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Abstract

Due to the advent of ray tracing at interactive speeds and because there is an absence of a way to
measure and compare performance and quality of ray traced scenes that are animated, we present an
organized way to do this objectively and accurately in this proposal forBART: A Benchmark for Animated
Ray Tracing. This is a suite of test scenes, placed in the public domain, designed to stress ray tracing
algorithms, where both the camera and objects are animated parametrically. Equally important, BART is
also a set of rules on how to measure performance of the rendering. We also propose how to measure and
compare the error in the rendered images when approximating algorithms are used.

1 Introduction

In order to measure performance, benchmarks are needed, as they allow people to compare performance in
a more accurate and objective way. A benchmark is often a suite of test cases or executables together with a
specified procedure of how to report performance with that benchmark. There is a need for benchmarks in
computer graphics in a variety of different areas such as radiosity, global illumination, collision detection,
animation, image-based rendering, polygon rendering, and all other areas where you need to be able to
measure and compare performance.

Currently, there are only benchmarks in a few of these areas, and our effort is an attempt to bridge that
gap. We saw the need forBART: A Benchmark for Animated Ray Tracing, because there currently is no
benchmark for this, and because at least two groups [1, 2] have been ray tracing fairly complex and real-
istic scenes at interactive speeds (by “interactive speeds”, we mean any rate above one frame per second).
Another reason is because acceleration data structures for animated ray tracing has not been studied much,
but probably will be in the future. The main contributions of BART are: a set of parametrically animated
test scenes that are designed to stress ray tracing algorithms and that are easy for anyone to use, and a set
of reliable performance measurements that allows the user of BART to compare performance of different
ray tracing algorithms. For approximating algorithms (that is, algorithms that might not produce entirely
correct values for each pixel but rather approximate values), we also define how to measure the quality of
the approximated images.

The organization of this paper is as follows. In the next section we will briefly review the different,
currently available benchmarks for graphics. Section 3 identifies events and scenarios that potentially stress
different existing ray tracing algorithms. These are then implemented in the test scenes, described in section
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4. In section 5, we discuss and motivate the measurements that we propose should be reported when the
benchmark is used. Short implementation notes follows in section 6. Finally, we conclude and present some
future work.

2 Related Work

For graphics hardware vendors and implementors there are many different benchmarks. TheStandard Per-
formance Evaluation Corporation(SPEC) has a subgroup calledGraphics Performance Characterization
Group (GPC) [3] which has a set of graphics benchmarks. TheirSPECglperfis a way to measure the
performance of rendering low-level primitives, such as points, lines, triangles etc. with OpenGL. In con-
trast, GPC’sSPECviewperffor OpenGL is a way to measure the rendering performance of a set of real
models. BothSPECglperfandSPECviewperfare targeted towards vendors and implementors of graphics
hardware as it is not allowed to alter the program (e.g., implement an occlusion algorithm) to make the ex-
ecution more efficient. GPC also have benchmarks for a few commercial programs, but these require fully
licensed versions of the programs and are thus not available for everyone. For PC’s there are also several
other benchmarks for measuring the performance of the graphics subsystem:3D WinBench, 3DMark, and
QuakeIII, to mention a few.

Would it be possible to use the scenes from these benchmarks, which are targeted towards graphics
hardware systems, for evaluating the performance of ray tracing algorithms? We believe that this would be
unsuitable, or even impossible in some cases. The scenes in these benchmarks may be surrounded by license
agreements, which limit their use for other purposes then the original ones. For example, a user of the
SPEC benchmarks must report measured results strictly in accordance with the rules published by SPEC. As
different performance parameters might be interesting for ray tracing algorithms and graphics hardware, this
would rule out the use of SPEC models for comparing the performance of ray tracing algorithms. Naturally,
these benchmarks are also constructed for the single purpose of testing graphics hardware specific features,
or specific applications (e.g., CAD applications or game engines) well suited for graphics hardware. For
example, CAD applications often deal with single static objects hanging in free space. However, to really
stress ray tracing algorithms one would want scenes representing complete environments. Another example
is the Quake scenes, which are optimized to make the rendering as fast as possible using the Quake game
engine; the scene description is in a binary format and contains an acceleration data structure hard coded
into it. On the contrary, the scenes presented in our benchmark are specifically designed with the intent of
stressing ray tracing algorithms, and are described using a simple and readable format for greater flexibility.

In [4], a framework for a performance evaluation system for real-time rendering algorithms in Virtual
Reality is presented. This benchmark is also targeted against polygon rendering hardware, and there seems
not to be any scenes available on the Internet.

