However, we expect that
future revisions, perhaps combined with new extensions, will make
this possible. In addition, on platforms with more direct control over
resources, such as game consoles, this problem should be greatly
mitigated.

8 Future Work

In the future, we would like to explore more aggressive culling
schemes, for example using better max-depth culling. We also would
like to explore other light distributions, which might be supported
by pre-defined masks, yielding high flexibility in distribution.
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