Worth a mention is also Pete Shirley’s eleven scenes for testing radiosity algorithms:http://radsite.

lbl.gov/mgf/scenes.html . These were for benchmarking quality instead of speed and is not animated.
For ray tracing, there is, to our knowledge, only one recognized benchmark and it is calledStandard

Procedural Database(SPD) by Haines [5] from 1987. The SPD is targeted for ray tracing algorithms for
single static images. Other drawbacks are that the images are not necessarily realistic, and that almost the
entire geometry of each scene is located in the view frustum of the camera. This is not normally the case.
While perfectly valid and widely used for over a decade, progress in computer architecture and algorithms
has advanced beyond that of what SPD first was intended for. For example, there are at least two projects
that have ray traced fairly complex and realistic images at interactive speeds [1, 2].

Formella and Gill [6] present an alternative benchmark measuring the performance of tracing rays in a
ray tracer. That benchmark is also for single static images, and their scenes consists of a cube and a set of
distributed spheres or parallelograms. To our knowledge, this benchmark has not been widely used.

A vast number of ray tracing algorithms and variants have been developed over the years. In this paper,
we will only reference a few of those that we think apply.
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3 Potential Stresses

In order to construct a benchmark with relatively long lifetime, we first set out to identify what stresses
existing ray tracing algorithms and thus decreases performance. The goal was then to implement each
of these potential stresses into the benchmark. The following scenarios or events tend to stress different
efficiency schemes for ray tracing:

1. Hierarchical animation using translation, rotation, and scaling.

2. Unorganized animation of objects (i.e., not just combinations of translation, rotation, and scaling).

3. “Teapot in the stadium” problem.

4. Low frame-to-frame coherency.

5. Large working-set sizes.

6. Overlap of bounding volumes or overlap of their projections.

7. Changing object distribution.

Below we describe each of the items above, why we believe that they should in some way be incor-
porated in a benchmark for ray tracing, and which ray tracing acceleration scheme(s) in particular they
stress.

Stress 1 : Hierarchical animation

During modeling, the easiest and most natural way is to model each object in its own frame of reference.
Building a scene from such objects, a hierarchical representation of it offers a simple and flexible way to
express how objects are positioned, oriented and how they move relative to each other.

However, in an animated or interactive ray tracer, the hierarchy of local coordinate systems and hierar-
chical animation may also stress the scene rendering. To investigate intersection between a ray and an object
in the scene, both must be expressed in the same frame of reference. A straight forward solution would be
to continuously transform rays to the coordinate systems of the individual objects. However, transforma-
tion involves matrix multiplication, which is a very floating point intensive operation as compared to e.g.,
checking a bounding volume (BV) for intersection, thus stressing the rendering time. A solution to this
problem would be to transform the camera and all the objects in the scene to the global coordinate system
once, before the spawning of rays. However, this may require a lot of extra memory; an advantage with
keeping the hierarchy is that if a complex object appears multiple times in a scene, memory can be saved
by keeping only one copy of the object model in memory, and referencing it using pointers in the hierarchy.

When adding animation to the scene, whole or parts of the acceleration data structures will most likely
have to be reconstructed between frames. Depending on the amount of changes in the scene, this could
seriously stress the reconstruction phase when using octrees [7], uniform grids [8], recursive grids [9],
hierarchical grids [10, 11, 12], BSP trees [13, 14] and bounding volume hierarchies (BVHs) [15, 16]. In
our benchmark, we have excluded the animation of light sources, because it simplified our animations, and
the same stress can be achieved by animated objects. Therefore, this is also a serious stress for light buffers
[17].

Stress 2 : Unorganized animation

In order to cope with transforms, ray tracers often transform the ray with the inverse transform instead
of transforming the object itself and its efficiency data structures. Thus, for some acceleration schemes
(e.g., a static grid or a BVH around an object), we do not have to rebuild the efficiency data structures
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each frame. This is easily done for translations, rotations, and scalings, but often other kinds of “less
organized” animation is used, and then this approach cannot be used. Since, to our knowledge, all currently
available types of acceleration schemes for ray tracing (e.g., [7, 8, 9, 12, 14, 16]) must rebuild their efficiency
structures for such animations, this will be a serious stress on all ray tracing algorithms.

Stress 3 : Teapot in the stadium

The “teapot in the stadium” problem [18] refers to when a small detailed object (teapot) is located in a
relatively large surrounding object (stadium). This tends to stress uniform grid-based [8] algorithms and
octree-based schemes [7], because the uniform grid has finite sized voxels and because the octree has fi-
nite depth, because the teapot will be located in one or only a few voxels or octree nodes. For example,
if the viewer is looking at the teapot such that it covers most of the screen, then only one or a few vox-
els/octree nodes will be traversed and each will contain many primitives, which thus degrades performance
enourmously.

Stress 4 : Low frame-to-frame coherency

Situations where the frame-to-frame coherency is low tend to stress reprojection algorithms [19, 20, 21, 22],
since those use information from previous frames. If the difference between two frames is too big then the
performance of such algorithms is worse or the quality of the rendered images gets worse. Similarly,
frameless rendering techniques [23, 24] will produce images of poorer quality when the frame-to-frame
coherency is low. In this paper, we use the nameapproximating algorithmsfor all algorithms that may
generate images that are not entirely correct for every frame they generate.

Stress 5 : Large working-set sizes

An important problem in computer architecture is the increasing gap between the computational speed of the
processor and the speed with which the memory system can feed the processor with data. The conventional
solution to this problem is using a cache hierarchy between the processor and memory, and relying on
spatial and temporal coherence in the data access patterns [25]. Current computer architectures are usually
equipped with two levels of caches (L1 and L2) between the processor and main memory.

Typical sizes for the L1 and L2 caches range from 16–64 kB and 128 kB–2 MB, respectively. This
means that the sizes of the scenes of BART should be significantly larger than the cache sizes found in
contemporary microprocessors. However, a scene size much larger than a cache size does not necessarily
imply a problem. Only the size of the scene data actually used when rendering an individual frame in an
animation, a so called working set [26], is of importance. For example, if the working set of one frame in
an animation is larger than the L2 cache, this will most likely expunge data that could have been reused in
the following frame, raising the L2 cache miss ratio. This would be the case if the majority of the primitives
of a large scene is potentially visible in one single frame. Note that this also could happen indirectly; due
to reflecting objects, much more of the scene primitives might be used than the ones that actually occurs in
the view frustum. Thus, the reflection of rays most likely increase the working set encountered in a frame.

The same situation applies for the L1-cache. Here the working set might be a set of primitives visible
during a set of consecutive scan lines. If the number of primitives visible is much larger than the L1 cache,
the L1 cache miss ratio will be high. Therefore, it might be desirable to develop algorithms that tries to
exploit data coherency as much as possible, to increase the achieved performance of the memory system.

Stress 6 : Bounding volume overlap

This problem might occur when a number of BVs or local grids overlap (perhaps due to animation). If a ray
penetrates all of the overlapping volumes, it is not necessarily the first one reached that contains the closest
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object intersection. Therefore, a number of BVs or grids may have to be traversed before encountering the
true intersection point.

The BVs or grids do not necessarially have to overlap to get this effect. If a ray intersects several BVs
or grids, and these contain a lot of empty space around the object they cover, again, a number of rays may
have to traverse a large number of BVs or grids before an intersection is found. If the number of rays that
encounter these situations is large enough, this could be a potential stress.

Stress 7 : Changing object distribution

Due to animation, the distribution of objects in the scene might change over time. This might stress ray
tracing algorithms regarding which efficiency data structure should be used. For example, one static grid
covering the whole scene might work well if there is an even distribution of objects in the scene. However,
hierarchical grids or recursive grids are probably a better choice for an unbalanced distribution of objects.
Therefore, if the distribution of objects in the scene changes over time, the most suitable data structure may
also change.

A solution might be to recreate or update the data structure each frame. Cazals et al. presents an
algorithm that automatically creates an efficient data structure for ray tracing given a particular distribution
of geometry as input [11]. It outputs a hierarchy of uniform grids with cell sizes and depth optimized for
the given scene.

4 Animated Test Scenes

Here we present the three test scenes, calledkitchen, robots, andmuseum, of BART. All test scenes are
parametrically animated, by which we mean that the user of BART easily can vary the number of frames in
an animation. One use of this feature is to try how well an algorithm can handle different levels of frame-
to-frame coherency by simply decreasing the number of frames to test lower frame-to-frame coherency.

4.1 Kitchen

The main subject in this scene is a toy car moving around in a kitchen. The camera, initially overlooking
the scene from one of the upper corners of the room, descends to meet the car and then follows it on its path
through the room. Figure 3 shows images taken from this scene.

The toy car is hierarchically animated using translations, rotations, and scalings (stress 1). The hierarchy
is at most three levels deep, and the scaling occurs at the end of the animation when the car crashes into a
cupboard, and is thus scaled along the current driving direction.

The kitchen scene should be subject to the teapot-in-the-stadium problem (stress 3) : the walls, roof and
floor is modeled using only a few large triangles. However, the scene also contains quite a lot of complex
objects, which vary in size from small (e.g., door knob) to medium (e.g., chairs).

Low frame-to-frame coherency (stress 4) should be likely to appear at two different instances during
the kitchen animation. At one instant the camera is almost still. The toy car passes quickly in front of the
camera, abruptly increasing the visible number of primitives during a small number of consecutive frames.
A similar effect is achieved when the camera moves rapidly, very close to the table edge; during one frame,
the table edge obscures the whole camera view and only a few triangles are visible. In the next frame, the
items on the table come into view. Therefore, the number of visible primitives differ drastically between
the two frames, and thus the frame-to-frame coherence is very low.

The kitchen scene contains six point light sources and is modeled using 110,561 polygons. These require
a total of over 15 MB1 of memory to store. Furthermore, eight texture maps are used, ranging in size from

1The memory usage is 3 vertices and 3 normals per triangle patch. Each normal or vertex occupies 3 doubles (8 bytes per double).
This gives(3 + 3) � 3 � 8 � 110; 559 � 15 MB.
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96 kB to 3.1 MB and requiring 7.25 MB of memory in total. In all, the kitchen scene might require more
than 22 MB of memory to store. Therefore, the complex and highly reflective kitchen furniture should be
able to stress the memory hierarchy system (stress 5) on most contemporary processors.

Finally, when the toy car moves under the table and around the chairs in the animation, there should
be the possibility of bounding volume overlap (stress 6). However, this depends on the acceleration data
structure used, and how it is applied to the object in the scene.

4.2 Robots

The robot scene consists of ten animated warrior robots and a static downtown environment with skyscrapes
with a total of 71,708 polygons. Each robot consists of 6,249 polygons with 18 moving parts. The city is
built of 9,218 polygons. One light source is used as the sun. Background lighting is implemented by using
an ambient contribution. Snapshots from therobots test scene is shown in figure 4.

The robots are spread out in the city at start of the animation and walk down the streets to finally gather
in the middle of the scene. We have implemented stress 7 in this scene by letting the distribution of robots
change drastically from fairly balanced at start of the animation to highly unbalanced at the end. This also
gives the ”Teapot in the stadium”-stress (stress 3). The hierarchical animation of the robot ensures stress 1.

For a few seconds at the end of the animation the camera is in a static position, looking down at all
robots with only a few of them moving. This gives an opportunity for algorithms to exploit frame-to-frame
coherency.

Stress number 6 is implemented by the moving parts of the robots since spatial data structures will
overlap in the joints. Furthermore, data structure overlap might occur between the robots and the city.
Unless the spatial data structures for the parts of the robots are very tight fitting, overlap will also occur
between different robots when they are clustered at the end of the animation and when several robots,
marching down the street, are viewed head on.

Each robot of 6,249 polygons will fit in most current L2 caches, but all ten robots together probably will
not. Therefore, in the frames were many or all robots are visible at the same time, stress 5 should occur.
On the other hand, since all ten robots are identical except for the positions and rotations of the parts, this
could be utilized to save memory. Only the information about the transforms must be handled separately.
In this way large scenes may still fit in the caches, which can be essential for speed.

4.3 Museum

While thekitchen androbots test scenes include hierarchical animation of objects and animation of the
camera, this test scene’s goal is to stress the building of the efficiency data structures, which typically is
done as a preprocess before ray tracing an image. In order to create such a stress (stress 2), we have included
a very simple manner to animate objects such that every type of efficiency data structure that we know of
must be rebuilt each frame in order to obtain good performance. For this kind of animation, a triangle patch
(which is a triangle with normals at each vertex) is interpolated into another triangle patch.

Therefore, themuseum scene consists of a small room (in a museum). The main subject in this room
is an animated piece of abstract art, which consists of a number of triangle patches that are interpolated
from one constellation into four others. For example, in one of these constellations, the triangle patches are
uniformly distributed, and randomly rotated inside a cylinder, and at a later time, they form a sphere. This
test scene uses two light sources, and snapshots from it is shown in figure 5.

Another potential stress in this test scene is that the number of primitives inside the view frustum is
approximately the same for the first 90% of the frames in this animation. For the remaining 10% of the
frames, the number of primitives inside the view frustum changes drastically to only a few large polygons.
This will be a challenge to “constant frame rate” algorithms since the workload changes drastically.

If the animated piece of art in the middle of this scene is excluded, then this scene has 10,143 polygons
and 8 cones. There are five512 � 512 RGB textures, which together occupy 3.75 MB of memory. In a
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sense, this is a very small scene in terms of numbers of primitives. To be able to test scenes with different
number of primitives, we provide different complexity levels of the animated piece of art in this scene. More
specifically, there are 6 different versions, consisting of22k animated triangle patches, wherek = 3; : : : ; 8.
This means that the lowest complexity level consists of64 triangle patches and the highest65; 536. All
these triangle exist at five different times, i.e., they are interpolated into five different constellations. The
memory usage for the highest complexity level is45 MB. So, all in all, the highest complexity level of
this scene occupies at least50 MB. Due to the fact that the complex and highly reflective abstract art and
pedestal are fully visible in the majority of the frames in this animation stress 5 might occur.

5 Performance Measurements

The main idea of using a benchmark is that people should be able to compare the performance of different
algorithms in an objective way. To do that, the users of a benchmark must report the same performance
measurements and in the same manner. In this section, we first summarize the parameters and the mea-
surements that we propose the user of the benchmark should report, and then motivate and describe the
non-obvious measurements and parameters.

5.1 Proposal of Measurement Report

In the table below, the parameters and some of the measurements that we propose should be reported are
presented, together with actual numbers and parameters from a simple measurement. Please note that this
should not be seen as a serious attempt to achieve good rendering time. The animated museum test scene
was rendered using the publicly available Rayshade ray tracer [27] (adapted to read our file format), and we
simply used a uniform grid with fixed size, which was rebuilt each frame.

Model: museum Frames: 300
Primitives: 11,175 Complexity level: 5
Resolution: 800� 600 Mode: interactive
Average frame time: 176.6 s Worst frame time: 294 s
Deviation: 0.37 Continuity (opt): 0.18
Total time: 52,966.0 s Preprocessing time: 0.0 s

Machine: Sun UltraSparc 10, 333 MHz Memory: 128 MB
Scene memory: 8.5 MB Efficiency memory: 0.5 MB

Model is the name of the model,Framesis the number of frames in the animation,Primitives is the
number of primitives in the scene,Complexity levelis the complexity level number used in the scene,
andResolutionis the resolution of the rendered images. See section 5.2.1 for a description of theMode
parameter.Total timeis the time it takes to render all the frames,Average frame timeis the time it takes to
render a frame on average, andWorst frame timeis the time it takes to render the frame in the animation
that takes the most time. In an interactive, or near interactive, ray tracer, this parameter would be useful
to get an absolute measure of the worst possible frame rate one can expect.Preprocessing timeis the time
preprocessing takes, which is done once before the rendering of the entire animation starts. Finally, see
section 5.2.2 or a description of theDeviationand theContinuitymeasurements.

It is also reasonable and interesting to report what kind of machine has been used to render the images,
how much memory it has, how much memory the scene occupies, and how much memory the efficiency
data structures occupy.
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In addition to the information in the table, a graph can be supplied that shows the total number of rays
as a function of the frame number. Optionally, this graph could be divided into the following classes of
rays: eye, reflection, refraction, and shadow rays.

Also, a rendering time diagram as a function of the frame number should be given. As an option, the
rendering time can be divided intoshading time, which is the amount of the rendering time that is spent on
shading and lighting a frame,visibility time, which is the amount of the rendering time that is spent finding
the intersection with the closest object, andrebuild timewhich is the time it takes to rebuild the efficiency
data structures each frame. See figure 1 for example diagrams. Note that the rendering time is the sum
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Figure 1: Rendering times as a function of frame number for themuseum test scene. The 300 images
of this animation was rendered using the publicly available Rayshade ray tracer [27], and the time was
measured using the Unix time command. The left diagram shows only the total rendering time per frame,
while the right shows what it might look like when it has been divided into shading time (light gray) and
visibility time (dark gray). The dashed horizontal lines mark the average rendering time. The right diagram
could also be divided into one more part, namely rebuild time, which is the time it takes to rebuild the
efficiency data structures per frame. However, this was negligible in our test, and so does not show in the
diagram.

of the visibility, the shading time, and the rebuild time. The main reason to include those is mostly for the
algorithm developer’s own sake; he/she can gain insight about where the bottleneck in his/hers algorithm
lies, and where best to optimize.

If the user of BART is comparing his (new) algorithm against an old algorithm, it is recommended that
a speed-up diagram oftnew(k)=told(k) is given. Here,tnew(k) is the time it took for the new algorithm to
render framek, andtold(k) is the time it took for the old algorithm to render framek. For approximating
algorithms, which may introduce errors in the rendered images, a PNSR diagram as a function of the frame
number, and the APNSR should also be reported (see section 5.2.3).

5.2 Motivation

In this section, we present motivation for certain measurements that are non-obvious, and that we propose
are reported when BART is used. Some of the measurements are optional.
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5.2.1 Predetermined vs. Interactive Mode

The benchmark can be used in two different modes:interactiveandpredetermined. In predeterminedmode
the user of the benchmark is allowed to look into the future, that is, information about frames that have not
been rendered is allowed to be retrieved. For example, assume that framek is about to be rendered. In
predeterminedmode, the position and the orientation of the camera for, say, framek + 1, k + 2, andk + 3
may be investigated (in order to see if that information can be exploited for faster rendering).

Due to the difficulties in specifying a truly interactive animation (where things usually change due the
the input from the user of the system) which gives the same amount of work each time the benchmark is
used, we have included a “fake” interactive mode. In this mode, which is simply calledinteractive, the user
is not allowed to look into the future, i.e., you are not allowed to retrieve information about frames that
appear after the frame that is currently being rendered.

5.2.2 Deviation and Continuity

It is quite common to use the standard deviation as a measure on how much a set of samples deviates from
the average of the samples. The formula for the standard deviation is

s =

vuut 1

n� 1

n�1X
i=0

(ti � tavg)2 (1)

wheren is the number of frames is the scene,ti is the time for framei, tavg is the average frame time.
Instead of usings, we propose that the following is used instead

d =
s

tavg
(2)

which we call theDeviation. The reason to used instead ofs is thatd is dimensionless, and because it is, at
least theoretically, invariant of the average frame time. This means thatd is the same if you run a renderer
on machines with different performance.

The continuity measurement is computed as

max
k

(abs(tk � tk+1))=tavg; (3)

which thus is the maximum of the absolute value of the difference in rendering time between two subsequent
frames divided by the average frame time.

Both these measurements are invariant of the average frame time. (This was experimentally verified by
computing both theDeviationand theContinuityfor a 167 MHz and a 333 MHz machine, and the observed
values were very close. TheDeviationmeasure differed by 2% and theContinuityby 5%.) This implies
that a researcher can compare deviations and continuity just by reading another researcher’s paper. In a
perfect world, all measurement would be such, which would lessen the burden of the researcher. Instead the
researcher has to implement algorithms in order to compare performance. Unfortunately, all timings, such
as average frame time, total time, etc cannot be made such without losing their meaning.

We recommend that bothDeviationandContinuityare reported.Deviationis reasonable to report be-
cause it reports a deviation globally, whileContinuityis good because it catches frame-to-frame anomalies,
which for frame rates higher than one per second is distracting to the human visual system. Therefore, if
interactive rates are not achieved, then there is probably no use in reportingContinuity.

5.2.3 Approximating Algorithms

In order to render images rapidly or to maintain a constant frame rate, approximating techniques can be
used. Examples include reprojection methods [19, 20, 21, 22] and frameless rendering techniques [23, 24].
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More algorithms along this line are likely to be developed to meet the need for speed. However, errors may
be introduced in the rendered images, and we therefore recommend that certain error values are reported
when BART is used with such algorithms. To do this we assume that the user of BART renders a reference
set of images of the animation without approximating techniques and with the highest possible quality
(high anti-aliasing, high ray depth, etc), or at least states how the reference set was rendered. Due to
differences in shading, anti-aliasing, etc, in different renders, we believe strongly that it is best that the user
generates his/her own set of reference images. In image analysis and compression, it is common to measure
differences between two images using thepeak signal to noise ratio(PNSR), which in this case is a good
way to measure the rendering error caused by the approximation. To compute that, we first define themean
square error(MSE) for RGB images as:

MSE=
1

3wh

wX
x=0

hX
y=0

((a(x; y)r�c(x; y)r)
2 + (a(x; y)g�c(x; y)g)

2 + (a(x; y)b�c(x; y)b)
2) (4)

wherew is the width andh is the height of the rendered image measured in pixels,a(x; y) is the pixel
at (x; y) of the approximated image, andc(x; y) is the pixel at(x; y) of the correct (reference) image of
the same frame. The RGB components of a pixels are assumed to be in the interval[0; 1], and thus that
MSE 2 [0; 1]. The individual color components are accessed asc(x; y)c, wherec could be any ofr; g; b.
Note that the squares in Equation 4 penalize large differences in the individual pixels which usually is more
distracting. Given the MSE, the PNSR is:

PNSR= 10 log10(1:0
2=MSE) = �10 log10(MSE) (5)

Note that the lower PNSR the worse approximation. There may be some other measure that rewards
rendered images that are perceptually of better quality. For example, if an image is shifted one pixel to the
left, then PNSR will be low, even though the image is “perceptually pleasing”. Unfortunately, we know of
no such measure that takes every possible aspect into account. The average of the PNSR, denoted APNSR,
is computed as the PNSR of the average of the MSE of all images in an animation:

APNSR= �10 log10

 
1

n

X
i

MSEi

!
(6)

wheren is the number of images in the animation, and MSEi is the mean square error for imagei. Note
that a PNSR of0:0 means the maximum possible error, which may occur when all pixels in an image are
black when they in fact should be white. A totally correct image implies a PNSR value of1, which is
unreasonable to draw in a diagram. Assume therefore that we render an image of1280� 1024 pixels with
8 bits per color component and that exactly one pixel has an error in the least significant bit in one color
component. The PNSR is then114, and represents a negligible error. Therefore we say that PNSR2

[0; 120], where we assume that every value above120 represents an error-free image. The value120 may
be adjusted for other resolutions.

When approximating algorithms are used, we recommend that APNSR and a diagram of PNSRi as a
function of the frame numberi, wherei 2 [startframe; stopframe] are reported. The reason for this is to
be able to see how good the approximation really is, which is something that has previously been neglected
at large in the computer graphics community. Thus, when comparing algorithms in a fair way, these are
important measurements. See Figure 2 for an example of a PNSR diagram.
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Figure 2: PNSR diagram for rendering of themuseum scene. The 300 images of this animation was
rendered using the publicly available Rayshade ray tracer [27], and a PNSR-value was calculated for each
frame, reusing every fourth pixel from the previous frame. This made for faster rendering, but worse image
quality as can be seen in this diagram. Note that only the first image has PNSR= 120, which means that
this is the only image that was100% correct.

6 Implementation Notes

We have placed the three models of BART into the public domain, so that they are free for everyone to use.
We wanted to keep the file format as simple as possible and yet reasonably flexible. Therefore the NFF for-
mat [28] was enhanced in several ways to handle animated scenes. The new format, calledAnimated File
Format, is described on our web site (http://www.ce.chalmers.se/BART/ ). Kochanek-Bartels
splines [29] were used for animating both the viewer and the objects. This included rotations, translations,
and scalings organized hierarchically. Due to this, there is a notation of objects in AFF, since an object
usually is grouped under a transform (static or animated). We used Eberly’s implementation [30]. This ap-
proach was chosen as it avoids file reads between frames, which should be avoided for interactive programs
and because it was simple.

In addition to the files, we provide the following, in order for the user of BART to quickly use it:

� A simple parser of the file format (written in C), which is easy to add to a renderer (it is our experience
that it takes less than half a day).

� Routines for spline interpolation.

� C-code for reading texture files.

� MPEGs of the animations (for comparison purposes).

7 Conclusion and Future Work

We have provided a proposal for a suite of test scenes for use when comparing and measuring performance
of ray tracing algorithms that can handle animated scenes. These scenes have been designed to stress the
performance of acceleration schemes for ray tracing. We also provide a list of measures that we recommend
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should be reported when comparing, testing, and measuring performance and possibly image quality of
different algorithms. All of this is important in order to find good algorithms for rendering animated scenes.

It is difficult for a benchmark to cover every aspect, and this is just a first step, that we hope will be
extended in the future. Possible extensions that would be interesting to include would be some kind of
parametric patches (e.g., NURBS, B-spline surfaces or Bézier triangles) and subdivision surfaces. It would
also be nice to extend BART to include a large architectural building and a complex outdoor scene. It would
also be good to have extremely large scenes in BART, say a few magnitudes larger than they currently are.
Furthermore, the interactive ray tracers discussed in [1, 2] require powerful parallel computer systems to
achieve interactive rendering speeds. As parallel computer systems most likely will be used in the future,
special scenes could be added that stresses multi-processor algorithms for ray tracing. Over time we expect
that what should be reported with BART will evolve; some measurements may not be needed, and some
new ones may appear.

The goal for users of BART is real-time ray tracing (i.e.,> 15 fps) with a constant frame rate, and it
will be very exciting to see when this will happen and what kind of algorithms will be used. Finally, we
encourage everyone to participate in the usage and the development of BART, which we hope and expect to
grow and evolve over time.
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[11] Cazals, Fŕed́eric, George Drettakis, and Claude Puech, “Filtering, Clustering and Hierarchy Construc-
tion: a New Solution for Ray-Tracing Complex Scenes”,Computer Graphics Forum, vol. 14, no. 3,
pp. 371–382, August 1995.

12



[12] Klimaszewski, Krzysztof S., and Thomas W. Sederberg, “Faster Ray Tracing Using Adaptive Grids”,
IEEE Computer Graphics and Applications, vol. 17, no. 1, January/February 1997.

[13] Jansen, F.W, “Data Structures for Ray Tracing”,Data Structures for Raster Graphics, Springer-Verlag,
pp. 57–73, 1986.

[14] Arvo, James, “Linear-time Voxel Walking for Octrees”, in Eric Haines, ed.,Ray Tracing News, vol. 1,
no. 5,http://www.acm.org/tog/resources/RTNews/html/ , 1988.

[15] Timothy L. Kay and James T. Kajiya, “Ray Tracing Complex Scenes”,Computer Graphics (Proceed-
ings of SIGGRAPH 86), 20(4), pp. 269-278, August 1986.

[16] Goldsmith, Jeffrey, and John Salmon, “Automatic Creation of Object Hierarchies for Ray Tracing”,
IEEE Computer Graphics & Applications, vol. 7, no. 5, pp. 14–20 , May 1987.

[17] Haines, Eric A., and D. P. Greenberg, “The Light Buffer: a Shadow Testing Accelerator”,IEEE
Computer Graphics & Applications, vol. 6, no. 9, pp. 6–16 , 1986.

[18] Haines, Eric, “Spline Surface Rendering, and What’s Wrong with Octrees”, inRay Tracing News, vol.
1, no. 2, January 1988.

[19] Badt, Sig Jr, “Two Algorithms for Taking Advantage of Temporal Coherence in Ray Tracing”,The
Visual Computer, vol. 4 no. 3, pp. 123–132, September 1988.

[20] Adelson, Stephen J., and Larry F. Hughes, “Generating Exact Ray-Traced Animation Frames by Re-
projection”,IEEE Computer Graphics & Applications, vol. 15 no 3, pp. 43–53, May 1995.

[21] Myszkowski, Karol, Przemyslaw Rokita, and Takehiro Tawara, “Perceptually-Informed Accelerated
Rendering of High Quality Walkthrough Sequences”, in Gred Ward Larson and Dani Lischinsky (eds),
Proceedings of of 10th Eurographics Workshop on Rendering, pp. 13–26, June 1999.

[22] Walter, Bruce, George Drettakis, and Steven Parker, “Interactive Rendering using the Render Cache”,
in Gred Ward Larson and Dani Lischinsky (eds),Proceedings of of 10th Eurographics Workshop on
Rendering, pp. 27–38, June 1999.

[23] Bishop, Gary, Henry Fuchs, Leonard McMillan, and Ellen j. Scher Zagier, “Frameless Rendering:
Double Buffering Considered Harmful”,Computer Graphics (SIGGRAPH 94 Proceedings), pp. 175–
176, July 1994.

[24] Scher Zagier, Ellen J., “Frameless antialiasing”, UNC Technical Report TR95-026, May 1995.

[25] Hennessy, John L., and David A. Patterson,Computer Architecture: A Quantitative Approach, second
edition.

[26] Singh, Jaswinder P., A. Gupta, and M. Levoy, “Parallel Visualization Algorithms: Performance and
Architectural Implications”,Computer, vol. 27, no. 7, pp. 45–55 , July 1994.

[27] “Rayshade”,http://www-graphics.stanford.edu/ cek/rayshade/ .

[28] Haines, Eric, “Standard Procedural Databases (and NFF)”,
http://www.acm.org/tog/resources/SPD/overview.html .

[29] Kochanek, Doris H.U., and Richard H. Bartels, “Interpolating Splines with Local Tension, Continuity
and Bias Control”,Computer Graphics (SIGGRAPH ’84 Proceedings), vol. 18, pp. 33–41, July 1984.

[30] Eberly, David, code fromhttp://www.magic-software.com/ .

13



Figure 3: Thekitchen test scene. The animation starts at the upper left, and should be read from left to
right and top to bottom.

14



Figure 4: Therobots test scene. The animation starts at the upper left, and should be read from left to right
and top to bottom.
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Figure 5: Themuseum test scene. The animation starts at the upper left, and should be read from left to
right and top to bottom.
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